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Abstract: In this study, we present the numerical solution of Riesz fractional differential equation with the help of meshless
method. In accordance with this purpose, we benefit the radial basis functions (RBFs) interpolation method and conformable frac-
tional calculus. We finally present the results of numerical experimentation to show that presented algorithm provide successful
consequences.
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1 Introduction

In this study, we provide a meshfree algorithm for the numerical solution of Riesz fractional differential equation by taking advantageous of
radial basis function interpolation [5], [6]. The aim of this scheme is to acquire approximate solution of Riesz fractional differential equation
with RBF collocation method. Of course this approach would provide an insight the solution of more complex cases.

The remainder of this work is organized as follows: In Section 2, the conformable derivatives are summarised, along with the conformable
fractional calculus. In Section 3, the RBF interpolation method is reviewed while in Section 4 the numerical scheme of solving conformable
ordinary differential equation using meshfree method is introduced and we also review the RBF collocation technique. Numerical examples are
given in Section 5, while some conclusions are discussed in Section 6.

2 Conformable fractional calculus

In this manuscript, meshfree solution of Riesz fractional differential equation will be presented and tested via conformable fractional calculus.
More detail, conformable derivatives for α ∈ (0, 1] and t ∈ [0,∞) given by

Dα (f) (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, Dα (f) (0) = lim

t→0
Dα (f) (t) , (1)

provided the limits exist (for more detail see, [1]). If f is fully differentiable at t, then

Dα (f) (t) = t1−α
df

dt
(t) . (2)

A function f is α−differentiable at a point t ≥ 0 if the limit in (1) exists and is finite. This yields the following consequences.

Theorem 1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then

1. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,

2. Dα (λ) = 0, for all constant functions f (t) = λ,

3. Dα (fg) = fDα (g) + vDα (f) ,

4. Dα

(
f

g

)
=

gDα (f)− fDα (g)

g2
,

5. Dα (tn) = ntn−α for all n ∈ R,

6. Dα (f ◦ g) (t) = f′ (g (t))Dα (g) (t) for f is differentiable at g(t).
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3 Meshless method

In this part, the basic facts of the meshless radial basis function interpolation are explained. Consider a function f : Rd → R a real valued
function with d variables, which is to be approximated by IX : Rd → R, for given values f(xi) : i = 1, 2, · · · , n, where xi : i = 1, 2, · · · , n
is a set of distinct points in Rd, named the center set X .

Then the approximation to the function f is of the form

IX(x) =

N∑
k=1

akτk(‖x− xk‖), (3)

where τk : Rd → R is a univariate radial basis function. Then the interpolation condition can be constructed as IX(xm) = f(xm), m =
1, 2, · · · , N . Namely, the interpolation condition is

N∑
k=1

akτk(‖xm − xk‖) = f(xm), m = 1, 2, · · · , N (4)

In other words the system of matrix for interpolation condition can be written as

[A]{a} = {f} (5)

where the entries of the matrix A are Am,k = τk(‖xm − xk‖) such that m, k = 1, 2, · · · , N , a = {a1, a2, · · · , aN}T and f =

{f1, f2, · · · , fN}T . The interpolant of f(x) is unique if and only if the matrixX is non-singular. It has been discussed about sufficient conditions
for τ(r) to guarantee non-singularity of the a matrix [2], [3]

Well known radial basis functions are given below:

RBFs τ(r)

Piecewise Polynomial (Rn) |r|n , n odd

Thin Plate Spline (TPSn) |r|nln|r| , n even

Multiquadric (MQ)
√

1 + r2

Inverse Multiquadric (IMQ)
1√

1 + r2

Inverse Quadratic (IQ)
1

1 + r2

Gaussian (GA) e−r
2

Bessel (BE) J0(2r)

4 Numerical approach

In this section, we provide a numerical scheme to solve Riesz fractional differential equation via meshless method. To begin with, consider the
following Riesz fractional differential equation [4],

∂f(x, t)

∂t
= −κα

∂α

∂|x|α f(x, t), x ∈ [0, π], t ∈ (0, T ],

f(x, 0) = f0(x),

f(0, t) = f(π, t) = 0,

where κα represents the dispersion coefficient and f(x, t) is a solute concentration. Let xi be equally spaced grid points in the interval
0 ≤ xi ≤ π such that 1 ≤ i ≤ N , x1 = 0 and xN = π. Then by solving the equation ω(x) = τ(x)λ−1 for ω(x) = (ωk(x))1≤k≤N , τ(x) =
(τ(|x− xk|))1≤k≤N and λ = (τ(|xi − xk|))1≤i≤N,1≤k≤N one can construct the Lagrange basis ω1(x), ω1(x), · · · , ωN (x) of the span
of the functions (τ(|x− xk|))1≤k≤N . If D is a differential operator, and if the radial basis function τ is sufficiently smooth to to allow
implementation of D, the desired derivatives Dωk of the Lagrange basis ωk come via solving (Dω)(x) = (Dτ)(x)λ−1. So one can write the
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approximation solution as

f(x, t) =

N−1∑
k=2

ϕk(t)ωk(x)

where ϕ(t) = ϕk(t), 2 ≤ k ≤ N − 1, which yields

N−1∑
k=2

ϕ′k(t)ωk(xi) = −κα
N−1∑
k=2

ϕk(t)
∂α

∂|x|αωk(xi), ϕk(0) = f0(xk), 2 ≤ k ≤ N − 1.

Hence one obtain the following system of ordinary differential equation:

ϕ′(t) = −κα
[
∂α

∂|x|αω ∗ ϕ(t)

]
, ϕ(0) = ∆0.

where
∂α

∂|x|αω =

[
∂α

∂|x|αωk(xi)

]
2≤i≤N−1,2≤k≤N−1

,

and

∆0 =


f0(x2)

.......
f0(xN−1)

 .

5 Numerical experiments

Now, in order to validate our approach, we present a numerical experiment which performed by MATLAB. Here, let consider the parameter
α = 0.5, κα = 0.25, T = 0.4 and f0(x) = sin(π − 3x). In Figure, we present the numerical solutions of given fractional differential equations
by using the Gaussian RBF with ε = 1, and taking 101 discretization grids.
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Fig. 1: f versus x using Gaussain RBF with ε = 1 taking 101 discretization grids

6 Conclusion

In this article, we presented and tested the numerical solution of Riesz fractional differential equation with the help of meshless method.
Here, we benefit the radial basis functions (RBFs) interpolation method and conformable fractional calculus. We finally present the results of
numerical experimentation to show that presented algorithm provide successful consequences.
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