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Abstract: The main purpose of this article is to introduce new sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
which

are consisted by sequences whose mth order differences are in the Pascal sequence spaces p∞, pc and p0, respectively. Fur-
thermore, the bases of the new difference sequence spaces pc

(
∆(m)

)
and p0

(
∆(m)

)
, and the α-, β- and γ-duals of the new

difference sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
have been determined. Finally, necessary and sufficient con-

ditions on an infinite matrix belonging to the classes (pc
(

∆(m)
)

: l∞) and (pc
(

∆(m)
)

: c) are obtained.
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1 Introduction

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called as a sequence space. We shall
write l∞, c and c0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs and l1 we denote the spaces of all
bounded, convergent and absolutely convergent series, respectively.

Let X , Y be any two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers ank, where n, k ∈ N . Then,
the matrix A defines a transformation from X into Y and we denote it by A : X → Y , if for every sequence x = (xk) ∈ X the sequence
Ax = {(Ax)n}, the A-transform of x, is in Y , where

(Ax)n =
∑
k

ankxk (1)

for each n ∈ N . For simplicity in notation, here and in what follows, the summation without limits runs from 0 to∞. By (X : Y ), we denote
the class of all matrices A such that A : X → Y . Thus A ∈ (X : Y ) if and only if the series on the right side of (1) converges for each n ∈ N
and every x ∈ X , and we have Ax = {(Ax)n} ∈ Y for all x ∈ X .

In the study on the sequence spaces, there are some basic approaches which are determination of topologies, matrix mapping and inclusions
of sequence spaces [2]. These methods are applied to study the matrix domain XA of an infinite matrix A in a sequence space X is defined by

XA = {x = (xk) ∈ w : Ax ∈ X} ,

which is a sequence space. Although in the most cases the new sequence spaceXA generated by the limitation matrixA from a sequence space
X is the expansion or the contraction of the original space X , in some cases it may be observed that those spaces overlap. Indeed, one can
easily see that the inclusions XS ⊂ X and X ⊂ X∆ strictly hold for X ∈ {l∞, c, c0} [1]. Especially, the sequence spaces and the difference
operator which are special cases for the matrix A have been studied extensively via the methods mentioned above.

Define the difference matrices ∆1 = (δnk) by

δnk =

{
{(−1)n−k, (n− 1 ≤ k ≤ n),

0, (0 < n− 1 or n > k),

for each k, n ∈ N .
In the literature, the difference sequence spaces l∞ (∆) = {x = (xk) ∈ w : ∆x ∈ l∞}, c (∆) = {x = (xk) ∈ w : ∆x ∈ c} and c0 (∆) =

{x = (xk) ∈ w : ∆x ∈ c0} are first defined by Kızmaz [3]. Difference sequence spaces have been defined and studied by various authors
[9]-[20]. The idea of difference sequences was generalized by Et and Çolak [9] and Murseelan [10]. Let λ denotes one of the sequence
spaces l∞, c, and c0. They defined the sequence spaces λ

(
∆(m)

)
= {x = (xk) ∈ w : ∆(m)x ∈ λ}, where m ∈ N and

(
∆(m)x

)
n

=
m∑
i=0

(−1)i
(m
i

)
xk−i. The operator ∆(m) : w → w is defined by

(
∆(1)x

)
k

= (xk − xk+1) and ∆(m)x =
(

∆(1)x
)
k
o
(

∆(m−1)x
)
k

(m ≥
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2). Throughout the article, we shall use the convention that a term with a negative subscript is equal to naught. Also throughout this work, by
F and K, respectively, we shall denote the collection of all finite subsets of N .

Let P denote the Pascal means defined by the Pascal matrix [4] is defined by

P = [pnk] =

{ ( n
n−k

)
, 0 ≤ k ≤ n)

0, (k > n)
, (n, k ∈ N)

and the inverse of Pascal’s matrix Pn = (pnk) is given by

P−1 = [pnk]−1 =

{
(−1)n−k

( n
n−k

)
, (0 ≤ k ≤ n)

0, (k > n)
, (n, k ∈ N).

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and
upper triangular, for any integer n > 0. The symmetric Pascal matrix of order n is defined by

Sn = (sij) =

(
i+ j − 2

j − 1

)
, for i, j = 1, 2, ...., n, (2)

we can define the lower triangular Pascal matrix of order n by

Ln = (lij) =

{ (i−1
j−1

)
, (0 ≤ j ≤ i)

0, (j > i)
, (3)

and the upper triangular Pascal matrix of order n is defined by

Un = (uij) =

{ (j−1
i−1

)
, (0 ≤ i ≤ j)

0, (j > i)
. (4)

We notice that Un = (Ln)T , for any positive integer n.
i. Let Sn be the symmetric Pascal matrix of order n defined by (2), Ln be the lower triangular Pascal matrix of order n defined by (3), and

Un be the upper triangular Pascal matrix of order n defined by (4), then Sn = LnUn and det(Sn) = 1 [5].
ii. Let A and B be n× n matrices. We say that A is similar to B if there is an invertible n× n matrix P such that
P−1AP = B [6].
iii. Let Sn be the symmetric Pascal matrix of order n defined by (2), then Sn is similar to its inverse S−1

n [5].
iv. Let Ln be the lower triangular Pascal matrix of order n defined by (3), then L−1

n = ((−1)i−j lij) [7].
Recently Polat [8] has defined the Pascal sequence spaces p∞, pc and p0 like as follows:

p∞ =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣
n∑
k=0

(
n

n− k

)
xk

∣∣∣∣∣ <∞
}
,

pc =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n

n− k

)
xk exists

}
,

and

p0 =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n

n− k

)
xk = 0

}
.

In the present paper, we define Pascal difference sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
which consist of all sequences

whose mth order differences are in the Pascal sequence spaces p∞, pc and p0, respectively. Furthermore, the Schauder bases of the sequence
spaces pc

(
∆(m)

)
and p0

(
∆(m)

)
, and the α-, β- and γ- duals of the sequence spaces p∞

(
∆(m)

)
, pc

(
∆(m)

)
and p0

(
∆(m)

)
have been

determined. The last section of the article is devoted to the characterization of some matrix mappings on the sequence space pc
(

∆(m)
)

.

2 New Pascal difference sequence spaces of order m

The triangle matrix ∆(m) = (δ
(m)
nk ) is defined by
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δ
(m)
nk =

{
(−1)n−k

(( m
n−k

))
, (max{0, n−m} ≤ k ≤ n),

0, (0 ≤ k < max{0, n−m} or n > k),

for all k, n ∈ N and for any fixed m ∈ N . Using this matrix, we introduce the sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
as

the set of all sequences such that ∆(m)-transforms of them are in the Pascal sequence spaces p∞, pc and p0, respectively, that is,

p∞
(

∆(m)
)

=
{
x = (xk) ∈ w : ∆(m)x ∈ p∞

}
,

pc
(

∆(m)
)

=
{
x = (xk) ∈ w : ∆(m)x ∈ pc

}
,

and
p0

(
∆(m)

)
=
{
x = (xk) ∈ w : ∆(m)x ∈ p0

}
.

Define the sequence y = {yk}, which is frequently used, as the H- transform of a sequence x = (xk), i.e.,

yn = (Hx)n =

n∑
k=0

(
n

n− k

)
m∑
i=0

(−1)i
(
m

i

)
xk−i (5)

=

n∑
k=0

[
n∑
i=k

(
i

i− k

)
(−1)i−k

(
m

i− k

)]
xk

for each n, m ∈ N . Here by H , we denote the matrix H = P∆(m) = (hnk) defined by

hnk =

{ ∑n

i=k

( i
i−k
)
(−1)i−k

( m
i−k
)
, (0 ≤ k ≤ n)

0, (k > n)
, (n, k ∈ N).

It can be easily shown that p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
are normed linear spaces by the following norm:

‖x‖∆ = ‖Hx‖∞ = sup
n

∣∣∣∣∣
n∑
k=0

[
n∑
i=k

(
i

i− k

)
(−1)i−k

(
m

i− k

)]
xk

∣∣∣∣∣ . (6)

Theorem 1. The sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
are Banach spaces with the norm (6).

Proof: Let
{
xi
}

be any Cauchy sequence in the space p∞
(

∆(m)
)

, where
{
xi
}

=
{
xik

}
=
{
xi0, x

i
1, ...

}
∈ p∞

(
∆(m)

)
for each i ∈ N .

Then, for a given ε > 0 there exists a positive integer N0(ε) such that
∥∥∥xki − xni ∥∥∥

∆
< ε for all k, n > N0(ε). Hence∣∣∣H(xki − x

n
i )
∣∣∣ < ε

for all k, n > N0(ε) and for each i ∈ N . Therefore,
{

(Hx)ki

}
=
{

(Hx)0
i , (Hx)1

i , (Hx)2
i , ...

}
is a Cauchy sequence of real numbers for

every fixed i ∈ N . Since the set of real numbers R is complete, it converges, say

lim
i→∞

(Hxi)k → (Hx)k

for each k ∈ N . So, we have

lim
n→∞

∣∣∣H(xki − x
n
i )
∣∣∣ =

∣∣∣H(xki − xi)
∣∣∣ ≤ ε

for each k ≥ N0(ε). This implies that
∥∥∥xk − x∥∥∥

∆
< ε for k ≥ N0(ε), that is, xi → x as i→∞.

Now, we must show that x ∈ p∞
(

∆(m)
)

. We have

‖x‖∆ = ‖Hx‖∞ = sup
n

∣∣∣∣∣
n∑
k=0

[
n∑
i=k

(
i

i− k

)
(−1)i−k

(
m

i− k

)]
xk

∣∣∣∣∣
≤ sup

n

∣∣∣H(xik − xk)
∣∣∣+ sup

n

∣∣∣Hxik∣∣∣
≤

∥∥∥xi − x∥∥∥
∆

+
∣∣∣P∆(m)xik

∣∣∣ <∞
for all i ∈ N . This implies that x = (xi) ∈ p∞

(
∆(m)

)
. Therefore p∞

(
∆(m)

)
is a Banach space. It can be shown that pc

(
∆(m)

)
and

p0

(
∆(m)

)
are closed subspaces of p∞

(
∆(m)

)
, which leads us to the consequence that the spaces pc

(
∆(m)

)
and p0

(
∆(m)

)
are also

Banach spaces with the norm (6). Furthermore, since p∞
(

∆(m)
)

is a Banach space with continuous coordinates, i.e.,
∥∥∥P (xk − x)

∥∥∥
∆
→

0 implies
∣∣∣H(xki − xi)

∣∣∣→ 0 for all, it is a BK-space. �
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3 The bases of sequence spaces pc(∆(m)) and p0(∆
(m))

In this section, we shall give the Schauder bases for the spaces pc(∆(m)) and p0(∆(m)). First we define the Schauder bases. A sequence{
b(k)

}
k∈N

in a normed sequence space X is called a Schauder bases (or briefly bases), if for every x ∈ X there is a unique sequence (λk) of
scalars such that

lim
n→∞

‖x− (λ0x0 + λ1x1 + ...+ λnxn)‖ = 0.

Theorem 2. Define the sequence b(k) =
{
b
(k)
n

}
n∈N

of the elements of the space p0(∆(m)) for every fixed k ∈ N by

b
(k)
n =

{
0, (n < k)∑n

i=k

(m+n−i−1
n−i

)
(−1)i−k

( i
i−k
)
, (n ≥ k) . (7)

Then, the following assertions are true:
i. The sequence

{
b(k)

}
k∈N

is bases for the space p0

(
∆(m)

)
and for any x ∈ p0

(
∆(m)

)
has a unique representation of the form

x =
∑
k

(Hx) b(k).

ii. The set
{
t, b(1), b(2), ...

}
is a basis for the space pc

(
∆(m)

)
and for any x ∈ pc

(
∆(m)

)
has a unique representation of form

x = lt+
∑
k

[
(Hx)k − l

]
b(k),

where t = {tn} =
n∑
k=0

∑n

i=k

( i
i−k
)
(−1)i−k

( m
i−k
)
, (m,n ∈ N), l = lim

k→∞
(Hx)k and H = P∆(m).

Theorem 3. The sequence spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
are linearly isomorphic to the spaces l∞, c and c0 respectively,

i.e., p∞
(

∆(m)
)
∼= l∞, pc

(
∆(m)

)
∼= c and p0

(
∆(m)

)
∼= c0.

Proof: To prove the fact p0

(
∆(m)

)
∼= c0, we should show the existence of a linear bijection between the spaces p0 (∆) and c0. Consider the

transformation T defined, with the notation (5), from p0

(
∆(m)

)
to c0 by x→ y = Tx. The linearity of T is clear. Further, it is trivial that

x = 0 whenever Tx = 0 and hence T is injective. Let y ∈ c0 and define the sequence x = {xn} by

xn =

n∑
k=0

[
n∑
i=k

(
m+ n− i− 1

n− i

)
(−1)i−k

(
i

i− k

)]
yk (8)

for each m, n ∈ N. Then,

lim
n→∞

(Hx)k = lim
n→∞

n∑
k=0

(
n

n− k

)
∆(m)xk

=

n

lim
n→∞

∑
k=0

(
n

n− k

)
m∑
i=0

(−1)i
(
m

i

)
xk−i

= lim
n→∞

n∑
k=0

[
n∑
i=k

(
i

i− k

)
(−1)i−k

(
m

i− k

)]
xk = lim

n→∞
yn = 0

Thus, we have that x ∈ p0

(
∆(m)

)
. Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which implies that the

spaces p0

(
∆(m)

)
and c0 are linearly isomorphic. In the same way, it can be shown that p∞

(
∆(m)

)
and pc

(
∆(m)

)
are linearly isomorphic

to l∞ and c, respectively, and so we omit the detail. �

4 The α-, β- and γ- duals of the sequence spaces p∞
(
∆(m)

)
, pc

(
∆(m)

)
and p0

(
∆(m)

)
In this section, we state and prove the theorems determining the α-, β- and γ- duals of Pascal difference sequence spaces p∞

(
∆(m)

)
,

pc
(

∆(m)
)

and p0

(
∆(m)

)
. For the sequence spaces λ and µ , define the set S (λ, µ) by

S (λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} . (9)
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The α-, β- and γ- duals of a sequence space λ, which are respectively denoted by λα, λβ and λγ are defined

λα = S (λ, l1) , λβ = S (λ, cs) and λγ = S (λ, bs) .

We shall begin with some lemmas due to Stieglitz and Tietz [21] that are needed in proving (4)-(6).
Lemma 1. A ∈ (c0 : l1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

ank

∣∣∣∣∣∣ <∞ . (10)

Lemma 2. A ∈ (c0 : c) if and only if

sup
n

∑
k

|ank| <∞, (11)

lim
n→∞

ank − αk = 0. (12)

Lemma 3. A ∈ (c0 : l∞) if and only if

sup
n

∑
k

|ank| <∞. (13)

Theorem 4. Let a = (ak) ∈ w and the matrix B = (bnk) by

bnk =

{ ∑n

i=k

(m+n−i−1
n−i

)
(−1)i−k

( i
i−k
)
an, (0 ≤ k ≤ n)

0 , (k > n)

for all m, n ∈ N. Then the α- dual of the spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
is the set

D =

a = (an) ∈ w : sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

bnk

∣∣∣∣∣∣ <∞
 .

Proof: Let a = (an) ∈ w and consider the matrix B whose rows are the products of the rows of the matrix H−1 =
(
P∆(m)

)−1
=

(∆(m))−1P−1 and sequence a = (an). Bearing in mind the relation (5), we immediately derive that

anxn =

n∑
k=0

[
n∑
i=k

(
m+ n− i− 1

n− i

)
(−1)i−k

(
i

i− k

)
an

]
yk =

n∑
k=1

bnkyk = (By)n (14)

m, n ∈ N, we therefore observe Lemma 1 and by (14) that ax = (anxn) ∈ l1 whenever x ∈ p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
if and

only if By ∈ l1 whenever y = (yk) ∈ l∞, c and c0. This means that a = (an) ∈
[
p∞

(
∆(m)

)]α
,
[
pc
(

∆(m)
)]α

and
[
p0

(
∆(m)

)]α
if and only if By ∈ (

[
p∞

(
∆(m)

)]α
: l1), (

[
p∞

(
∆(m)

)]α
: l1) and (

[
p∞

(
∆(m)

)]α
: l1) which yields the consequence that[

p∞
(

∆(m)
)]α

=
[
pc
(

∆(m)
)]α

=
[
p0

(
∆(m)

)]α
= D. �

Theorem 5. Let a = (ak) ∈ w and the matrix C = (cnk) by

cnk =


n∑
i=k

[∑n

j=k

(m+i−j−1
i−j

)
(−1)j−k

( j
j−k
)]
ai, (0 ≤ k ≤ n)

0, (k > n)

and define the sets c1, c2, c3 and c4 by

c1 =

{
a = (ak) ∈ w : sup

n

∑
k

|cnk| <∞

}
,

c2 = a = (ak) ∈ w : lim
n→∞

cnk exists for each k ∈ N,

c3 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

|cnk| =
∑
k

∣∣∣ lim
n→∞

cnk

∣∣∣} ,

and
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c4 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

cnk exists

}
.

Then
[
p∞

(
∆(m)

)]β
,
[
pc
(

∆(m)
)]β

and
[
p0

(
∆(m)

)]β
is c2 ∩ c3, c1 ∩ c2 ∩ c4 and c1 ∩ c2, respectively.

Proof: We only give the proof the space p0

(
∆(m)

)
. Since the rest of the proof can be obtained by the same way for the spaces pc

(
∆(m)

)
and p∞

(
∆(m)

)
. Consider the equation

n∑
k=1

akxk =

n∑
k=0

k∑
i=0

 k∑
j=i

(
m+ k − j − 1

k − j

)
(−1)j−i

(
j

j − i

) akyi (15)

=

n∑
k=0

 n∑
i=k

 i∑
j=k

(
m+ i− j − 1

i− j

)
(−1)j−k

(
j

j − k

) ai
 yk

= (Cy)n .

Thus , we deduce from Lemma 2 and (15) that ax = (akxk) ∈ cs whenever x = (xk) ∈ h0

(
∆(m)

)
if and only if Cy ∈ c whenever y =

(yk) ∈ c0. That is to say that a = (ak) ∈
[
p0

(
∆(m)

)]β
if and only if C ∈ (c0 : c) which yields us [p0

(
∆(m)

)
]β = c1 ∩ c2. The β- dual

of the sequence spaces [pc
(

∆(m)
)

] and [p∞
(

∆(m)
)

] may be obtained in the similiar way, we omit their proofs. �

Theorem 6. The γ- dual of the spaces p∞
(

∆(m)
)

, pc
(

∆(m)
)

and p0

(
∆(m)

)
is the set c1.

Proof: This may be obtained in the similiar way used in the prof of Theorem (5) together with Lemma 3 instead of Lemma 2. So, we omit the
detail. �

5 Matrix transformations on the sequence space pc
(
∆(m)

)
We shall write throughout for brevity that

ãnk =

∞∑
j=k

(
m+ n− j − 1

n− j

)
(−1)j−k

(
j

j − k

)
anj ,

and

ĝnk =

s∑
j=k

(
m+ n− j − 1

n− j

)
(−1)j−k

(
j

j − k

)
anj

for all m, n, s ∈ N.
In this section, we give the characterization of the classes

(
pc
(

∆(m)
)

: l∞
)

and
(
hc
(

∆(m)
)

: c
)

. Following theorems can be proved
using standart methods, we omit the detail.

Theorem 7. A ∈
(
pc
(

∆(m)
)

: l∞
)

if and only if

sup
n

∑
k

|ĝnk| <∞, (16)

lim
n→∞

∑
k

ĝnk exists for all m ∈ N , (17)

sup
n∈N

∑
k

|ãnk| <∞, (n ∈ N) , (18)

and

lim
n→∞

ãnk exists for all n ∈ N . (19)
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Theorem 8. A ∈
(
pc
(

∆(m)
)

: c
)

if and only if (16)-(19) hold, and

lim
n→∞

∑
k

ãnk = α, (20)

lim
n→∞

(ãnk) = αk, (k ∈ N) (21)
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[13] M. Et, M. Başarır, On some genaralized difference sequence spaces, Period. Math. Hung., 35 (3) (1997), 169-175.
[14] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209-220.
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