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Abstract

In this paper, we have investigated the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing
a small function. Our results radically extended and improved the results of Bhoosnurmath-Pujari [6] and Harina - Anand [13] not only by
sharing small function instead of fixed point but also reducing the lower bound of n. There are some miscalculation in the proof of a result of
Harina-Anand [13]. We have corrected all of them in a more convenient way. At last some open questions have been posed for further study
in this direction.
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1. Introduction, Definitions and Results

The Nevanlinna theory mainly describes the asymptotic distribution of solutions of the equation f (z) = w, as w varies. At the outset, we
assume that readers are familiar with the basic Nevanlinna Theory [9]. First we explain the general sharing notion. Let f and g be two
non-constant meromorphic functions in the complex plane C. Two meromorphic functions f and g are said to share a value w ∈ C∪{∞} IM
(ignoring multiplicities) if f and g have the same w-points counted with ignoring multiplicities. If multiplicities of w-points are counted,
then f and g are said to share w CM (counting multiplicities).
When w = ∞ the zeros of f −w means the poles of f .
It is well known that if two moromorphic functions f and g share four distinct values CM, then one is Möbius Transformation of the other.
In 1993, corresponding to one famous question of Hayman [10], Yang-Hua [16] showed that similar conclusions hold for certain types of
differential polynomials when they share only one value.
Recently by using the same argument as in [16], Fang-Hong [7] the following result was obtained.

Theorem 1.1. Let f and g be two transcendental entire functions, n ≥ 11, an integer. If f n( f − 1) f ′ and gn(g− 1)g′ share 1 CM, then
f ≡ g.

The following example shows that in Theorem A one simply can not replace “entire” by “meromorphic ” functions.

Example 1.2. Let

f (z) =
(n+2)
(n+1)

ez + . . .+ e(n+1)z

1+ ez + . . .+ e(n+1)z

and

f (z) =
(n+2)
(n+1)

1+ ez + . . .+ enz

1+ ez + . . .+ e(n+1)z
.

It is clear that f (z) = ezg(z). Also f n( f −1) f ′ and gn(g−1)g′ share 1 CM but note that f 6≡ g.

In 2004, Lin-Yi [11] extended Theorem A and obtained the following results.

Theorem 1.3. [11] Let f and g be two transcendental entire functions, n≥ 7 an integer. If f n( f −1) f ′ and gn(g−1)g′ share z CM, then
f ≡ g.
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Theorem 1.4. [11] Let f and g be two transcendental meromorphic functions, n≥ 12 an integer. If f n( f −1) f ′ and gn(g−1)g′ share z
CM, then either f ≡ g or

g =
(n+2)(1−hn+1)

(n+1)(1−hn+2)
, f =

(n+2)h(1−hn+1)

(n+1)(1−hn+2)
,

where h is a non-constant meromorphic function.

Theorem 1.5. [11] Let f and g be two transcendental meromorphic functions, n≥ 13 an integer. If f n( f −1)2 f ′ and gn(g−1)2g′ share z
CM, then f ≡ g.

To improve all the above mentioned results, natural questions arise as follows.

Question 1.6. Keeping all other conditions intact, is it possible to reduce further the lower bounds of n in the above results ?

Question 1.7. Is it also possible to replace the transcendental meromorphic (entire) functions by a more general class of meromorphic
(entire) functions in all the above mentioned results ?

In 2013, Bhoosnurmath-Pujari [6], answered the above questions affirmatively and obtained the following results.

Theorem 1.8. [6] Let f and g be two non-constant meromorphic functions, n≥ 11 be an integer. If f n( f −1) f ′ and gn(g−1)g′ share z
CM, f and g share ∞ IM, then either f ≡ g or

g =
(n+2)(1−hn+1)

(n+1)(1−hn+2)
, f =

(n+2)h(1−hn+1)

(n+1)(1−hn+2)
,

where h is a non-constant meromorphic function.

Theorem 1.9. [6] Let f and g be two non-constant meromorphic functions, n≥ 12 an integer. If f n( f −1)2 f ′ and gn(g−1)2g′ share z CM,
f and g share ∞ IM, then f ≡ g.

Theorem 1.10. [6] Let f and g be two non-constant entire functions, n≥ 7 be an integer. If f n( f −1) f ′ and gn(g−1)g′ share z CM, then
f ≡ g.

In this direction, for the purpose of extending Theorem E and F, one may ask the following question.

Question 1.11. Keeping all other conditions intact in Theorem E, F and G, is it possible to replace respectively f n( f −1) f ′ and gn(g−1)g′

by f n( f −1)m f ′ and gn(g−1)mg′ ?

Next the following question is inevitable.

Question 1.12. Is it possible to omit the second conclusions of Theorems C and E ?

In 2016, Waghmore-Anand [13] answer the Questions 1.11 and 1.12 affirmatively and obtained the following results.

Theorem 1.13. [13] Let f and g be two non-constant meromorphic functions, n≥ m+10 be an integer. If f n( f −1)m f ′ and gn(g−1)mg′

share z CM, f and g share ∞ IM, then f ≡ g.

Theorem 1.14. [13] Let f and g be any two non-constant entire functions, n≥ m+6 an integer. If f n( f −1)m f ′ and gn(g−1)mg′ share z
CM, then f ≡ g.

Note 1.15. We see that in the results of Waghmore - Anand, for m = 2, Theorem H reduces to Theorem F and for m = 1, Theorem I reduces
to Theorem G .

Remark 1.16. We notice that in the proof of Theorem H and hence in the case of Theorem I also, we have found some miscalculation made
by the authors Waghmore-Anand [13]. We mention below few of them.

(i) In [13, page-947], just before Case 2, the authors obtained that the coefficient of T (r,g) is (n−m− 8), while actually it will be
(n+m−8).

(ii) In [13, page-948], just before Case 3, the authors finally obtained that “hn+m−1 = 0, hn+1−1 = 0, which imply h = 1”. Note that
this possible only when gcd(n+m,n+1) = 1 but which is not true if one consider some suitable value of n and m. For example if we
choose n = 3 and m = 5, we note that gcd(n+m,n+1) = gcd(8,4) = 4 6= 1.

(iii) We observe that in [13, equation (49), page-950], the coefficient of T (r,g) is
m

n+m−1
while actually it should be

m
n+m+1

.

In this paper, our aim is to correct all the mistakes made by Waghmore-Anand [13] and at the same time to get an improved and extended
version results of all the above mentioned Theorems A - I.
To this end, throughout the paper, we will use the following transformations (see [5]). Let

P(w) = wn+m + . . .+anwn + . . .+a0 = an+m

s

∏
i=1

(w−wpi)
pi

where a j( j = 0,1,2, . . . ,n+m−1) and wpi(i = 1,2, ...,s) are distinct finite complex numbers and 2≤ s≤ n+m and p1, p2, . . . , ps, s≥ 2, n,

m and k are all positive integers with
s

∑
i=1

pi = n+m. Also let p > max
p6=pi,i=1,...,r

{pi}, r = s−1, where s and r are two positive integers.

Let Q(w∗) =
s−1

∏
i=1

(w∗+wp−wpi)
pi = bqwq

∗+bq−1wq−1
∗ + . . .+b0, where w∗ = w−wp, q = n+m− p. So it is clear that P(w) = wp

∗Q(w∗)

In particular, if we choose bi = (−1)i qCi, for i = 0,1, . . . ,q. Then we get, easily P∗(w) = wp
∗(w∗−1)q.

Note that if wp = 0 and p = n, then we get w = w∗ and P∗(w) = wn(w−1)m.
Observing all the above mentioned results, we note that hn(h−1)h′ or hn(h−1)2h′ (h = f or g) are a special form of hn(h−1)mh′, m≥ 1
be an integer.
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Definition 1.17. [3] A Meromorphic function a ≡ a(z)(6≡ 0,∞) is said to be a small function of f provided that T (r,a) = S(r, f ) i.e.,
T (r,a) = O(T (r, f )) as r→ ∞, outside of a possible exceptional set of finite linear measure.

Studying two differential polynomials when sharing a small function (see [1, 2, 3, 5]) or some non-zero polynomial (see [4]) becomes an
interesting part of modern value distribution theory. Since the extension of derivatives of a meromorphic functions is nothing but differential
polynomials. So for the improvements and extensions of the above mentioned results further to a large extent, the following questions are
inevitable.

Question 1.18. Is it possible to replace f n( f −1)m f ′ and gn(g−1)mg′ by a more general expressions of the form P∗( f ) f ′∗ = f p
∗ ( f∗−1)q f ′∗

and P∗(g)g′∗ = gp
∗(g∗−1)qg′∗ respectively in all the above mentioned results ?

If the answer of the Question 1.18 is found to be affirmative, then one my ask the following questions.

Question 1.19. Is it possible to reduce further the lower bounds of n in Theorems E, F, G and H ?

Question 1.20. Is it also possible to replace sharing z CM by sharing α(z) CM in Theorem G and H ?

Answering all the above mentioned questions affirmatively is the main motivation of writing this paper.
Following two theorems are the main results of this paper.

Theorem 1.21. Let f and g hence f∗ = f −wp and g∗ = g−wp, wp ∈ C be any two non-constant non- entire meromorphic functions,
n≥ q+9, q ∈ N, be an integer. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)qg′∗ share α ≡ α(z) (6≡ 0,∞) CM, f∗ and g∗ share

∞ IM, then f ≡ g.

Theorem 1.22. Let f and g hence f∗ = f −wp and g∗ = g−wp, wp ∈ C be any two non-constant entire functions, n≥ q+5, q ∈ N, be an
integer. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)qg′∗ share α ≡ α(z) (6≡ 0,∞) CM, then f ≡ g.

2. Some lemmas

In this section we present some lemmas which will be needed in sequel.

Lemma 2.1. [14] Let f1, f2 and f3 be non constant meromorphic functions such that f1 + f2 + f3 = 1. If f1, f2 and f3 are linearly
independent, then

T (r, f1)<
3

∑
i=1

N2

(
r,

1
fi

)
+

3

∑
i=1

N(r, f )+o(T (r)),

where T (r) = max
1≤i≤3

{
T (r, fi)

}
and r 6∈ E.

Lemma 2.2. [17] Let f1 and f2 be two non-constant meromorphic functions. If c1 f1 +c2 f2 = c3, where ci, i = 1,2,3 are non-zero constants,
then

T (r, f1)≤ N(r, f1)+N
(

r,
1
f1

)
+N

(
r,

1
f2

)
+S(r, f1).

Lemma 2.3. [17] Let f be a non-constant meromorphic function and k be a non-negative integer, then

N
(

r,
1

f (k)

)
≤ N(r,

1
f
)+ kN(r, f )+S(r, f ).

Lemma 2.4. [19] Suppose that f is a non-constant meromorphic function and P( f ) = an f n +an−1 f n−1 + . . .+a1 f +a0, where an(6≡ 0),
an−1, . . . ,a1,a0 are small meromorphic functions of f (z). Then

T (r,P( f )) = n T (r, f )+S(r, f ).

Lemma 2.5. [15] Let f1, f2 and f3 be three meromorphic functions satisfying
3

∑
i=1

fi = 1, then the functions g1 = − f1
f2

, g2 =
1
f2

and

g3 =−
f1
f2

are linearly independent when f1, f2 and f3 are linearly independent.

Lemma 2.6. Let f and g and hence f∗ = f −wp and g∗ = g−wp be two non-constant meromorphic functions and α ≡ α(z) (6≡ 0,∞) be a
small function of f and g. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)qg′∗ share α CM and p≥ 7, then

T (r,g∗)≤
(

p+q+2
p−6

)
T (r, f∗)+S(r,g∗)

Proof. Applying Second Fundamental Theorem on P∗(g)g′∗, we get

T
(
r,P∗(g)g′∗

)
(2.1)

≤ N(r,P∗(g)g′∗)+N
(

r,
1

P∗(g)g′∗

)
+N

(
r,

1
P∗(g)g′∗−α

)
+S(r,g∗)

≤ N
(

r,
1

gp
∗(g∗−1)qg′∗

)
+N(r,g∗)+N

(
r,

1
gp
∗(g∗−1)qg′∗−α

)
+S(r,g∗)
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Next by applying First fundamental Theorem,

(p+q)T (r,g) (2.2)

≤ T (r,gp
∗(g∗−1)q)+S(r,g∗)

≤ T (r,gp
∗(g∗−1)qg′∗)+T

(
r,

1
g′∗

)
+S(r,g∗).

After combining (2.1) and (2.2), we get

(p+q)T (r,g) (2.3)

≤ N
(

r,
1
g∗

)
+N(r,0;g∗−1)+N(r,g∗)+N

(
r,

1
g′∗

)
+N

(
r,

1
f p
∗ ( f∗−1)q f ′∗−α

)
+S(r,g∗)+T (r,g′∗).

Again since S(r,g∗) = T (r,α) = S(r, f∗), so we must have

N
(

r,
1

f p
∗ ( f∗−1)q f ′∗−α

)
(2.4)

≤ T
(
r,α; f p

∗ ( f∗−1)q f ′∗
)
+O(1)

≤ T (r, f p
∗ )+T (r,( f∗−1)q +T (r, f ′∗)+T (r,α)+O(1)

≤ p T (r, f∗)+q T (r, f)+2T (r, f∗)+S(r,g∗)

= (p+q+2)T (r, f∗)+S(r,g∗).

By using (2.6) in (2.5), we get

(p+q)T (r,g∗)

≤ (q+6)T (r,g∗)+(p+q+2)T (r, f∗)+S(r,g∗).

i.e.,

T (r,g)≤
(

p+q+2
p−6

)
T (r, f )+S(r,g),

where p≥ 7.

Lemma 2.7. Let f and g and hence f∗ = f −wp and g∗ = g−wp be two non-constant entire functions and α ≡ α(z) (6≡ 0,∞) be a small
function of f and g. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)qg′∗ share α CM and p≥ 5, then

T (r,g∗)≤
(

p+q+2
p−3

)
T (r, f∗)+S(r,g∗)

Proof. Since f and g both are entire functions, so we must have N(r, f ) = 0 = N(r,g).
Proceeding exactly as in the line of the proof of Lemma 2.6, we can prove the lemma.

Lemma 2.8. Let Ψ(z) = c2(zp−q−1)2−4b(zp−2q−1)(zp−1) , where b,c ∈ C−{0}, c2

4b
=

p(p−2q)
(p−q)2 6= 1, , then Ψ(z) has exactly one

multiple zero of multiplicity 4 which is 1.

Proof. We claim that Ψ(1) = 0 with multiplicity 4 and all other zeros of Ψ(w) are simple. Let F(t) =
1
2

Ψ(et)e(q−p)t . Then

F(t)

=
1
2

{
4b(1− ept)(1− e(p−2q)t)− c2(1− e(p−q)t)

}
e(q−p)t

= (4b− c2)cosh(q− p)t−4bcoshqt + c2.

Next we see that for t = 0, F(t) = 0, [F(t)]′ = 0, [F(t)]′′ = 0 since
c2

4b
=

p(p−2q)
(p−q)2 and [F(t)]′′′ = 0 but [F(t)](iv) 6= 0 where

[F(t)]′ = (4b− c2)(q− p)sinh(q− p)t−4bqsinhqt,

[F(t)]′′ = (4b− c2)(q− p)2 cosh(q− p)t−4bq2 coshqt,

[F(t)]′′′ = (4b− c2)(q− p)3 sinh(q− p)t−4bq3 sinhqt

and
[F(t)](iv) = (4b− c2)(q− p)4 cosh(q− p)t−4bq4 coshqt.

Therefore it is clear that F(0) = 0 with multiplicity 4 and hence Ψ(1) = 0 with multiplicity 4.
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Next we suppose that Ψ(w) = 0 = Ψ′(w), for some w ∈ C. Then F(t) = 0 = F ′(t) for every t satisfying eqt = w. Now from F(t) = 0 and
F ′(t) = 0, we obtained respectively

(4b− c2)cosh(q− p)t−4bcoshqt + c2 = 0 (2.5)

and

(4b− c2)(q− p)sinh(q− p)t−4qbsinhqt = 0. (2.6)

Since cosh2(q− p)t− sinh2(q− p)t = 1, so from (2.5) and (2.6), we get

(4bcoshqt− c2)2

(4b− c2)2 − 16q2b2 sinh2 qt
(4b− c2)2(q− p)2 = 1.

i.e.,

(q− p)2(4bcosh2 qt− c2)2−16q2b2(cosh2 qt−1) = (4b− c2)2(q− p)2.

i.e., {
coshqt−1

}{
coshqt− a2(q− p)2

2bp(p−2q)
+1
}
= 0. (2.7)

Since
c2

4b
=

p(p−2q)
(p−q)2 , then

c2(q− p)2

2bq(q−2p)
= 2, so we see that the equation (2.7) reduces to

{
coshqt−1

}2
= 0. i.e., we get eqt = 1 = w.

3. Proofs of the theorems

Proof of Theorem 1.21. Since P∗( f ) f ′∗ and P∗(g)g′∗ share α ≡ α(z) CM, f and g share ∞ IM, so we suppose that

H ≡ P∗( f ) f ′∗−α

P∗(g)g′∗−α
≡ f p

∗ ( f∗−1)q f ′∗−α

gp
∗(g∗−1)qg′∗−α

. (3.1)

Then from (2.6) and (3.1), we get

T (r,H )

= T
(

r,
P∗( f ) f ′∗−α

P∗(g)g′∗−α

)
≤ T (P∗( f ) f ′∗−α)+T (r,P∗(g)g′∗−α)+O(1)

≤ T (r, f p
∗ ( f∗−1)q f ′∗−α)+T (r,gp

∗(g∗−1)qg′∗−α)+O(1)

≤ (p+q+2)(T (r, f∗)+T (r,g∗))+S(r, f∗)+S(r,g∗)

≤ 2(p+q+2)T∗(r)+S∗(r),

where T∗(r) = max{T (r, f∗),T (r,g∗)} and S∗(r) = max{S(r, f∗),S(r,g∗)}.
i.e.,

T (r,H ) = O(T∗(r)). (3.2)

Again from (3.1), we see that the zeros and poles of H are multiple and hence

N(r,H )≤ NL(r, f ), N
(

r,
1

H

)
≤ NL(r,g). (3.3)

Let f1 =
f p
∗ ( f∗−1)q f ′∗

α
, f2 = H and f3 =−H

gp
∗(g∗−1)qg′∗

α
.

Thus we get f1 + f2 + f3 = 1. Next we denote T (r) = max{T (r, f1),T (r, f2),T (r, f3)}.
We have,

T (r, f1) = O(T (r, f∗))

T (r, f2) = O(T (r, f∗)+T (r,g∗)) = T (r, f3).

So we have T (r, fi) = O(T∗(r)) for i = 1,2,3 and hence S(r, f∗)+S(r,g∗) = o(T∗(r)).
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Next we discuss the following cases.
Case 1. Suppose none of f2 and f3 is a constant. If f1, f2 and f3 are linearly independent, then by Lemma 2.1 and 2.4, we have

T (r, f1) (3.4)

≤
3

∑
i=1

N2

(
r,

1
fi

)
+

3

∑
i=1

N(r, fi)+o(T (r))

≤ N2

(
r,

α

f p
∗ ( f∗−1)q f ′∗

)
+N2

(
r,

1
H

)
+N2

(
r,

α

H gp
∗(g∗−1)qg′∗

)
+N(r, f p

∗ ( f∗−1)q f ′∗)+N(r,H )+N(r,H gp
∗(g∗−1)qg′∗)+o(T (r))

≤ N2

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
+2N2

(
r,

1
H

)
+N2

(
r,

1
gp
∗(g∗−1)qg′∗

)
+N(r, f∗)

+2N(r,H )+N(r,g∗)+o(T (r)).

We see that N2

(
r,

1
H

)
≤ 2N

(
r,

1
H

)
≤ 2NL(r,g∗), N(r,H )≤ NL(r, f ).

Again since NL(r, f∗) = 0 = NL(r,g∗) and note that N(r, f∗) = N(r,g∗), so using all this facts, we get from (3.4) that

T (r, f1)

≤ N2

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
+N2

(
r,

1
gp
∗(g∗−1)qg′∗

)
+2N(r, f∗)+o(T (r))

≤ N
(

r,
1

f p
∗ ( f∗−1)q f ′∗

)
−
[

N(3

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
−2N(3

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)]
+ N

(
r,

1
gp
∗(g∗−1)qg′∗

)
−
[

N(3

(
r,

1
gp
∗(g∗−1)qg′∗

)
−2N(3

(
r,

1
gp
∗(g∗−1)qg′∗

)]
+2N(r, f∗)+o(T (r)). (3.5)

Let z0 be a zero of f∗ of multiplicity r, then z0 is a zero of f p
∗ ( f∗−1)q f ′∗ of multiplicity pr+ r−1≥ 3. Thus we have

N(3

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
−2N(3

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
(3.6)

≥ (p−2)N
(

r,
1
f∗

)
.

Similarly, we get

N(3

(
r,

1
gp
∗(g∗−1)qg′∗

)
−2N(3

(
r,

1
gp
∗(g∗−1)qg′∗

)
(3.7)

≥ (p−2)N
(

r,
1
g∗

)
.

Let

F =
f p+q+1
∗

p+q+1
−

qC1

p+q
f p+q
∗ +

qC2

p+q−1
f p+q−1
∗ + . . .+(−1)q 1

p+q
f p+1
∗

and

G =
gp+q+1
∗

p+q+1
−

qC1

p+q
gp+q
∗ +

qC2

p+q−1
gp+q−1
∗ + . . .+(−1)q 1

p+q
gp+1
∗ .

By Lemma 2.4, we have

T (r,F ) = (p+q+1)T (r, f∗)+S(r, f∗).

It is clear F ′ = α f1. So we have

m
(

r,
1
F

)
≤ m

(
r,

1
α f1

)
+m

(
r,

F ′

F

)
≤ m

(
r,

1
f1

)
+S(r, f∗). (3.8)

By using First fundamental Theorem and (3.8), we obtained

T (r,F ) (3.9)

= m
(

r,
1
F

)
+N

(
r,

1
F

)
≤ T (r, f1)+N

(
r,

1
F

)
−N

(
r,

1
f1

)
+S(r, f∗)

≤ T (r, f1)+(p+1)N
(

r,
1
f∗

)
+

q

∑
i=1

N
(

r,
1

f∗−ai

)
−N

(
r,

1
f1

)
+S(r, f∗),
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where ai (i = 1,2, . . . ,q) are the roots of the algebraic equation

1
p+q+1

zq−
qC1

p+q
zq−1 +

qC2

p+q−1
zq−2 + . . .+(−1)q 1

p+1
= 0.

Using (3.5) - (3.8) in (3.9), we get

T (r,F )

≤ N
(

r,
1

f p
∗ ( f∗−1)q f ′∗

)
+(2− p)N

(
r,

1
f∗

)
+N

(
r,

1
gp
∗(g∗−1)qg′∗

)
+(2− p)N

(
r,

1
g∗

)
+2N(r, f∗)+(p+1)N

(
r,

1
f∗

)
+

q

∑
i=1

N
(

r,
1

f∗−ai

)
−N

(
r,

1
f p
∗ ( f∗−1)q f ′∗

)
+o(T (r)).

i.e.,

(p+q+1)T (r, f∗)

≤ 3N
(

r,
1
f∗

)
+3N

(
r,

1
g∗

)
+N(r,g∗)+q N

(
r,

1
g∗−1

)
+2N(r, f∗)

+
q

∑
i=1

N
(

r,
1

f∗−ai

)
+o(T (r))

≤ (q+5)T (r, f∗)+(q+4)T (r,g∗)+o(T (r)).

i.e.,

(p−4)T (r, f∗)≤ (q+4)T (r,g∗)+o(T (r)). (3.10)

Let g1 =−
f3
f2

=
gp
∗(g∗−1)qg′∗

α
, g2 =

1
f2

=
1

H
and g3 =−

f1
f2

=− f p
∗ ( f∗−1)q f ′

αH
.

Then we get g1+g2+g3 = 1. By Lemma 2.5, g1, g2 and g3 are linearly independent since f1, f2 and f3 are linearly independent. Proceeding
exactly same way as done in above, we get

(p−4)T (r,g∗)≤ (q+4)T (r,g∗)+o(T (r)). (3.11)

Let T∗(r) = max{T (r, f∗),T (r,g∗)}. After combining (3.10) and (3.11), we get

(p−q−8)T∗(r)≤ o(T (r)),

which contradicts p≥ q+9.
Thus f1, f2 and f3 must be linearly dependent. Therefore there exists three constants c1, c2 and c3, at least one of them are non-zero such that

c1 f1 + c2 f2 + c3 f3 = 0. (3.12)

Subcase 1.1. If c1 = 0, c2 6= 0 and c3 6= 0, then from (3.12) we get f3 =−
c2

c3
f2 which implies gp

∗(g∗−1)qg′∗ =
c2

c3
α.

On integrating, we get

gp+q+1
∗

p+q+1
−

qC1 gp+q
∗

p+q
+

qC2 gp+q−1
∗

p+q−1
. . .+(−1)q gp+1

∗
p+1

=
c2

c3
α + c, (3.13)

where c is an arbitrary constant.
Thus we see that

T

(
r,

gp+q+1
∗

p+q+1
−

qC1 gp+q
∗

p+q
+

qC2 gp+q−1
∗

p+q−1
. . .+(−1)q gp+1

∗
p+1

)
≤ T (r,α)+O(1).

i.e.,

(p+q+1)T (r,g∗)≤ S(r,g∗).

Since p≥ q+9, so we get a contradiction.
Subcase 1.2. Let c1 6= 0. Then from (3.12), we get

f1 =
(
−c2

c1

)
f2 +

(
−c3

c1

)
f3.

After substituting this in the relation f1 + f2 + f3 = 1, we get(
1− c2

c1

)
f2 +

(
1− c3

c1

)
f3 = 1,
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where (c1− c2)(c1− c3) 6= 0. So we get (
1− c3

c1

)
gp
∗(g∗−1)q f ′∗

α
+

1
H

=

(
1− c2

c1

)
. (3.14)

Again we see that

T (r,gp
∗(g∗−1)qg′∗)

≤ T
(

r,
gp
∗(g∗−1)qg′∗

α

)
+T (r,α)

≤ T
(

r,
gp
∗(g∗−1)qg′∗

α

)
+S(r,g∗).

Next applying Lemma 2.2 to the equation (3.14), we get

T
(

r,
gp
∗(g∗−1)qg′∗

α

)
≤ N

(
r,

gp
∗(g∗−1)qg′∗

α

)
+N

(
r,

α

gp
∗(g∗−1)qg′∗

)
+N(r,H )+S(r,g).

So combining the above two we get,

T (r,gp
∗(g∗−1)qg′∗)≤ N

(
r,

1
gp
∗(g∗−1)qg′∗

)
+2N(r,g∗)+S(r,g∗). (3.15)

By applying Lemmas 2.3, 2.4 and (3.15), we have

(p+q)T (r,g∗)

≤ T (r,gp
∗(g∗−1)q)+S(r,g∗)

≤ T (r,gp
∗(g∗−1)qg′∗)+T

(
r,

1
g′∗

)
+S(r,g∗)

≤ N
(

r,
1

gp
∗(g∗−1)qg′∗

)
+2N(r,g∗)+T

(
r,

1
g′∗

)
+S(r,g∗)

≤ 8T (r,g∗)+S(r,g∗),

which contradicts p≥ q+9.
Subcase 2. If f2 = k, where k is a constant.
Subcase 2.1 If k 6= 1, then from the relation f1 + f2 + f3 = 1, we get

f p
∗ ( f∗−1)q f ′∗

α
− k

gp
∗(g∗−1)qg′∗

α
= 1− k. (3.16)

Next we apply Lemma 2.2 to the equation (3.16), we get

T
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
(3.17)

≤ N(r,g∗)+N
(

r,
1

f p
∗ ( f∗−1)q f ′∗

)
++N

(
r,

1
gp
∗(g∗−1)qg′∗

)
+S(r, f∗).

By applying Lemma 2.3, 2.4 and using equation (3.17), we get

(p+q)T (r, f∗)

= T (r, f p
∗ ( f∗−1)q)+S(r, f∗)

≤ T (r, f p
∗ ( f∗−1)q f ′∗)+T

(
r,

1
f ′∗

)
+S(r, f∗)

≤ T
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
+T

(
r,

1
f ′∗

)
+S(r, f∗).

i.e.,

(p+q−7)T (r, f∗)≤ 4T (r,g∗)+S(r,g∗).

Using Lemma 2.6, we get

(p+q−4)T (r, f∗)≤ 4
(

p+q+2
p−6

)
T (r, f∗)+S(r,g∗),

which contradicts p≥ q+9.
Subcase 2.2 Let k = 1 i.e., H = 1 i.e.,

f p
∗ ( f∗−1)q f ′∗ ≡ gp

∗(g∗−1)qg′∗.
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On integrating, we get

f p+q+1
∗

p+q+1
−

qC1 f p+q
∗

p+q
+ . . .+(−1)q f p+1

∗
p+1

≡ gp+q+1
∗

p+q+1
−

qC1gp+q
∗

p+q
+ . . .+(−1)q gp+1

∗
p+1

+ c,

where c is an arbitrary constant. i.e.,

F ≡ G + c. (3.18)

Subcase 2.2.1 Let if possible c 6= 0. Next we get

Θ(0,F )+Θ(c,F )+Θ(∞,F ) = Θ(0,F )+Θ(0,G )+Θ(∞,F ).

We have,

N
(

r,
1
F

)
= N

(
r,

1
f∗

)
+N

(
r,

1
f∗−a1

)
+ . . .+N

(
r,

1
f∗−aq

)
≤ (q+1) T (r, f∗).

Similarly, we get N
(

r,
1
G

)
≤ (q+1) T (r,g∗).

Again note that N(r,F ) = N(r, f∗)≤ T (r, f∗). Again

T (r,F ) = (p+q+1) T (r, f∗)+S(r, f∗).

T (r,G ) = (p+q+1) T (r,g∗)+S(r,g∗).

Thus

Θ(0,F ) = 1− limsup
r→∞

N
(

r,
1
F

)
T (r,F )

≥ 1− (q+1)T (r, f∗)
(p+q+1)T (r, f∗)

=
p

p+q+1
.

Similarly

Θ(0,H )≥ p
p+q+1

and Θ(∞,F )≥ p+q
p+q+1

.

Therefore

Θ(0,F )+Θ(c,F )+Θ(∞;F )≥ 3p+q
p+q+1

> 2,

since p≥ q+9, which is a contradiction.
Subcase 2.2.2 Thus we get c = 0. Thus we get

F ≡ G . (3.19)

Let h =
f∗
g∗

. Then substituting in (3.19), we get

(p+q)(p+q−1) . . .(p+1)gq
∗(hp+q−1−1) (3.20)

− qC1(p+q+1)(p+q−1) . . .(p+1)gq−1
∗ (hp+q−1)

+ . . .+(−1)q(p+q+1)(p+q) . . . p(hp+1−1) = 0.

Subcase 2.2.2.1. If h is a non-constant, then using Lemma 2.8 and proceeding exactly same way as done in [12, p-1272], we arrive at a
contradiction.
Subcase 2.2.2.2. Let h is constant, then from (3.20), we get hp+q+1− 1 = 0, hp+q− 1 = 0, . . ., hp+1− 1 = 0. i.e., hd − 1 = 0, where
d = gcd(p+q+1, p+q, . . . , p+1) = 1. i.e., h = 1.
Hence f∗ ≡ g∗. i.e., f ≡ g.
Subcase 3. Suppose f3 = c, where c is a constant.
Subcase 3.1. If c 6= 1, then from the relation f1 + f2 + f3 = 1, we get

f p
∗ ( f∗−1)q f ′∗

α
− cα

gp
∗(g∗−1)qg′∗

= 1− c. (3.21)

Applying Lemma 2.2 to the above equation, we get

T (r, f p
∗ ( f∗−1)q f ′∗) (3.22)

≤ T
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
+S(r, f∗)

≤ N
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
+N

(
r,

α

f p
∗ ( f∗−1)q f ′∗

)
+N

(
r,

gp
∗(g∗−1)qg′∗

α

)
+S(r, f∗)

≤ N(r, f∗)+N
(

r,
1

f p
∗ ( f∗−1)q f ′∗

)
+N(r,g∗)+S(r, f∗).
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Using Lemma 2.3, 2.4 and (3.22), we have

(p+q)T (r, f∗)

≤ T (r, f p
∗ ( f∗−1)q)+S(r, f∗)

≤ T
(

r,
1

f p
∗ ( f∗−1)q f ′∗

)
+T

(
r,

1
f ′∗

)
+S(r, f∗)

≤ 7 T (r, f∗)+T (r,g∗)+S(r, f∗).

Next by applying Lemma 2.6, we get

(p+q−7) T (r, f∗)

≤ T (r,g∗)+S(r, f∗)

≤
(

p+q+2
p−6

)
T (r, f∗)+S(r, f∗),

which contradicts p≥ q+9.
Subcase 3.2. Let c = 1. Then from (3.21), we get

f p
∗ ( f∗−1)q f ′∗g

p
∗(g∗−1)qg′∗ = α

2. (3.23)

Let z0 be a zero of f∗ of order r0. Then from (3.23), we see that z0 is a pole of g∗ of order s0 (say). Then from (3.23), we get
pr0 + r0−1 = ps0 +qs0 + s0 +1. i.e., (p+1)(r0− s0) = qs0 +2≥ p+1. i.e.,

r0 ≥
p+q+1

q
.

Again let z1 be a zero of f∗ − 1 of order r1. Then from (3.23), we see that z1 will be a pole of g∗ of order s1 (say). So we have
r1 + r1−1 = ps1 +qs1 + s1 +1. i.e.,

r1 ≥
p+q+3

2
.

Let z2 be a zero of f ′∗ of order r2 which are not the zero of f∗( f∗−1), so from (3.23) we see that z2 will be a pole of g∗ of order s2 (say).
Then from (3.23), we get r2 = ps2 +qs2 + s2 +1. i.e.,

r2 ≥ p+q+2.

The similar explanations hold for the zeros of gp
∗(g∗−1)qg′∗ also. Next we see from (3.23), we have

N
(
r, f p
∗ ( f∗−1)q f ′∗

)
= N

(
r,

α2

gp
∗(g∗−1)qg′∗

)
.

i.e.,

N(r, f∗)

≤ N
(

r,
1
g∗

)
+N

(
r,

1
g∗−1

)
+N

(
r,

1
g′∗

)
≤

(
q

p+q+1

)
N
(

r,
1
g∗

)
+

(
2

p+q+3

)
N
(

r,
1

g∗−1

)
+

(
1

p+q+2

)
N
(

r,
1
g′∗

)
≤

(
q

p+q+1
+

2
p+q+3

+
2

p+q+2

)
T (r,g∗)+S(r,g∗).

By applying Second Fundamental Theorem, we get

T (r, f∗) (3.24)

≤ N
(

r,
1
f∗

)
+N

(
r,

1
f∗−1

)
+N(r, f∗)+S(r, f∗)

≤
(

q
p+q+1

+
2

p+q+3

)
T (r, f∗)+

(
q

p+q+1
+

2
p+q+3

+
2

p+q+2

)
× T (r,g∗)+S(r, f∗)+S(r,g∗).

Similarly, we get

T (r,g∗) (3.25)

≤
(

q
p+q+1

+
2

p+q+3

)
T (r,g∗)+

(
q

p+q+1
+

2
p+q+3

+
2

p+q+2

)
× T (r, f∗)+S(r, f∗)+S(r,g∗).
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From (3.24) and (3.25), we get

T∗(r)≤
(

2q
p+q+1

+
4

p+q+3
+

2
p+q+2

)
T∗(r)+S∗(r).

i.e., (
1− 2q

p+q+1
− 4

p+q+3
− 2

p+q+2

)
T∗(r)≤ S∗(r),

which contradicts p≥ q+9.

Proof of Theorem 1.22. Since f∗ and g∗ both are non-constant entire functions, then we may consider the followings two cases.
Case 1. Let f∗ and g∗ are two transcendental entire functions. Then it is clear that N(r, f∗) = S(r, f∗) and N(r,g∗) = S(r,g∗). With this the
rest of the proof can be carried out in the line of the proof of Theorem 1.21.
Case 2. Let f∗ and g∗ both are polynomials. Since f p

∗ ( f∗−1)q f ′∗ and gp
∗(g∗−1)qg′∗ share α CM, then we must have

( f p
∗ ( f∗−1)q f ′∗−α) = κ (gp

∗(g∗−1)qg′∗−α), (3.26)

where κ is a non-zero constant.
Subcase 2.1. Suppose κ 6= 1, then from (3.26), we get

f p
∗ ( f∗−1)q f ′∗

α
−κ

gp
∗(g∗−1)qg′∗

α
= 1−κ. (3.27)

Applying Lemma 2.2, we get

T (r, f p
∗ ( f∗−1)q f ′∗) (3.28)

≤ T
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
+S(r, f∗)

≤ N
(

r,
f p
∗ ( f∗−1)q f ′∗

α

)
+N

(
r,

α

f p
∗ ( f∗−1)q f ′∗

)
+N

(
r,

α

gp
∗(g∗−1)qg′∗

)
+S(r, f∗)

≤ N(r, f∗)+N
(

r,
α

f p
∗ ( f∗−1)q f ′∗

)
+N

(
r,

α

gp
∗(g∗−1)qg′∗

)
+S(r, f∗).

Using Lemmas 2.3, 2.4 and (3.27), we get

(p+q)T (r, f∗)

≤ T (r, f p
∗ ( f∗−1)q)+S(r, f∗)

≤ T (r, f p
∗ ( f∗−1)q f ′∗)+T

(
r,

1
f∗

)
+S(r, f ′∗)

≤ 4 T (r, f∗)+3 T (r,g∗)+S(r, f∗).

i.e.,

(p+q−4)T (r, f∗)≤ 3 T (r,g∗)+S(r,g∗).

Using Lemma 2.7, we get

(p+q−4)T (r, f∗)≤ 3
(

p+q+1
p−3

)
T (r, f∗)+S(r, f∗),

which contradicts p≥ q+5.
Subcase 2.2. Let κ = 1. So from (3.27), we get

f p
∗ ( f∗−1)q f ′∗ ≡ gp

∗(g∗−1)qg′∗.

Next proceeding exactly same way as done in Subcase 1.3.2 in the proof of Theorem 1.21, we get f ≡ g.

4. Concluding remarks and some open questions

If we replace the condition “ f p
∗ ( f∗−1)q f ′∗ and gp

∗(g∗−1)qg′∗ share α(z) CM” by the condition “ f p
∗ ( f∗−1)q f ′∗ and gp

∗(g∗−1)qg′∗ share z
CM ”, then the conclusions of Theorems 1.21 and 1.22 still hold.
Thus we get the following results

Theorem 4.1. Let f and g hence f∗ = f −wp and g∗ = g−wp, wp ∈ C be any two non-constant non- entire meromorphic functions,
n≥ q+9, q ∈ N, be an integer. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)q f ′∗ share z CM, then f ≡ g.

Theorem 4.2. Let f and g hence f∗ = f −wp and g∗ = g−wp, wp ∈ C be any two non-constant entire functions, n≥ q+5, q ∈ N, be an
integer. If P∗( f ) f ′∗ = f p

∗ ( f∗−1)q f ′∗ and P∗(g)g′∗ = gp
∗(g∗−1)q f ′∗ share z CM, then f ≡ g.
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Note 4.3. If we choose q = m, wp = 0, then since p = n+m−q and f∗ = f −wp, so we get p = n and f∗ = f , respectively. With this we
see that n≥ m+9 in Theorem 4.1 and n≥ m+5 in Theorem 4.2.

So from the above note, we observe that Theorem 4.1 and Theorem 4.2 are the direct improvement as well as extension of Theorem H and I
respectively.

Remark 4.4. We see from Note 4.3 that for m = 1 and m = 2, we get n ≥ 10 and n ≥ 11 respectively in Theorem 4.1 which is a direct
improvement of Theorem E and F.

Remark 4.5. For m = 1, we see from Note 4.3 that n≥ 6 in Theorem 4.2 which is a direct improvement of Theorem G.

Next for further research in this direction, one my glance over the following remarks.

Remark 4.6. What worth noticing fact is that in [13, equation (39)], there is no term which is absent in the expression. So, for the case of h is
constant, [13, equation (40)] implies hd−1= 0, where d = gcd(n+m+1,n+m, . . . ,n+1) = 1. i.e., h= 1 and hence f ≡ g. But if we replace
( f − 1)m in the expression f n( f − 1)m f ′ by a more general expression f nPm( f ) f ′, where Pm( f ) = am f m + am−1 f m−1 + . . .+ a1 f + a0,
ai ∈ C, for i = 0,1, . . . ,m. It is not always possible to handle the case of h is constant. If somehow one can do that, then from the case of h is
constant, hd −1 = 0, where d = gcd(n+m+1,n+m, . . . ,n+1) 6= 1 in general. So we can’t obtained f ≡ g in general.

Based on the above observations, we next pose the following open questions.

Question 4.7. Is it possible to reduce further the lower bounds of p in Theorem 1.21 and Theorem 1.22 ?

Question 4.8. To get the uniqueness between f and g is it possible to replace f p
∗ ( f∗−1)q f ′∗ and gp

∗(g∗−1)qg′∗ respectively by f p
∗ Pm( f∗) f ′∗

and gp
∗Pm(g∗)g′∗, where Pm( f∗) = Pm( f ) = am f m

∗ +am−1 f m−1
∗ + . . .+a1 f∗+a0 in Theorem 1.21 and Theorem 1.22 ?
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