

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

On Uniqueness of Two Meromorphic Functions Sharing A Small Function

Molla Basir Ahamed^{1*}

¹Department of Mathematics, Kalipada Ghosh Tarai Mahavidyalaya, Bagdogra, Darjeeling, West Bengal, 734014, India. *Corresponding author E-mail: bsrhmd117@gmail.com

Abstract

In this paper, we have investigated the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing a small function. Our results radically extended and improved the results of *Bhoosnurmath-Pujari* [6] and *Harina - Anand* [13] not only by sharing small function instead of fixed point but also reducing the lower bound of n. There are some miscalculation in the proof of a result of Harina-Anand [13]. We have corrected all of them in a more convenient way. At last some open questions have been posed for further study in this direction.

Keywords: meromorphic function, uniqueness theorem, small function, differential polynomials, fixed point. 2010 Mathematics Subject Classification: 30D35, 39A10

1. Introduction, Definitions and Results

The Nevanlinna theory mainly describes the asymptotic distribution of solutions of the equation f(z) = w, as *w* varies. At the outset, we assume that readers are familiar with the basic Nevanlinna Theory [9]. First we explain the general sharing notion. Let *f* and *g* be two non-constant meromorphic functions in the complex plane \mathbb{C} . Two meromorphic functions *f* and *g* are said to share a value $w \in \mathbb{C} \cup \{\infty\}$ *IM* (ignoring multiplicities) if *f* and *g* have the same *w*-points counted with ignoring multiplicities. If multiplicities of *w*-points are counted, then *f* and *g* are said to share *w CM* (counting multiplicities).

When $w = \infty$ the zeros of f - w means the poles of f.

It is well known that if two moromorphic functions f and g share four distinct values CM, then one is *Möbius Transformation* of the other. In 1993, corresponding to one famous question of *Hayman* [10], *Yang-Hua* [16] showed that similar conclusions hold for certain types of differential polynomials when they share only one value.

Recently by using the same argument as in [16], Fang-Hong [7] the following result was obtained.

Theorem 1.1. Let f and g be two transcendental entire functions, $n \ge 11$, an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share 1 CM, then $f \equiv g$.

The following example shows that in *Theorem A* one simply can not replace "entire" by "meromorphic " functions.

Example 1.2. Let

$$f(z) = \frac{(n+2)}{(n+1)} \frac{e^z + \ldots + e^{(n+1)z}}{1 + e^z + \ldots + e^{(n+1)z}}$$

and

$$f(z) = \frac{(n+2)}{(n+1)} \frac{1 + e^z + \ldots + e^{nz}}{1 + e^z + \ldots + e^{(n+1)z}}.$$

It is clear that $f(z) = e^{z}g(z)$. Also $f^{n}(f-1)f'$ and $g^{n}(g-1)g'$ share 1 CM but note that $f \neq g$.

In 2004, *Lin-Yi* [11] extended Theorem A and obtained the following results.

Theorem 1.3. [11] Let f and g be two transcendental entire functions, $n \ge 7$ an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share z CM, then $f \equiv g$.

Email addresses: bsrhmd117@gmail.com (M. B. Ahamed)

Theorem 1.4. [11] Let f and g be two transcendental meromorphic functions, $n \ge 12$ an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share z CM, then either $f \equiv g$ or

$$g = \frac{(n+2)(1-h^{n+1})}{(n+1)(1-h^{n+2})}, \quad f = \frac{(n+2)h(1-h^{n+1})}{(n+1)(1-h^{n+2})},$$

where h is a non-constant meromorphic function.

Theorem 1.5. [11] Let f and g be two transcendental meromorphic functions, $n \ge 13$ an integer. If $f^n(f-1)^2 f'$ and $g^n(g-1)^2 g'$ share $z \in CM$, then $f \equiv g$.

To improve all the above mentioned results, natural questions arise as follows.

Question 1.6. Keeping all other conditions intact, is it possible to reduce further the lower bounds of n in the above results?

Question 1.7. *Is it also possible to replace the transcendental meromorphic (entire) functions by a more general class of meromorphic (entire) functions in all the above mentioned results ?*

In 2013, Bhoosnurmath-Pujari [6], answered the above questions affirmatively and obtained the following results.

Theorem 1.8. [6] Let f and g be two non-constant meromorphic functions, $n \ge 11$ be an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share z CM, f and g share ∞ IM, then either $f \equiv g$ or

$$g = \frac{(n+2)(1-h^{n+1})}{(n+1)(1-h^{n+2})}, \quad f = \frac{(n+2)h(1-h^{n+1})}{(n+1)(1-h^{n+2})},$$

where h is a non-constant meromorphic function.

Theorem 1.9. [6] Let f and g be two non-constant meromorphic functions, $n \ge 12$ an integer. If $f^n(f-1)^2 f'$ and $g^n(g-1)^2 g'$ share z CM, f and g share ∞IM , then $f \equiv g$.

Theorem 1.10. [6] Let f and g be two non-constant entire functions, $n \ge 7$ be an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share z CM, then $f \equiv g$.

In this direction, for the purpose of extending Theorem E and F, one may ask the following question.

Question 1.11. Keeping all other conditions intact in Theorem E, F and G, is it possible to replace respectively $f^n(f-1)f'$ and $g^n(g-1)g'$ by $f^n(f-1)^m f'$ and $g^n(g-1)^m g'$?

Next the following question is inevitable.

Question 1.12. Is it possible to omit the second conclusions of Theorems C and E?

In 2016, Waghmore-Anand [13] answer the Questions 1.11 and 1.12 affirmatively and obtained the following results.

Theorem 1.13. [13] Let f and g be two non-constant meromorphic functions, $n \ge m + 10$ be an integer. If $f^n(f-1)^m f'$ and $g^n(g-1)^m g'$ share z CM, f and g share ∞IM , then $f \equiv g$.

Theorem 1.14. [13] Let f and g be any two non-constant entire functions, $n \ge m + 6$ an integer. If $f^n(f-1)^m f'$ and $g^n(g-1)^m g'$ share $z \in CM$, then $f \equiv g$.

Note 1.15. We see that in the results of Waghmore - Anand, for m = 2, Theorem H reduces to Theorem F and for m = 1, Theorem I reduces to Theorem G.

Remark 1.16. We notice that in the proof of Theorem H and hence in the case of Theorem I also, we have found some miscalculation made by the authors Waghmore-Anand [13]. We mention below few of them.

- (i) In [13, page-947], just before Case 2, the authors obtained that the coefficient of T(r,g) is (n-m-8), while actually it will be (n+m-8).
- (ii) In [13, page-948], just before Case 3, the authors finally obtained that " $h^{n+m} 1 = 0$, $h^{n+1} 1 = 0$, which imply h = 1". Note that this possible only when gcd(n+m,n+1) = 1 but which is not true if one consider some suitable value of n and m. For example if we choose n = 3 and m = 5, we note that $gcd(n+m,n+1) = gcd(8,4) = 4 \neq 1$.
- (iii) We observe that in [13, equation (49), page-950], the coefficient of T(r,g) is $\frac{m}{n+m-1}$ while actually it should be $\frac{m}{n+m+1}$.

In this paper, our aim is to correct all the mistakes made by *Waghmore-Anand* [13] and at the same time to get an improved and extended version results of all the above mentioned Theorems A - I.

To this end, throughout the paper, we will use the following transformations (see [5]). Let

$$\mathscr{P}(w) = w^{n+m} + \ldots + a_n w^n + \ldots + a_0 = a_{n+m} \prod_{i=1}^s (w - w_{p_i})^{p_i}$$

where $a_j (j = 0, 1, 2, ..., n + m - 1)$ and $w_{p_i} (i = 1, 2, ..., s)$ are distinct finite complex numbers and $2 \le s \le n + m$ and $p_1, p_2, ..., p_s, s \ge 2, n$, *m* and *k* are all positive integers with $\sum_{i=1}^{s} p_i = n + m$. Also let $p > \max_{p \ne p_i, i=1, ..., r} \{p_i\}, r = s - 1$, where *s* and *r* are two positive integers.

Let
$$\mathscr{Q}(w_*) = \prod_{i=1}^{s-1} (w_* + w_p - w_{p_i})^{p_i} = b_q w_*^q + b_{q-1} w_*^{q-1} + \dots + b_0$$
, where $w_* = w - w_p$, $q = n + m - p$. So it is clear that $\mathscr{P}(w) = w_*^p \mathscr{Q}(w_*)$

In particular, if we choose $b_i = (-1)^{i q} C_i$, for i = 0, 1, ..., q. Then we get, easily $\mathscr{P}_*(w) = w_*^p (w_* - 1)^q$. Note that if $w_p = 0$ and p = n, then we get $w = w_*$ and $\mathscr{P}_*(w) = w^n (w - 1)^m$. Observing all the above mentioned results, we note that $h^n (h - 1)h'$ or $h^n (h - 1)^2 h'$ (h = f or g) are a speci

Observing all the above mentioned results, we note that $h^n(h-1)h'$ or $h^n(h-1)^2h'$ (h = f or g) are a special form of $h^n(h-1)^mh'$, $m \ge 1$ be an integer.

Definition 1.17. [3] A Meromorphic function $a \equiv a(z) \neq 0, \infty$ is said to be a small function of f provided that T(r,a) = S(r,f) i.e., T(r,a) = O(T(r,f)) as $r \to \infty$, outside of a possible exceptional set of finite linear measure.

Studying two differential polynomials when sharing a small function (see [1, 2, 3, 5]) or some non-zero polynomial (see [4]) becomes an interesting part of modern value distribution theory. Since the extension of derivatives of a meromorphic functions is nothing but differential polynomials. So for the improvements and extensions of the above mentioned results further to a large extent, the following questions are inevitable.

Question 1.18. Is it possible to replace $f^n(f-1)^m f'$ and $g^n(g-1)^m g'$ by a more general expressions of the form $\mathscr{P}_*(f)f'_* = f^p_*(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g^p_*(g_*-1)^q g'_*$ respectively in all the above mentioned results ?

If the answer of the *Question 1.18* is found to be affirmative, then one my ask the following questions.

Question 1.19. Is it possible to reduce further the lower bounds of n in Theorems E, F, G and H?

Question 1.20. Is it also possible to replace sharing z CM by sharing $\alpha(z)$ CM in Theorem G and H?

Answering all the above mentioned questions affirmatively is the main motivation of writing this paper. Following two theorems are the main results of this paper.

Theorem 1.21. Let f and g hence $f_* = f - w_p$ and $g_* = g - w_p$, $w_p \in \mathbb{C}$ be any two non-constant non- entire meromorphic functions, $n \ge q+9$, $q \in \mathbb{N}$, be an integer. If $\mathscr{P}_*(f)f'_* = f^p_*(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g^p_*(g_*-1)^q g'_*$ share $\alpha \equiv \alpha(z) \ (\not\equiv 0,\infty) \ CM$, f_* and g_* share ∞IM , then $f \equiv g$.

Theorem 1.22. Let f and g hence $f_* = f - w_p$ and $g_* = g - w_p$, $w_p \in \mathbb{C}$ be any two non-constant entire functions, $n \ge q+5$, $q \in \mathbb{N}$, be an integer. If $\mathscr{P}_*(f)f'_* = f_*^p(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g_*^p(g_*-1)^q g'_*$ share $\alpha \equiv \alpha(z) \ (\ne 0,\infty) \ CM$, then $f \equiv g$.

2. Some lemmas

In this section we present some lemmas which will be needed in sequel.

Lemma 2.1. [14] Let f_1 , f_2 and f_3 be non constant meromorphic functions such that $f_1 + f_2 + f_3 = 1$. If f_1 , f_2 and f_3 are linearly independent, then

$$T(r, f_1) < \sum_{i=1}^{3} N_2\left(r, \frac{1}{f_i}\right) + \sum_{i=1}^{3} \overline{N}(r, f) + o(T(r)),$$

where $T(r) = \max_{1 \le i \le 3} \left\{ T(r, f_i) \right\}$ and $r \notin E$.

Lemma 2.2. [17] Let f_1 and f_2 be two non-constant meromorphic functions. If $c_1f_1 + c_2f_2 = c_3$, where c_i , i = 1, 2, 3 are non-zero constants, then

$$T(r,f_1) \leq \overline{N}(r,f_1) + \overline{N}\left(r,\frac{1}{f_1}\right) + \overline{N}\left(r,\frac{1}{f_2}\right) + S(r,f_1).$$

Lemma 2.3. [17] Let f be a non-constant meromorphic function and k be a non-negative integer, then

$$N\left(r,\frac{1}{f^{(k)}}\right) \leq N(r,\frac{1}{f}) + k\overline{N}(r,f) + S(r,f).$$

Lemma 2.4. [19] Suppose that f is a non-constant meromorphic function and $P(f) = a_n f^n + a_{n-1} f^{n-1} + \ldots + a_1 f + a_0$, where $a_n (\neq 0)$, $a_{n-1}, \ldots, a_1, a_0$ are small meromorphic functions of f(z). Then

$$T(r,P(f)) = n T(r,f) + S(r,f).$$

Lemma 2.5. [15] Let f_1 , f_2 and f_3 be three meromorphic functions satisfying $\sum_{i=1}^{3} f_i = 1$, then the functions $g_1 = -\frac{f_1}{f_2}$, $g_2 = \frac{1}{f_2}$ and f_1

 $g_3 = -\frac{f_1}{f_2}$ are linearly independent when f_1 , f_2 and f_3 are linearly independent.

Lemma 2.6. Let f and g and hence $f_* = f - w_p$ and $g_* = g - w_p$ be two non-constant meromorphic functions and $\alpha \equiv \alpha(z) \ (\not\equiv 0, \infty)$ be a small function of f and g. If $\mathscr{P}_*(f)f'_* = f^p_*(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g^p_*(g_*-1)^q g'_*$ share α CM and $p \ge 7$, then

$$T(r,g_*) \le \left(\frac{p+q+2}{p-6}\right)T(r,f_*) + S(r,g_*)$$

Proof. Applying Second Fundamental Theorem on $\mathscr{P}_*(g)g'_*$, we get

$$T\left(r, \mathscr{P}_{*}(g)g'_{*}\right)$$

$$\leq \overline{N}(r, \mathscr{P}_{*}(g)g'_{*}) + \overline{N}\left(r, \frac{1}{\mathscr{P}_{*}(g)g'_{*}}\right) + \overline{N}\left(r, \frac{1}{\mathscr{P}_{*}(g)g'_{*} - \alpha}\right) + S(r, g_{*})$$

$$\leq \overline{N}\left(r, \frac{1}{g^{P}_{*}(g_{*} - 1)^{q}g'_{*}}\right) + \overline{N}(r, g_{*}) + \overline{N}\left(r, \frac{1}{g^{P}_{*}(g_{*} - 1)^{q}g'_{*} - \alpha}\right) + S(r, g_{*})$$

$$(2.1)$$

Next by applying First fundamental Theorem,

$$(p+q)T(r,g)$$

$$\leq T(r,g_{*}^{p}(g_{*}-1)^{q}) + S(r,g_{*})$$

$$\leq T(r,g_{*}^{p}(g_{*}-1)^{q}g_{*}') + T\left(r,\frac{1}{g_{*}'}\right) + S(r,g_{*}).$$
(2.2)

After combining (2.1) and (2.2), we get

$$(p+q)T(r,g)$$

$$\leq \overline{N}\left(r,\frac{1}{g_{*}}\right) + \overline{N}(r,0;g_{*}-1) + \overline{N}(r,g_{*}) + \overline{N}\left(r,\frac{1}{g_{*}'}\right) + \overline{N}\left(r,\frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'-\alpha}\right)$$

$$+ S(r,g_{*}) + T(r,g_{*}').$$
(2.3)

Again since $S(r, g_*) = T(r, \alpha) = S(r, f_*)$, so we must have

$$\overline{N}\left(r,\frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}^{\prime}-\alpha}\right)$$

$$\leq T\left(r,\alpha;f_{*}^{p}(f_{*}-1)^{q}f_{*}^{\prime}\right)+O(1)$$

$$\leq T(r,f_{*}^{p})+T(r,(f_{*}-1)^{q}+T(r,f_{*}^{\prime})+T(r,\alpha)+O(1))$$

$$\leq pT(r,f_{*})+qT(r,f_{*})+2T(r,f_{*})+S(r,g_{*})$$

$$= (p+q+2)T(r,f_{*})+S(r,g_{*}).$$
(2.4)

By using (2.6) in (2.5), we get

$$\begin{array}{ll} (p+q)T(r,g_*)\\ \leq & (q+6)T(r,g_*)+(p+q+2)T(r,f_*)+S(r,g_*). \end{array}$$

i.e.,

$$T(r,g) \le \left(\frac{p+q+2}{p-6}\right)T(r,f) + S(r,g).$$

where $p \ge 7$.

Lemma 2.7. Let f and g and hence $f_* = f - w_p$ and $g_* = g - w_p$ be two non-constant entire functions and $\alpha \equiv \alpha(z) \ (\not\equiv 0, \infty)$ be a small function of f and g. If $\mathscr{P}_*(f)f'_* = f^p_*(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g^p_*(g_*-1)^q g'_*$ share α CM and $p \ge 5$, then

$$T(r,g_*) \le \left(\frac{p+q+2}{p-3}\right)T(r,f_*) + S(r,g_*)$$

Proof. Since *f* and *g* both are entire functions, so we must have $\overline{N}(r, f) = 0 = \overline{N}(r, g)$. Proceeding exactly as in the line of the proof of Lemma 2.6, we can prove the lemma.

 $\mathbf{F}(t)$

Lemma 2.8. Let $\Psi(z) = c^2(z^{p-q}-1)^2 - 4b(z^{p-2q}-1)(z^p-1)$, where $b, c \in \mathbb{C} - \{0\}, \frac{c^2}{4b} = \frac{p(p-2q)}{(p-q)^2} \neq 1$, then $\Psi(z)$ has exactly one multiple zero of multiplicity 4 which is 1.

Proof. We claim that $\Psi(1) = 0$ with multiplicity 4 and all other zeros of $\Psi(w)$ are simple. Let $F(t) = \frac{1}{2}\Psi(e^t)e^{(q-p)t}$. Then

$$= \frac{1}{2} \left\{ 4b(1-e^{pt})(1-e^{(p-2q)t}) - c^2(1-e^{(p-q)t}) \right\} e^{(q-p)t}$$

= $(4b-c^2)\cosh(q-p)t - 4b\cosh qt + c^2.$

Next we see that for t = 0, F(t) = 0, [F(t)]' = 0, [F(t)]'' = 0 since $\frac{c^2}{4b} = \frac{p(p-2q)}{(p-q)^2}$ and [F(t)]''' = 0 but $[F(t)]^{(iv)} \neq 0$ where

$$\begin{split} [F(t)]' &= (4b - c^2)(q - p)\sinh(q - p)t - 4bq\sinh qt, \\ [F(t)]'' &= (4b - c^2)(q - p)^2\cosh(q - p)t - 4bq^2\cosh qt, \\ [F(t)]''' &= (4b - c^2)(q - p)^3\sinh(q - p)t - 4bq^3\sinh qt \end{split}$$

and

$$[F(t)]^{(iv)} = (4b - c^2)(q - p)^4 \cosh(q - p)t - 4bq^4 \cosh qt$$

Therefore it is clear that F(0) = 0 with multiplicity 4 and hence $\Psi(1) = 0$ with multiplicity 4.

Next we suppose that $\Psi(w) = 0 = \Psi'(w)$, for some $w \in \mathbb{C}$. Then F(t) = 0 = F'(t) for every *t* satisfying $e^{qt} = w$. Now from F(t) = 0 and F'(t) = 0, we obtained respectively

$$(4b - c2)\cosh(q - p)t - 4b\cosh qt + c2 = 0$$
(2.5)

and

$$(4b - c2)(q - p)\sinh(q - p)t - 4qb\sinh qt = 0.$$
(2.6)

Since $\cosh^2(q-p)t - \sinh^2(q-p)t = 1$, so from (2.5) and (2.6), we get

$$\frac{(4b\cosh qt - c^2)^2}{(4b - c^2)^2} - \frac{16q^2b^2\sinh^2 qt}{(4b - c^2)^2(q - p)^2} = 1$$

i.e.,

$$(q-p)^{2}(4b\cosh^{2}qt-c^{2})^{2}-16q^{2}b^{2}(\cosh^{2}qt-1)=(4b-c^{2})^{2}(q-p)^{2}.$$

i.e.,

$$\left\{\cosh qt - 1\right\} \left\{\cosh qt - \frac{a^2(q-p)^2}{2bp(p-2q)} + 1\right\} = 0.$$
(2.7)

Since $\frac{c^2}{4b} = \frac{p(p-2q)}{(p-q)^2}$, then $\frac{c^2(q-p)^2}{2bq(q-2p)} = 2$, so we see that the equation (2.7) reduces to $\left\{\cosh qt - 1\right\}^2 = 0$. i.e., we get $e^{qt} = 1 = w$.

3. Proofs of the theorems

Proof of Theorem 1.21. Since $\mathscr{P}_*(f)f'_*$ and $\mathscr{P}_*(g)g'_*$ share $\alpha \equiv \alpha(z) CM$, f and g share ∞IM , so we suppose that

$$\mathscr{H} \equiv \frac{\mathscr{P}_{*}(f)f'_{*} - \alpha}{\mathscr{P}_{*}(g)g'_{*} - \alpha} \equiv \frac{f^{p}_{*}(f_{*} - 1)^{q}f'_{*} - \alpha}{g^{p}_{*}(g_{*} - 1)^{q}g'_{*} - \alpha}.$$
(3.1)

Then from (2.6) and (3.1), we get

$$\begin{split} T(r,\mathscr{H}) &= T\left(r,\mathscr{P}_*(f)f'_* - \alpha\right) \\ &\leq T\left(\mathcal{P}_*(f)f'_* - \alpha\right) + T(r,\mathscr{P}_*(g)g'_* - \alpha) + O(1) \\ &\leq T(\mathcal{P}_*(f)f'_* - \alpha) + T(r,\mathscr{P}_*(g)g'_* - \alpha) + O(1) \\ &\leq T(r,f^p_*(f_* - 1)^q f'_* - \alpha) + T(r,g^p_*(g_* - 1)^q g'_* - \alpha) + O(1) \\ &\leq (p+q+2)(T(r,f_*) + T(r,g_*)) + S(r,f_*) + S(r,g_*) \\ &\leq 2(p+q+2)T_*(r) + S_*(r), \end{split}$$

where $T_*(r) = \max\{T(r, f_*), T(r, g_*)\}$ and $S_*(r) = \max\{S(r, f_*), S(r, g_*)\}$. i.e.,

$$T(r,\mathscr{H}) = O(T_*(r)). \tag{3.2}$$

Again from (3.1), we see that the zeros and poles of \mathcal{H} are multiple and hence

$$\overline{N}(r,\mathscr{H}) \leq \overline{N}_L(r,f), \quad \overline{N}\left(r,\frac{1}{\mathscr{H}}\right) \leq \overline{N}_L(r,g).$$
(3.3)

Let $f_1 = \frac{f_*^p (f_* - 1)^q f'_*}{\alpha}$, $f_2 = \mathscr{H}$ and $f_3 = -\mathscr{H} \frac{g_*^p (g_* - 1)^q g'_*}{\alpha}$. Thus we get $f_1 + f_2 + f_3 = 1$. Next we denote $T(r) = \max\{T(r, f_1), T(r, f_2), T(r, f_3)\}$. We have,

 $T(r, f_1) = O(T(r, f_*))$

$$T(r, f_2) = O(T(r, f_*) + T(r, g_*)) = T(r, f_3).$$

So we have $T(r, f_i) = O(T_*(r))$ for i = 1, 2, 3 and hence $S(r, f_*) + S(r, g_*) = o(T_*(r))$.

Next we discuss the following cases.

Case 1. Suppose none of f_2 and f_3 is a constant. If f_1 , f_2 and f_3 are linearly independent, then by Lemma 2.1 and 2.4, we have

$$\begin{aligned} T(r,f_{1}) & (3.4) \\ &\leq \sum_{i=1}^{3} N_{2} \left(r, \frac{1}{f_{i}} \right) + \sum_{i=1}^{3} \overline{N}(r,f_{i}) + o(T(r)) \\ &\leq N_{2} \left(r, \frac{\alpha}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'} \right) + N_{2} \left(r, \frac{1}{\mathscr{H}} \right) + N_{2} \left(r, \frac{\alpha}{\mathscr{H}g_{*}^{p}(g_{*}-1)^{q}g_{*}'} \right) \\ &\quad + \overline{N}(r,f_{*}^{p}(f_{*}-1)^{q}f_{*}') + \overline{N}(r,\mathscr{H}) + \overline{N}(r,\mathscr{H}g_{*}^{p}(g_{*}-1)^{q}g_{*}') + o(T(r)) \\ &\leq N_{2} \left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'} \right) + 2N_{2} \left(r, \frac{1}{\mathscr{H}} \right) + N_{2} \left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'} \right) + \overline{N}(r,f_{*}) \\ &\quad + 2\overline{N}(r,\mathscr{H}) + \overline{N}(r,g_{*}) + o(T(r)). \end{aligned}$$

We see that $N_2\left(r, \frac{1}{\mathscr{H}}\right) \leq 2\overline{N}\left(r, \frac{1}{\mathscr{H}}\right) \leq 2\overline{N}_L(r, g_*), \quad \overline{N}(r, \mathscr{H}) \leq \overline{N}_L(r, f).$ Again since $\overline{N}_L(r, f_*) = 0 = \overline{N}_L(r, g_*)$ and note that $\overline{N}(r, f_*) = \overline{N}(r, g_*)$, so using all this facts, we get from (3.4) that

$$T(r, f_{1}) \leq N_{2}\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + N_{2}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) + 2\overline{N}(r, f_{*}) + o(T(r)) \\ \leq N\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) - \left[N_{(3}\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) - 2\overline{N}_{(3}\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right)\right] \\ + N\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) - \left[N_{(3}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) - 2\overline{N}_{(3}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right)\right] \\ + 2\overline{N}(r, f_{*}) + o(T(r)).$$

$$(3.5)$$

Let z_0 be a zero of f_* of multiplicity r, then z_0 is a zero of $f_*^p(f_*-1)^q f_*'$ of multiplicity $pr+r-1 \ge 3$. Thus we have

$$N_{(3}\left(r,\frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) - 2\overline{N}_{(3}\left(r,\frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right)$$

$$\geq (p-2)N\left(r,\frac{1}{f_{*}}\right).$$
(3.6)

Similarly, we get

$$N_{(3}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) - 2\overline{N}_{(3}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right)$$

$$\geq (p-2)N\left(r, \frac{1}{g_{*}}\right).$$
(3.7)

Let

$$\mathscr{F} = \frac{f_*^{p+q+1}}{p+q+1} - \frac{{}^{q}C_1}{p+q}f_*^{p+q} + \frac{{}^{q}C_2}{p+q-1}f_*^{p+q-1} + \ldots + (-1)^q \frac{1}{p+q}f_*^{p+1}$$

and

$$\mathscr{G} = \frac{g_*^{p+q+1}}{p+q+1} - \frac{{}^{q}C_1}{p+q}g_*^{p+q} + \frac{{}^{q}C_2}{p+q-1}g_*^{p+q-1} + \ldots + (-1)^q \frac{1}{p+q}g_*^{p+1}.$$

By Lemma 2.4, we have

$$T(r,\mathscr{F}) = (p+q+1)T(r,f_*) + S(r,f_*)$$

It is clear $\mathscr{F}' = \alpha f_1$. So we have

$$m\left(r,\frac{1}{\mathscr{F}}\right) \le m\left(r,\frac{1}{\alpha f_1}\right) + m\left(r,\frac{\mathscr{F}'}{\mathscr{F}}\right) \le m\left(r,\frac{1}{f_1}\right) + S(r,f_*).$$
(3.8)

By using First fundamental Theorem and (3.8), we obtained

$$T(r,\mathscr{F})$$

$$= m\left(r,\frac{1}{\mathscr{F}}\right) + N\left(r,\frac{1}{\mathscr{F}}\right)$$

$$\leq T(r,f_1) + N\left(r,\frac{1}{\mathscr{F}}\right) - N\left(r,\frac{1}{f_1}\right) + S(r,f_*)$$

$$\leq T(r,f_1) + (p+1)N\left(r,\frac{1}{f_*}\right) + \sum_{i=1}^q N\left(r,\frac{1}{f_*-a_i}\right) - N\left(r,\frac{1}{f_1}\right) + S(r,f_*),$$
(3.9)

where a_i (i = 1, 2, ..., q) are the roots of the algebraic equation

$$\frac{1}{p+q+1}z^q - \frac{qC_1}{p+q}z^{q-1} + \frac{qC_2}{p+q-1}z^{q-2} + \dots + (-1)^q\frac{1}{p+1} = 0.$$

Using (3.5) - (3.8) in (3.9), we get

$$\begin{split} T(r,\mathscr{F}) \\ &\leq N\left(r,\frac{1}{f_*^p(f_*-1)^q f_*'}\right) + (2-p)N\left(r,\frac{1}{f_*}\right) + N\left(r,\frac{1}{g_*^p(g_*-1)^q g_*'}\right) + (2-p)N\left(r,\frac{1}{g_*}\right) \\ &+ 2\overline{N}(r,f_*) + (p+1)N\left(r,\frac{1}{f_*}\right) + \sum_{i=1}^q N\left(r,\frac{1}{f_*-a_i}\right) - N\left(r,\frac{1}{f_*^p(f_*-1)^q f_*'}\right) + o(T(r)). \end{split}$$

i.e.,

$$\begin{array}{ll} (p+q+1)T(r,f_{*}) \\ \leq & 3N\left(r,\frac{1}{f_{*}}\right) + 3N\left(r,\frac{1}{g_{*}}\right) + \overline{N}(r,g_{*}) + q N\left(r,\frac{1}{g_{*}-1}\right) + 2\overline{N}(r,f_{*}) \\ & + \sum_{i=1}^{q} N\left(r,\frac{1}{f_{*}-a_{i}}\right) + o(T(r)) \\ \leq & (q+5)T(r,f_{*}) + (q+4)T(r,g_{*}) + o(T(r)). \end{array}$$

i.e.,

$$(p-4)T(r,f_*) \le (q+4)T(r,g_*) + o(T(r)). \tag{3.10}$$

Let $g_1 = -\frac{f_3}{f_2} = \frac{g_*^p(g_*-1)^q g'_*}{\alpha}$, $g_2 = \frac{1}{f_2} = \frac{1}{\mathscr{H}}$ and $g_3 = -\frac{f_1}{f_2} = -\frac{f_*^p(f_*-1)^q f'}{\alpha \mathscr{H}}$. Then we get $g_1 + g_2 + g_3 = 1$. By Lemma 2.5, g_1, g_2 and g_3 are linearly independent since f_1, f_2 and f_3 are linearly independent. Proceeding exactly same way as done in above, we get

$$(p-4)T(r,g_*) \le (q+4)T(r,g_*) + o(T(r)).$$

(3.11)

Let $T_*(r) = \max\{T(r, f_*), T(r, g_*)\}$. After combining (3.10) and (3.11), we get

 $(p-q-8)T_*(r) \leq o(T(r)),$

which contradicts $p \ge q + 9$.

Thus f_1 , f_2 and f_3 must be linearly dependent. Therefore there exists three constants c_1 , c_2 and c_3 , at least one of them are non-zero such that

$$c_1 f_1 + c_2 f_2 + c_3 f_3 = 0. ag{3.12}$$

Subcase 1.1. If $c_1 = 0$, $c_2 \neq 0$ and $c_3 \neq 0$, then from (3.12) we get $f_3 = -\frac{c_2}{c_3}f_2$ which implies $g_*^p(g_* - 1)^q g'_* = \frac{c_2}{c_3}\alpha$. On integrating, we get

$$\frac{g_*^{p+q+1}}{p+q+1} - \frac{{}^qC_1\,g_*^{p+q}}{p+q} + \frac{{}^qC_2\,g_*^{p+q-1}}{p+q-1}\dots + (-1)^q\frac{g_*^{p+1}}{p+1} = \frac{c_2}{c_3}\alpha + c,$$
(3.13)

where c is an arbitrary constant.

Thus we see that

$$T\left(r, \frac{g_*^{p+q+1}}{p+q+1} - \frac{qC_1 g_*^{p+q}}{p+q} + \frac{qC_2 g_*^{p+q-1}}{p+q-1} \dots + (-1)^q \frac{g_*^{p+1}}{p+1}\right) \le T(r, \alpha) + O(1).$$

i.e.,

$$(p+q+1)T(r,g_*) \le S(r,g_*).$$

Since $p \ge q+9$, so we get a contradiction. **Subcase 1.2.** Let $c_1 \ne 0$. Then from (3.12), we get

$$f_1 = \left(-\frac{c_2}{c_1}\right)f_2 + \left(-\frac{c_3}{c_1}\right)f_3.$$

After substituting this in the relation $f_1 + f_2 + f_3 = 1$, we get

$$\left(1-\frac{c_2}{c_1}\right)f_2+\left(1-\frac{c_3}{c_1}\right)f_3=1,$$

where $(c_1 - c_2)(c_1 - c_3) \neq 0$. So we get

$$\left(1 - \frac{c_3}{c_1}\right)\frac{g_*^p(g_* - 1)^q f_*'}{\alpha} + \frac{1}{\mathscr{H}} = \left(1 - \frac{c_2}{c_1}\right).$$
(3.14)

Again we see that

$$T(r,g_*^p(g_*-1)^q g'_*)$$

$$\leq T\left(r,\frac{g_*^p(g_*-1)^q g'_*}{\alpha}\right) + T(r,\alpha)$$

$$\leq T\left(r,\frac{g_*^p(g_*-1)^q g'_*}{\alpha}\right) + S(r,g_*).$$

Next applying Lemma 2.2 to the equation (3.14), we get

$$T\left(r, \frac{g_*^p (g_* - 1)^q g_*'}{\alpha}\right) \\ \leq \overline{N}\left(r, \frac{g_*^p (g_* - 1)^q g_*'}{\alpha}\right) + \overline{N}\left(r, \frac{\alpha}{g_*^p (g_* - 1)^q g_*'}\right) + \overline{N}(r, \mathscr{H}) + S(r, g)$$

So combining the above two we get,

$$T(r, g_*^p(g_*-1)^q g_*') \le \overline{N}\left(r, \frac{1}{g_*^p(g_*-1)^q g_*'}\right) + 2\overline{N}(r, g_*) + S(r, g_*).$$
(3.15)

By applying Lemmas 2.3, 2.4 and (3.15), we have

$$\begin{split} &(p+q)T(r,g_*)\\ &\leq &T(r,g_*^p(g_*-1)^q)+S(r,g_*)\\ &\leq &T(r,g_*^p(g_*-1)^qg_*')+T\left(r,\frac{1}{g_*'}\right)+S(r,g_*)\\ &\leq &\overline{N}\left(r,\frac{1}{g_*^p(g_*-1)^qg_*'}\right)+2\overline{N}(r,g_*)+T\left(r,\frac{1}{g_*'}\right)+S(r,g_*)\\ &\leq &8T(r,g_*)+S(r,g_*), \end{split}$$

which contradicts $p \ge q + 9$.

Subcase 2. If $f_2 = k$, where k is a constant.

Subcase 2.1 If $k \neq 1$, then from the relation $f_1 + f_2 + f_3 = 1$, we get

$$\frac{f_*^p (f_* - 1)^q f_*'}{\alpha} - k \frac{g_*^p (g_* - 1)^q g_*'}{\alpha} = 1 - k.$$
(3.16)

Next we apply Lemma 2.2 to the equation (3.16), we get

$$T\left(r, \frac{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}{\alpha}\right)$$

$$\leq \overline{N}(r, g_{*}) + \overline{N}\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + +\overline{N}\left(r, \frac{1}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) + S(r, f_{*}).$$
(3.17)

By applying Lemma 2.3, 2.4 and using equation (3.17), we get

$$\begin{aligned} &(p+q)T(r,f_*)\\ &= &T(r,f_*^p(f_*-1)^q) + S(r,f_*)\\ &\leq &T(r,f_*^p(f_*-1)^qf_*') + T\left(r,\frac{1}{f_*'}\right) + S(r,f_*)\\ &\leq &T\left(r,\frac{f_*^p(f_*-1)^qf_*'}{\alpha}\right) + T\left(r,\frac{1}{f_*'}\right) + S(r,f_*). \end{aligned}$$

i.e.,

$$(p+q-7)T(r,f_*) \le 4T(r,g_*) + S(r,g_*).$$

Using Lemma 2.6, we get

$$(p+q-4)T(r,f_*) \le 4\left(\frac{p+q+2}{p-6}\right)T(r,f_*) + S(r,g_*),$$

which contradicts $p \ge q+9$. **Subcase 2.2** Let k = 1 i.e., $\mathscr{H} = 1$ i.e.,

$$f_*^p (f_* - 1)^q f'_* \equiv g_*^p (g_* - 1)^q g'_*.$$

(3.18)

On integrating, we get

$$\frac{f_*^{p+q+1}}{p+q+1} - \frac{{}^{q}C_1f_*^{p+q}}{p+q} + \ldots + (-1)^q \frac{f_*^{p+1}}{p+1} \equiv \frac{g_*^{p+q+1}}{p+q+1} - \frac{{}^{q}C_1g_*^{p+q}}{p+q} + \ldots + (-1)^q \frac{g_*^{p+1}}{p+1} + c,$$

where c is an arbitrary constant. i.e.,

$$\mathscr{F} \equiv \mathscr{G} + c.$$

Subcase 2.2.1 Let if possible $c \neq 0$. Next we get

$$\Theta(0,\mathscr{F})+\Theta(c,\mathscr{F})+\Theta(\infty,\mathscr{F})=\Theta(0,\mathscr{F})+\Theta(0,\mathscr{G})+\Theta(\infty,\mathscr{F})+\Theta(0,\mathscr{G})+\Theta(\infty,\mathscr{F})+\Theta(0,\mathscr{G})+\Theta(\infty,\mathscr{F})+\Theta(0,$$

We have,

$$\overline{N}\left(r,\frac{1}{\mathscr{F}}\right) = \overline{N}\left(r,\frac{1}{f_*}\right) + \overline{N}\left(r,\frac{1}{f_*-a_1}\right) + \ldots + \overline{N}\left(r,\frac{1}{f_*-a_q}\right) \le (q+1) T(r,f_*).$$

Similarly, we get $N\left(r, \frac{1}{\mathscr{G}}\right) \leq (q+1) T(r, g_*).$ Again note that $\overline{N}(r, \mathscr{F}) = \overline{N}(r, f_*) \leq T(r, f_*).$ Again

$$T(r,\mathscr{F}) = (p+q+1) T(r,f_*) + S(r,f_*)$$

$$T(r,\mathcal{G}) = (p+q+1) T(r,g_*) + S(r,g_*)$$

Thus

$$\Theta(0,\mathscr{F}) = 1 - \limsup_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{\mathscr{F}}\right)}{T(r, \mathscr{F})} \ge 1 - \frac{(q+1)T(r, f_*)}{(p+q+1)T(r, f_*)} = \frac{p}{p+q+1}$$

Similarly

$$\Theta(0,\mathscr{H})\geq \frac{p}{p+q+1} \quad \text{and} \quad \Theta(\infty,\mathscr{F})\geq \frac{p+q}{p+q+1}.$$

Therefore

$$\Theta(0,\mathscr{F}) + \Theta(c,\mathscr{F}) + \Theta(\infty;\mathscr{F}) \geq \frac{3p+q}{p+q+1} > 2,$$

since $p \ge q+9$, which is a contradiction. **Subcase 2.2.2** Thus we get c = 0. Thus we get

$$\mathscr{F} \equiv \mathscr{G}. \tag{3.19}$$

Let $h = \frac{f_*}{g_*}$. Then substituting in (3.19), we get

$$(p+q)(p+q-1)\dots(p+1)g_*^q(h^{p+q-1}-1)$$

$$(3.20)$$

$$-{}^{q}C_1(p+q+1)(p+q-1)\dots(p+1)g_*^{q-1}(h^{p+q}-1)$$

$$+\dots+(-1)^q(p+q+1)(p+q)\dots p(h^{p+1}-1) = 0.$$

Subcase 2.2.2.1. If h is a non-constant, then using Lemma 2.8 and proceeding exactly same way as done in [12, p-1272], we arrive at a contradiction.

Subcase 2.2.2. Let *h* is constant, then from (3.20), we get $h^{p+q+1} - 1 = 0$, $h^{p+q} - 1 = 0$, ..., $h^{p+1} - 1 = 0$. i.e., $h^d - 1 = 0$, where d = gcd(p+q+1, p+q, ..., p+1) = 1. i.e., h = 1.

Hence $f_* \equiv g_*$. i.e., $f \equiv g$.

Subcase 3. Suppose $f_3 = c$, where *c* is a constant.

Subcase 3.1. If $c \neq 1$, then from the relation $f_1 + f_2 + f_3 = 1$, we get

$$\frac{f_*^p(f_*-1)^q f_*'}{\alpha} - \frac{c\alpha}{g_*^p(g_*-1)^q g_*'} = 1 - c.$$
(3.21)

Applying Lemma 2.2 to the above equation, we get

$$T(r, f_{*}^{p}(f_{*}-1)^{q}f_{*}')$$

$$\leq T\left(r, \frac{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}{\alpha}\right) + S(r, f_{*})$$

$$\leq \overline{N}\left(r, \frac{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}{\alpha}\right) + \overline{N}\left(r, \frac{\alpha}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + \overline{N}\left(r, \frac{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}{\alpha}\right)$$

$$+ S(r, f_{*})$$

$$\leq \overline{N}(r, f_{*}) + \overline{N}\left(r, \frac{1}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + \overline{N}(r, g_{*}) + S(r, f_{*}).$$
(3.22)

Using Lemma 2.3, 2.4 and (3.22), we have

$$\begin{array}{ll} (p+q)T(r,f_*) \\ \leq & T(r,f_*^p(f_*-1)^q) + S(r,f_*) \\ \leq & T\left(r,\frac{1}{f_*^p(f_*-1)^q f_*'}\right) + T\left(r,\frac{1}{f_*'}\right) + S(r,f_*) \\ \leq & 7 T(r,f_*) + T(r,g_*) + S(r,f_*). \end{array}$$

Next by applying Lemma 2.6, we get

$$\begin{array}{rl} (p+q-7) \ T(r,f_{*}) \\ \leq & T(r,g_{*}) + S(r,f_{*}) \\ \leq & \left(\frac{p+q+2}{p-6}\right) T(r,f_{*}) + S(r,f_{*}) \end{array}$$

which contradicts $p \ge q+9$. **Subcase 3.2.** Let c = 1. Then from (3.21), we get

$$f_*^p (f_* - 1)^q f_*' g_*^p (g_* - 1)^q g_*' = \alpha^2.$$
(3.23)

Let z_0 be a zero of f_* of order r_0 . Then from (3.23), we see that z_0 is a pole of g_* of order s_0 (say). Then from (3.23), we get $pr_0 + r_0 - 1 = ps_0 + qs_0 + s_0 + 1$. i.e., $(p+1)(r_0 - s_0) = qs_0 + 2 \ge p + 1$. i.e.,

$$r_0 \ge \frac{p+q+1}{q}.$$

Again let z_1 be a zero of $f_* - 1$ of order r_1 . Then from (3.23), we see that z_1 will be a pole of g_* of order s_1 (say). So we have $r_1 + r_1 - 1 = ps_1 + qs_1 + s_1 + 1$. i.e.,

$$r_1 \geq \frac{p+q+3}{2}.$$

Let z_2 be a zero of f'_* of order r_2 which are not the zero of $f_*(f_*-1)$, so from (3.23) we see that z_2 will be a pole of g_* of order s_2 (say). Then from (3.23), we get $r_2 = ps_2 + qs_2 + s_2 + 1$. i.e.,

$$r_2 \ge p + q + 2.$$

The similar explanations hold for the zeros of $g_*^p(g_*-1)^q g'_*$ also. Next we see from (3.23), we have

$$\overline{N}\left(r, f_*^p(f_*-1)^q f_*'\right) = \overline{N}\left(r, \frac{\alpha^2}{g_*^p(g_*-1)^q g_*'}\right)$$

i.e.,

$$\begin{split} & \overline{N}(r,f_*) \\ & \leq \quad \overline{N}\left(r,\frac{1}{g_*}\right) + \overline{N}\left(r,\frac{1}{g_*-1}\right) + \overline{N}\left(r,\frac{1}{g_*'}\right) \\ & \leq \quad \left(\frac{q}{p+q+1}\right) N\left(r,\frac{1}{g_*}\right) + \left(\frac{2}{p+q+3}\right) N\left(r,\frac{1}{g_*-1}\right) + \left(\frac{1}{p+q+2}\right) N\left(r,\frac{1}{g_*'}\right) \\ & \leq \quad \left(\frac{q}{p+q+1} + \frac{2}{p+q+3} + \frac{2}{p+q+2}\right) T(r,g_*) + S(r,g_*). \end{split}$$

By applying Second Fundamental Theorem, we get

$$T(r, f_{*})$$

$$\leq \overline{N}\left(r, \frac{1}{f_{*}}\right) + \overline{N}\left(r, \frac{1}{f_{*}-1}\right) + \overline{N}(r, f_{*}) + S(r, f_{*})$$

$$\leq \left(\frac{q}{p+q+1} + \frac{2}{p+q+3}\right)T(r, f_{*}) + \left(\frac{q}{p+q+1} + \frac{2}{p+q+3} + \frac{2}{p+q+2}\right)$$

$$\times T(r, g_{*}) + S(r, f_{*}) + S(r, g_{*}).$$
(3.24)

Similarly, we get

$$T(r,g_{*})$$

$$\leq \left(\frac{q}{p+q+1} + \frac{2}{p+q+3}\right)T(r,g_{*}) + \left(\frac{q}{p+q+1} + \frac{2}{p+q+3} + \frac{2}{p+q+2}\right)$$

$$\times T(r,f_{*}) + S(r,f_{*}) + S(r,g_{*}).$$
(3.25)

From (3.24) and (3.25), we get

$$T_*(r) \le \left(\frac{2q}{p+q+1} + \frac{4}{p+q+3} + \frac{2}{p+q+2}\right)T_*(r) + S_*(r).$$

i.e.,

$$\left(1 - \frac{2q}{p+q+1} - \frac{4}{p+q+3} - \frac{2}{p+q+2}\right)T_*(r) \le S_*(r),$$

which contradicts $p \ge q + 9$.

Proof of Theorem 1.22. Since f_* and g_* both are non-constant entire functions, then we may consider the followings two cases. **Case 1.** Let f_* and g_* are two transcendental entire functions. Then it is clear that $\overline{N}(r, f_*) = S(r, f_*)$ and $\overline{N}(r, g_*) = S(r, g_*)$. With this the rest of the proof can be carried out in the line of the proof of Theorem 1.21. **Case 2.** Let f_* and g_* both are polynomials. Since $f_*^p(f_*-1)^q f_*'$ and $g_*^p(g_*-1)^q g_*'$ share α CM, then we must have

$$(f_*^p(f_*-1)^q f_*' - \alpha) = \kappa \left(g_*^p(g_*-1)^q g_*' - \alpha\right), \tag{3.26}$$

where κ is a non-zero constant.

Subcase 2.1. Suppose $\kappa \neq 1$, then from (3.26), we get

$$\frac{f_*^p(f_*-1)^q f_*'}{\alpha} - \kappa \frac{g_*^p(g_*-1)^q g_*'}{\alpha} = 1 - \kappa.$$
(3.27)

Applying Lemma 2.2, we get

$$T(r, f_{*}^{p}(f_{*}-1)^{q}f_{*}')$$

$$\leq T\left(r, \frac{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}{\alpha}\right) + S(r, f_{*})$$

$$\leq \overline{N}\left(r, \frac{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}{\alpha}\right) + \overline{N}\left(r, \frac{\alpha}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + \overline{N}\left(r, \frac{\alpha}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right)$$

$$+ S(r, f_{*})$$

$$\leq \overline{N}(r, f_{*}) + \overline{N}\left(r, \frac{\alpha}{f_{*}^{p}(f_{*}-1)^{q}f_{*}'}\right) + \overline{N}\left(r, \frac{\alpha}{g_{*}^{p}(g_{*}-1)^{q}g_{*}'}\right) + S(r, f_{*}).$$

$$T$$

$$= T$$

$$(3.28)$$

Using Lemmas 2.3, 2.4 and (3.27), we get

$$(p+q)T(r,f_*)$$

$$\leq T(r,f_*^p(f_*-1)^q) + S(r,f_*)$$

$$\leq T(r,f_*^p(f_*-1)^qf_*') + T\left(r,\frac{1}{f_*}\right) + S(r,f_*')$$

$$\leq 4T(r,f_*) + 3T(r,g_*) + S(r,f_*).$$

i.e.,

$$(p+q-4)T(r,f_*) \leq 3 T(r,g_*) + S(r,g_*).$$

Using Lemma 2.7, we get

$$(p+q-4)T(r,f_*) \le 3\left(\frac{p+q+1}{p-3}\right)T(r,f_*) + S(r,f_*)$$

which contradicts $p \ge q + 5$. Subcase 2.2. Let $\kappa = 1$. So from (3.27), we get

$$f_*^p (f_* - 1)^q f_*' \equiv g_*^p (g_* - 1)^q g_*'.$$

Next proceeding exactly same way as done in *Subcase 1.3.2* in the proof of *Theorem 1.21*, we get $f \equiv g$.

4. Concluding remarks and some open questions

If we replace the condition " $f_*^p(f_*-1)^q f_*'$ and $g_*^p(g_*-1)^q g_*'$ share $\alpha(z)$ CM" by the condition " $f_*^p(f_*-1)^q f_*'$ and $g_*^p(g_*-1)^q g_*'$ share z CM", then the conclusions of Theorems 1.21 and 1.22 still hold. Thus we get the following results

Theorem 4.1. Let f and g hence $f_* = f - w_p$ and $g_* = g - w_p$, $w_p \in \mathbb{C}$ be any two non-constant non- entire meromorphic functions, $n \ge q+9$, $q \in \mathbb{N}$, be an integer. If $\mathscr{P}_*(f)f'_* = f^p_*(f_*-1)^q f'_*$ and $\mathscr{P}_*(g)g'_* = g^p_*(g_*-1)^q f'_*$ share z CM, then $f \equiv g$.

Theorem 4.2. Let f and g hence $f_* = f - w_p$ and $g_* = g - w_p$, $w_p \in \mathbb{C}$ be any two non-constant entire functions, $n \ge q+5$, $q \in \mathbb{N}$, be an integer. If $\mathscr{P}_{*}(f)f'_{*} = f^{p}_{*}(f_{*}-1)^{q}f'_{*}$ and $\mathscr{P}_{*}(g)g'_{*} = g^{p}_{*}(g_{*}-1)^{q}f'_{*}$ share z CM, then $f \equiv g$.

Note 4.3. If we choose q = m, $w_p = 0$, then since p = n + m - q and $f_* = f - w_p$, so we get p = n and $f_* = f$, respectively. With this we see that $n \ge m+9$ in Theorem 4.1 and $n \ge m+5$ in Theorem 4.2.

So from the above note, we observe that Theorem 4.1 and Theorem 4.2 are the direct improvement as well as extension of Theorem H and I respectively.

Remark 4.4. We see from Note 4.3 that for m = 1 and m = 2, we get $n \ge 10$ and $n \ge 11$ respectively in Theorem 4.1 which is a direct improvement of Theorem E and F.

Remark 4.5. For m = 1, we see from Note 4.3 that n > 6 in Theorem 4.2 which is a direct improvement of Theorem G.

Next for further research in this direction, one my glance over the following remarks.

Remark 4.6. What worth noticing fact is that in [13, equation (39)], there is no term which is absent in the expression. So, for the case of h is constant, [13, equation (40)] implies $h^d - 1 = 0$, where d = gcd(n+m+1, n+m, ..., n+1) = 1. i.e., h = 1 and hence $f \equiv g$. But if we replace $(f-1)^m$ in the expression $f^n(f-1)^m f'$ by a more general expression $f^n P_m(f) f'$, where $P_m(f) = a_m f^m + a_{m-1} f^{m-1} + \ldots + a_1 f + a_0$, $a_i \in \mathbb{C}$, for $i = 0, 1, \dots, m$. It is not always possible to handle the case of h is constant. If somehow one can do that, then from the case of h is constant, $h^d - 1 = 0$, where $d = \gcd(n + m + 1, n + m, \dots, n + 1) \neq 1$ in general. So we can't obtained $f \equiv g$ in general.

Based on the above observations, we next pose the following open questions.

Question 4.7. Is it possible to reduce further the lower bounds of p in Theorem 1.21 and Theorem 1.22?

Question 4.8. To get the uniqueness between f and g is it possible to replace $f_*^p (f_*-1)^q f'_*$ and $g_*^p (g_*-1)^q g'_*$ respectively by $f_*^p P_m(f_*) f'_*$ and $g_*^p P_m(g_*)g'_*$, where $P_m(f_*) = P_m(f) = a_m f_*^m + a_{m-1}f_*^{m-1} + \ldots + a_1f_* + a_0$ in Theorem 1.21 and Theorem 1.22?

Acknowledgment

The author would like to thank a referee and an associate editor for valuable suggestions and comments.

References

- [1] M. B. Ahamed, Uniqueness of two differential polynomials of a meromorphic function sharing a set, Commun. Korean Math. Soc., Vol:33, No. 4, (2018), 1181-1203.
- [2] A. Banerjee and M. B. Ahamed, Results on certain non-linear differential polynomials sharing a small function, Istanbul Univ. Sci. Fac. J. Math. Phys. Astr., Vol: 5, (2014), 17-34.
- [3] A. Banerjee and M. B. Ahamed, Meromorphic function sharing a small function with its differential polynomials, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, Vol: 54, No. 1, (2015), 33-45.
- [4] A. Banerjee and M. B. Ahamed, Non-linear differential polynomials sharing a non-zero polynomials with finite weight, Math. Bohemica, Vol: 141, No. 1. (2016), 13-36.
- [5] A. Banerjee and M. B. Ahamed, Uniqueness of a polynomial and a differential monomial sharing a small function, Analele Univ. de Vest. Timisoara Ser. Math. Info., Vol: 54, No. 1, (2016), 55-71
- S. S. Bhoosnurmath and V. L. Pujari, Uniqueness of meromorphic functions sharing fixed points, Int. J. Anal., (2013) Art ID: 538027, 12p. [7] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math., Vol:32,(2001),
- 1343-1348.
 [8] G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex var. Theory Appl., Vol:37, (1998), 185-193.
- [9] W. K. Hayman, Meromorphic Functions, Oxford, UK: Clarendon Press, (1964).
- [10] W. K. Hayman, Research problems in function theory, Athlone Press, London.
- [11] W. C. Lin and H. X. Yi., Uniqueness theorems for meromorphic functions concerning fixed points, Complex Var. Theory Appl., Vol:49, (2004), 793-806.
- [12] H. P. Waghamore and N. Shilpa, Generalization of uniqueness theorems for entire and meromorphic functions, Appl. Math., Vol:5, (2014), 1267-1274.
- [12] H. F. wagnaniore and N. Snipa, Generalization of uniqueness informs for entire and meromorphic functions, Appl. Math., Vol.5, (2014), 1267-127
 [13] H. P. Waghamore and S. Anand, Generalization of uniqueness of meromorphic functions sharing fixed points, Appl. Math., Vol.5, (2016), 939-952.
 [14] J. F. Xu, F. Lü and H. X. Yi, Fixed points and uniqueness of meromorphic functions, Comput. Math. Appl., Vol.59, (2010), 9-17.
 [15] H. X. Yi, Meromorphic functions that share two or three values, Kodai Math. J., Vol.13, (1990), 363-372.
 [16] C. C. Yang and X. Hua, Uniqueness and vale-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., Vol22: (1997), 395-406.
 [17] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Math. Appl., (2003) Kluwer Academic Publishers, Dordrecht.
 [18] L. Yang, Value distribution theory, Translated and revised from the 1982 Chinese Original, Springer, Berlin.

- [19] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., Vol:125, (1972), 107-112.