Konuralp Journal of Mathematics, 7 (2) (2019) 252-263

O ©] .
Konuralp Journal of Mathematics :
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath KoNuR \.:.u. RNAL O
S e-ISSN: 2147-625X

On Uniqueness of Two Meromorphic Functions Sharing A Small
Function

Molla Basir Ahamed!”

' Department of Mathematics, Kalipada Ghosh Tarai Mahavidyalaya, Bagdogra, Darjeeling, West Bengal, 734014, India.
Corresponding author E-mail: bsrhmd117 @ gmail.com

Abstract

In this paper, we have investigated the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing
a small function. Our results radically extended and improved the results of Bhoosnurmath-Pujari [6] and Harina - Anand [13] not only by
sharing small function instead of fixed point but also reducing the lower bound of n. There are some miscalculation in the proof of a result of
Harina-Anand [13]. We have corrected all of them in a more convenient way. At last some open questions have been posed for further study
in this direction.
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1. Introduction, Definitions and Results

The Nevanlinna theory mainly describes the asymptotic distribution of solutions of the equation f(z) = w, as w varies. At the outset, we
assume that readers are familiar with the basic Nevanlinna Theory [9]. First we explain the general sharing notion. Let f and g be two
non-constant meromorphic functions in the complex plane C. Two meromorphic functions f and g are said to share a value w € CU {0} IM
(ignoring multiplicities) if f and g have the same w-points counted with ignoring multiplicities. If multiplicities of w-points are counted,
then f and g are said to share w CM (counting multiplicities).

When w =  the zeros of f —w means the poles of f.

It is well known that if two moromorphic functions f and g share four distinct values CM, then one is Mdbius Transformation of the other.
In 1993, corresponding to one famous question of Hayman [10], Yang-Hua [16] showed that similar conclusions hold for certain types of
differential polynomials when they share only one value.

Recently by using the same argument as in [16], Fang-Hong [7] the following result was obtained.

Theorem 1.1. Let f and g be two transcendental entire functions, n > 11, an integer. If f*(f —1)f" and g"(g —1)g’ share 1 CM, then
f=s

The following example shows that in Theorem A one simply can not replace “entire” by “meromorphic ” functions.

Example 1.2. Let

(n+2) & +...+elntlz
(n+1) 14+ei4... Felrtl)z

flz)=

and

(n+2) I4+e+...+€%
(n+1)14+ex+... ez’

fla)=

It is clear that f(z) = €°g(z). Also f"(f — 1) and g"(g — 1)g’ share 1 CM but note that f # g.
In 2004, Lin-Yi [11] extended Theorem A and obtained the following results.

Theorem 1.3. [11] Let f and g be two transcendental entire functions, n > 7 an integer. If f*(f —1)f" and g"(g —1)g’ share 7 CM, then
f=s
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Theorem 1.4. [11] Let f and g be two transcendental meromorphic functions, n > 12 an integer. If f"(f —1)f’ and g"(g—1)g’ share z
CM, then either f = g or
(n+2)(1—h"1) ~ (n+2)h(1—h"1)

= (=) T )

where h is a non-constant meromorphic function.

Theorem 1.5. [11] Let f and g be two transcendental meromorphic functions, n > 13 an integer. If f*(f — 1)*f" and g"(g — 1)%g share z
CM, then f = g.

To improve all the above mentioned results, natural questions arise as follows.
Question 1.6. Keeping all other conditions intact, is it possible to reduce further the lower bounds of n in the above results ?

Question 1.7. Is it also possible to replace the transcendental meromorphic (entire) functions by a more general class of meromorphic
(entire) functions in all the above mentioned results ?

In 2013, Bhoosnurmath-Pujari [6], answered the above questions affirmatively and obtained the following results.
Theorem 1.8. [6] Let f and g be two non-constant meromorphic functions, n > 11 be an integer. If f"(f —1)f’ and g"(g — 1)g’ share 7
CM, f and g share o IM, then either f = g or

(n42)(1—h"1h) (n42)h(1 —h"+1)

(D)1 =h2) T (e 1)(1 = Ant2) 7
where h is a non-constant meromorphic function.

Theorem 1.9. [6] Let f and g be two non-constant meromorphic functions, n > 12 an integer. If f"(f — 1)2f' and g"(g — 1)g’ share z CM,
f and g share oo IM, then f = g.

Theorem 1.10. [6] Let f and g be two non-constant entire functions, n > 7 be an integer. If f*(f — 1) f" and g"(g — 1)g’ share z CM, then
f=e

In this direction, for the purpose of extending Theorem E and F, one may ask the following question.

Question 1.11. Keeping all other conditions intact in Theorem E, F and G, is it possible to replace respectively f"(f —1)f and g"(g—1)g’
by f"(f—=1)"f" and g"(g—1)"g" ?

Next the following question is inevitable.

Question 1.12. Is it possible to omit the second conclusions of Theorems C and E ?

In 2016, Waghmore-Anand [13] answer the Questions 1.11 and .12 affirmatively and obtained the following results.

Theorem 1.13. [13] Let f and g be two non-constant meromorphic functions, n > m+ 10 be an integer. If f"(f —1)"f' and g"(g —1)"g’'
share 7z CM, f and g share oo IM, then f = g.

Theorem 1.14. [13] Let f and g be any two non-constant entire functions, n > m+6 an integer. If f*(f —1)" " and g"(g — 1)"g' share z
CM, then f = g.

Note 1.15. We see that in the results of Waghmore - Anand, for m = 2, Theorem H reduces to Theorem F and for m = 1, Theorem I reduces
to Theorem G .

Remark 1.16. We notice that in the proof of Theorem H and hence in the case of Theorem I also, we have found some miscalculation made
by the authors Waghmore-Anand [13]. We mention below few of them.

(i) In [13, page-947], just before Case 2, the authors obtained that the coefficient of T (r,g) is (n —m — 8), while actually it will be
(n+m—8).

(ii) In [13, page-948], just before Case 3, the authors finally obtained that “h"*" —1 =0, "t —1 =0, which imply h = 1”. Note that
this possible only when gcd(n+m,n+ 1) = 1 but which is not true if one consider some suitable value of n and m. For example if we
choose n =3 and m = 5, we note that gcd(n+m,n+1) = gcd(8,4) =4 # 1.

(iii) We observe that in [13, equation (49), page-950], the coefficient of T (r,g) is _m while actually it should be ——— .
n+m—1 n+m+1

In this paper, our aim is to correct all the mistakes made by Waghmore-Anand [13] and at the same time to get an improved and extended

version results of all the above mentioned Theorems A - 1.

To this end, throughout the paper, we will use the following transformations (see [5]). Let

N

Pw)=w"r" 4 daw' . A ag = anim H(W*Wlii)pi

i=1

where aj(j =0,1,2,...,n+m—1) and wy, (i = 1,2,...,s) are distinct finite complex numbers and 2 < s <n-+mand p1,p2,...,ps, s > 2, n,
s

m and k are all positive integers with Z pi =n+m. Also let p > y m_a)i {pi}, r=s—1, where s and r are two positive integers.
i=1 p#pii=1,...,r

s—1

Let 2(w.) = [ [(we +wp —wp, )P = byw! by Wl 4. by, where w. = w—w,, g =n+m—p. Soitis clear that 2 (w) = w’ 2(w..)
i=1

In particular, if we choose b; = (—1)" 9C;, for i =0, 1,...,q. Then we get, easily P, (w) = w¥ (w, —1)4.

Note that if w, = 0 and p = n, then we get w = w, and P, (w) = w"(w—1)".

Observing all the above mentioned results, we note that 2" (h — 1)1’ or K" (h—1)*h' (h = f or g) are a special form of /" (h — 1)"h', m > 1

be an integer.
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Definition 1.17. [3] A Meromorphic function a = a(z)(# 0,0) is said to be a small function of f provided that T (r,a) = S(r, f) i.e.,
T(r,a) = O(T(r,f)) as r — oo, outside of a possible exceptional set of finite linear measure.

Studying two differential polynomials when sharing a small function (see [1, 2, 3, 5]) or some non-zero polynomial (see [4]) becomes an
interesting part of modern value distribution theory. Since the extension of derivatives of a meromorphic functions is nothing but differential
polynomials. So for the improvements and extensions of the above mentioned results further to a large extent, the following questions are
inevitable.

Question 1.18. Is it possible to replace f"(f — 1) f" and g" (g — 1)™g’ by a more general expressions of the form P.(f)f. = fF(f« —1)4f!
and P.(g)g, = g% (g« — 1)1g, respectively in all the above mentioned results ?

If the answer of the Question 1.18 is found to be affirmative, then one my ask the following questions.
Question 1.19. Is it possible to reduce further the lower bounds of n in Theorems E, F, G and H ?
Question 1.20. Is it also possible to replace sharing z CM by sharing a(z) CM in Theorem G and H ?

Answering all the above mentioned questions affirmatively is the main motivation of writing this paper.
Following two theorems are the main results of this paper.

Theorem 1.21. Let f and g hence f, = f —w), and g« = g —w), w, € C be any two non-constant non- entire meromorphic functions,
n>q+9, g €N, be an integer. If Z.(f)f. = f£(f. — 1)f. and P.(g)g". = &% (g« — 1)9g’. share a = a(z) (Z 0,%0) CM, f. and g. share
oo IM, then f = g.

Theorem 1.22. Let f and g hence f, = f —w), and g« = g — wp, wp € C be any two non-constant entire functions, n > q+5, g € N, be an
integer. If 2 (f)f. = fF(fi — 1)if! and P.(g)g, = gl (g« — 1)4g!, share a = a(z) (£ 0,) CM, then f = g.

2. Some lemmas

In this section we present some lemmas which will be needed in sequel.

Lemma 2.1. []/4] Let fi, f>» and f53 be non constant meromorphic functions such that fi + fo + f3 = 1. If f1, f>» and f3 are linearly
independent, then

3 | 3
T:5) < $0a (g )+ LGS +o(T0)

where T(r) = max {T(r,ﬁ)} andr ¢ E.

1<i<3

Lemma 2.2. [17] Let f| and f> be two non-constant meromorphic functions. If c| f1 +cafo = ¢3, where ¢j, i = 1,2,3 are non-zero constants,
then

_ _ 1 — 1
T(r,f1) <N(r,f1)+N (r, —) +N (r, —) +S(r,f1)-
fi f2
Lemma 2.3. [17] Let f be a non-constant meromorphic function and k be a non-negative integer, then
1 1 _
)< - .
V(g ) NG N1 S0

Lemma 2.4. [19] Suppose that f is a non-constant meromorphic function and P(f) = anf" + an_1 """ 4 ...+ a1.f + ag, where a,(# 0),
ap_1,-..,a1,ag are small meromorphic functions of f(z). Then

T(rP(f)) =nT(rf)+50f).

3
1
Lemma 2.5. [15] Let f1, f» and f3 be three meromorphic functions satisfying Z fi =1, then the functions g| = —f—], g = — and

i=1 f2 f

g3 = —ﬁ are linearly independent when f, f> and f3 are linearly independent.

f2

Lemma 2.6. Let f and g and hence f, = f —w), and g, = g —w), be two non-constant meromorphic functions and ot = o(z) (% 0,%0) be a
small function of f and g. If 2. (f)ft = fL(f« — 1)4f. and P.(g)g), = g% (g« — 1)1g), share « CM and p >, then

pt+q+2
T(rg«) < (ﬁ) T(r, f) +S(r,8«)
Proof. Applying Second Fundamental Theorem on 2, (g)g’., we get
T (r, 2.(3)g.) Q.1
_ _ 1 — 1
< N2 ’+N(r,7)+N(r77>+Sr, .
< N 298+ (1 7. —a) Sne)
_ 1 — — 1
< N|\rh—————)+N(rg)+N|r )+S T, 8x
(" ) R+ 9 (5 e )+
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Next by applying First fundamental Theorem,

(P+q)T(rg) (2.2)
S T(r7gf(g*71)q)+S(r,g*)
< T(ngi’(gwl)"ngT(ngi/)+S(r,g*)~
After combining (2.1) and (2.2), we get
(P+q)T(rg) (23)
V2 T N _ /1N - 1
< (g ) oe0se 0 Fes) (o) o7 (o)
+5(r,8:) + T(r,8.).

Again since S(r,g.) = T(r,a@) = S(r, f«), so we must have

_ 1

N (r’ = 1yf! —a> @4
T (ro f(f. — 1)) +0(1)

TP+ T (f —D)I+T(rfi)+T(ra)+0(1)

pT(rf)+aqT(r,fy+2T(r f) +5(r,8+)

(p+q+2)T(r, fx) +S(r,84)-

IAN A IA

By using (2.6) in (2.5), we get

(P+q)T(r,g«)
< (q+6)T(r,ge)+(p+q+2)T(r,fi) +S(r,g4)-

where p > 7. O

Lemma 2.7. Let f and g and hence f, = f —w, and g« = g —wp be two non-constant entire functions and & = 0/(z) (# 0,0) be a small
function of f and g. If 2(f)f. = fF(fi — 1)If! and P.(g)g". = g% (g« — 1)9g". share o CM and p > 5, then

+q+2
1) < (2L ) 100 4500
Proof. Since f and g both are entire functions, so we must have N(r, f) = 0= N(r,g).
Proceeding exactly as in the line of the proof of Lemma 2.6, we can prove the lemma. O
2
-2
Lemma 2.8. Let W(z) = ¢?(zP79—1)? —4b(zP729 — 1)(z" — 1), where b,c € C— {0}, :—b = % #1,, then \P(z) has exactly one
pP—q

multiple zero of multiplicity 4 which is 1.

1
Proof. We claim that ¥(1) = 0 with multiplicity 4 and all other zeros of W (w) are simple. Let F(¢) = E‘P(el )el4=P) Then

F(t)

%{41,(1 —eM)(1 - e(p—Zq)f) —(1— e(ﬂ—q)f)}e(q—ﬂ)t

= (4b—c*)cosh(q— p)t —4bcoshgt + 2.

2

. ¢ _plp—2q)

Next we see that forr =0, F(¢) =0, [F(¢)] =0, [F(¢)]” =0 since — = —~——3~
(1) =0, [F()]' =0.[F (1) G-

[F(t)] = (4b— cz)(q — p)sinh(g — p)t — 4bgsinhgt,

and [F()]" = 0 but [F(r)]™) # 0 where

[F(1)]" = (4b—c*)(q— p)*cosh(q — p)t — 4bg* cosht,
[F(1)]" = (4b—c*)(q— p)® sinh(q — p)t — 4bg> sinh gt

and
[F()]™) = (4b—*)(q— p)* cosh(q — p)t — 4bg" coshqt.

Therefore it is clear that F(0) = 0 with multiplicity 4 and hence ¥(1) = 0 with multiplicity 4.
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Next we suppose that ¥(w) = 0 = ¥'(w), for some w € C. Then F(r) = 0 = F’(t) for every ¢ satisfying e? = w. Now from F(¢) = 0 and
F'(t) = 0, we obtained respectively

(4b — ¢*) cosh(q — p)t —4bcoshgt +c¢* =0 (2.5)
and
(4b— *)(q — p) sinh(q — p)t — 4gbsinhgt = 0. 2.6
Since cosh?(g — p)t — sinh?(g — p)t = 1, so from (2.5) and (2.6), we get

(4bcoshgt —c*)*  16¢*b*sinh®qr .

=P @—Pg—pP
ie.,
(q— p)*(4bcosh® gt — c*)? — 16¢°b* (cosh® gt — 1) = (4b— ¢*)*(q — p)*.
ie.,
2 2
a“(¢—p)
coshgt — 1}{coshqt—7+1} =0. 2.7
{ 2bp(p—2q)
2 2 2 2
) 2(g—
Since e p(p=2q) , then ca=p) =2, s0 we see that the equation (2.7) reduces to < coshgt —1 7 =0.i.e.,wegete? =1=w. O
b (p—q)? 2bg(q—2p)

3. Proofs of the theorems
Proof of Theorem 1.21. Since &, (f)f. and P, (g)g’. share @ = a(z) CM, f and g share e IM, so we suppose that

e P Dfi—a Ffi—1D)fl—a 3.1

Pi(g)g—o  gl(g.—1)ig, —a’

Then from (2.6) and (3.1), we get

T(r,7¢)

Pi(N)fi—a
r (r’ P:(8)8k —06)
T(y*(f)fl - OC) +T(r, 9*(g)g; - OC) +0(1)
T(r f(fe = 1) fi — ) +T(rgk(g: — 1)7g, — ) +O(1)
(P+q+2)(T(r, fo) +T(r,8«)) +S(r, f) +8(r,8+)
2(p+q+2)T(r) +Si(r),

(VAN VAN VAN VAN

where T (r) = max{T (r, fi), T (r,g«)} and S (r) = max{S(r, fi),S(r,g«)}.

T(r, ) = O(T.(r)). (3.2)

Again from (3.1), we see that the zeros and poles of .7 are multiple and hence

Nk ) <N ). W (r 5 ) <Nulrg) 63)
4 o ! P _ !
Let f; = w fr=H and f3= —%w.
Thus we get f1 + f> + f3 = 1. Next we denote T'(r) = max{T(r, f1),T (r, f2),T(r, f3)}.
‘We have,

T(rf1) = O(T(r.f+))

T(rva) = O(T(r,f*)—Q—T(r,g*)) = T(raf?!)'

So we have T'(r, f;) = O(Ti(r)) for i = 1,2,3 and hence S(r, fi) + S(r,gx) = o(T:(r)).
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Next we discuss the following cases.

Case 1. Suppose none of f, and f3 is a constant. If fi, f, and f3 are linearly independent, then by Lemma 2.1 and 2.4, we have

T(r, f1)
3
< ZNZ(yll) Z, (r.fi)+o(T(r))
o
= N( A fwqu’) ( +N2( %”g*(gwl)qg*)
+N(r fE(fe = 1)If0) + rﬁf%+ﬁvﬁf&( —1)7g,) +o(T(r))
<

(f”f* ‘If’) ( )*NZ( m)Jrﬁ(nf*)

+2N(r, ) +N(r,8:) +0(T(r)).

We see that N, (, ! ) < N< ) <2Np(r,g+), N(r,22) <Nr(r,f).

Again since Ny (r, fi) = 0 = Ny (r,g.) and note that N(r, f.) = N(r,g.), so using all this facts, we get from (3.4) that
T(rf1)

1 1 -
% (v i) e ( g )+ 2 et
1 1 — 1
N(n—m———|—|Ng|rho——" | =2Np [,
(- s l)qﬂ) { ¢ < s 1)4f4) ° ( T )]

1 I _ !
Y7 (L N P VN (R S B (R S
( g‘f(gwl)qg;) { (3( gi’(grl)qgi) (3( gi’(gwl)‘fg;”

+2N(r, f) +o(T(r)).

IN

IN

_I_

Let zg be a zero of fi of multiplicity 7, then zg is a zero of £ (f. — 1)9f, of multiplicity pr+r— 1 > 3. Thus we have

1 — 1
Ne ( 70— )i, ) —2Ne ( 0 1), )

1
> —2)N(r— ).
> (r-2) (f*>
Similarly, we get
1 1
N3< )7 3(}‘, >
( gl (g« —1)dg. ( g¥(gx —1)7gL
1
> —2)N(rn— ).
(r—2) (g*)
Let
1
g ey 10,y pra-1 +(,1)qi 1
pta+l ptg p+q—1 pta
and
1
¢ _ﬂ ‘G Pl ngq L +(71)4L p+l
p+qg+1l ptg pt+g—1 ptq

By Lemma 2.4, we have
T(ny) = (p+q+ 1)T(V,f*)+S(V,f*)

Itis clear .#' = af;. So we have

m <r,%> <m <r7aif1) +m (r7 %) <m (r7 %) +8(r, fx)-

By using First fundamental Theorem and (3.8), we obtained

(%)
= (e L) en(ed)

T +8 (15 ) <N () #5010

T(r,fi)+(p+1)N ( )+iN(r, _al>fN<r,%>+S(r,f*),

i=1

IN

IN

34)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
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where a; (i =1,2,...,q) are the roots of the algebraic equation

1 q_ iCy g1 9C,

Z b4 +
ptg+1 P+q ptqg—1

1 J—
p+1

A2 (—1)1 0.

Using (3.5) - (3.8) in (3.9), we get

T(r,7)

%)”(’W)“Z‘”N(f’i)

(-
+2ﬁ(r,f*)+(p+l)N( f*) gzv(r]%al) —N(r,m>+0(T(V))-

ie.,
(p+q+1)T(r.f)
1 1 1 _
< 3N(r,ﬁ +3N(r,g—*)+N(rg*)+qN( *71)+2N(r,f*)
q
SN () el
< (@+9)T(rfo) +(g+4)T(r,8:) +o(T(r)).
(p=4)T(r,fs) < (q+4)T(r.g«) +o(T(r)). (3.10)
P _ ! P _ /
Let g, = ;3 g*(g*al)qg*’ gzzézé and g3:_ﬁ:_f* (f;jij)qf

2
Then we get g1 +g2+g3 = 1. By Lemma 2.5, g1, g» and g3 are linearly independent since f}, f, and f3 are linearly independent. Proceeding
exactly same way as done in above, we get

(p=HT(r,g:) < (g+HT(r,8:) +o(T(r)). (3.1
Let T.(r) = max{T (r, f), T (r,g«) }. After combining (3.10) and (3.11), we get
(p—g—=8)T.(r) <o(T(r)),

which contradicts p > g+9.
Thus f1, f> and f3 must be linearly dependent. Therefore there exists three constants ¢y, ¢; and c3, at least one of them are non-zero such that

cfiteafatezfz=0. (3.12)
Subcase 1.1. If ¢; =0, ¢p # 0 and ¢3 # 0, then from (3.12) we get f3 = ——fz which implies g% (g« — 1)4g’, = e —a.
3
On integrating, we get
p+q+l1 ac, /1 ac p+q—1 p+1
8x - 1 8% 2 8« +( l)qg* Q(X+C (313)
p+q+1 p+q p+qg—1 p+1  c3
where c is an arbitrary constant.
Thus we see that
p+q+1 qC Pta qc p+q—1 p+1
r, 5 18 28 p (1)) <T(ha)+0(1).
"PHqg+1 ptq p+qg—1 p+1

(p+q+])T(r,g*) < S(ng*).

Since p > g+9, so we get a contradiction.
Subcase 1.2. Let ¢; # 0. Then from (3.12), we get

Si= (—2) f+ (—Ci> /3
C1 C1

After substituting this in the relation f] + f» + f3 = 1, we get

(-2 2)es
]
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where (c¢; —¢2)(c; —¢3) # 0. So we get

<1,9)M+L:(1,2). (3.14)

Again we see that

<
<

Next applying Lemma 2.2 to the equation (3.14), we get

p _ 1\
T<r’g*(g* 1) g*)

o
g /!
~ g*(g*—l)qg*> —( o ) ~
< N|n +N(rn————— | +N(nH)+S(r8).
( a g (g« —1)9g, () +508)
So combining the above two we get,
1

T(r,gl(g«—1)7g,) <N <r, W
* (8% *

) +2N(r,gx) +S(r, 8+). (3.15)
By applying Lemmas 2.3, 2.4 and (3.15), we have

(p+q)T(r,8+)
T(r,8% (g« — 1)7) +S(r,8+)

1
T(r,gl(g«—1)7g.)+T <r, ;) +8(r,8+)

/
*

_ 1 _ |
N N +2N(V,g )—i—T(r,—)—l—S(r,g )
( gi’(g*—l)qg’*) : g )

S 8T(r7g*)+S(r,g*),

IN

IN

IN

which contradicts p > ¢ +9.
Subcase 2. If f, =k, where k is a constant.
Subcase 2.1 If k # 1, then from the relation fi + f> + f3 = 1, we get

L= 1)2f] —kgf(g* - 1),
04 04

=1—k. (3.16)

Next we apply Lemma 2.2 to the equation (3.16), we get
P — 1)+
; (r’ £ f*> G

_ _ 1 — 1
< Nng)+N (” 70— l)qfi) N (” (e l)qg;) e fo)-

By applying Lemma 2.3, 2.4 and using equation (3.17), we get
(p+q)T(r7f*)
= T(rvff(f*il)q)+s(r7f*)
1
/

T@ﬁﬂﬁ—U%@+T(n7)+ﬂnﬁ>

T <r, F (s ; l)qfi) +T (r, i) +5(r, f).

/
*

IN

IN

(P+q=T)T(r,fs) S4T(r,8:) +S(r,8+)-
Using Lemma 2.6, we get

p+qg+2

(a7 <4 (1ELE

) T(r,f*)—i—S(r,g*),

which contradicts p > ¢+ 9.
Subcase 2.2 Letk=11ie., 7 =11ie.,

e =1)0f =gl (g — 1)%4..
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On integrating, we get

1 1
et ac gt S gt g ght o

g 8x
- Foo (DI = - + (=172 — 4,
p+q+1 pP+q (=) p+1 p+qg+1 P+q (=1) p+1
where c is an arbitrary constant. i.e.,
F =Y +ec. (3.18)

Subcase 2.2.1 Let if possible ¢ # 0. Next we get
0(0,7)+0(c,F)+0(c0,7) =0(0, %)+ 0(0,9) + O(c0, F).
We have,

=

1 _ 1 _ 1 _ 1
(n{/;) :N(n?*) +N(r7f*_a1)+...+N(r7f*_aq) <(g+1)T(r,fe)-

Similarly, we get N (r, —) <(g+1)T(r,g«).

Q»—

Again note that N(r,. %) = N(r, f.) < T(r, f.). Again

T(rn%)=(p+q+1)T(r,g«) +S(r,g+)-
Thus
/1
N<§> @07 p

0(0,.7)=1-—limsu >1-— = .
©.%) el T (1. 7) (p+q+1)T(rfe) p+qg+1

Similarly

and O(e,.F) > Ptq

00,#)> L > _Prd
p+qg+1

“ptg+1

Therefore

3
0(0,7) +0(c, 7) + 0o ) = P45 o
pt+qg+1

since p > g+ 9, which is a contradiction.
Subcase 2.2.2 Thus we get ¢ = 0. Thus we get

)
M1l
K

(3.19)

Leth = é Then substituting in (3.19), we get

8x
(p+q)p+q—1)...(p+1)glnPrat —1) 320
—9C (p+q+ D) (p+q—1)...(p+1)g? ' (P+a—1)
.4 (=D (p+g+1)(p+q)...p(R"*1 —1) =0.

Subcase 2.2.2.1. If & is a non-constant, then using Lemma 2.8 and proceeding exactly same way as done in [12, p-1272], we arrive at a
contradiction.

Subcase 2.2.2.2. Let h is constant, then from (3.20), we get /P19t —1 =0, h?t9—1=0, ..., "t —1=0. ie, i —1 =0, where
d=gcd(p+q+1,p+q,....p+1)=1.ie,h=1.

Hence f, = g. 1e., f=g.

Subcase 3. Suppose f3 = ¢, where c is a constant.

Subcase 3.1. If ¢ # 1, then from the relation f1 + f> + f3 = 1, we get

U0

=1—c. (3.21)
o gl (g« —1)ig,

Applying Lemma 2.2 to the above equation, we get

T(r, fE(fe—1)112) (3.22)
P —1)4f

(UL

(=D | < o —( gl(g.—1)4g,
N(” o )+N(r’ff(f*fl)qfi)+N(r’ o )

+S(r7f*)

_ _ 1
N fo) +N (” 7P —1yaf

IN

IN

IN

)N+ S5
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Using Lemma 2.3, 2.4 and (3.22), we have

(P+a)T(r,f2)
T(r f2 (fe = 1)) +8(r f2)

! (W) ( f,) +S(r.f2)
TT(rfe) +T(r.8:) +S(r, f2)-

IN A

IA

Next by applying Lemma 2.6, we get

(p+q="7)T(rf)

< T(r,g*) +S(r7f*)
+q+2
< (HE2) s esen).
p—06
which contradicts p > ¢+ 9.
Subcase 3.2. Let ¢ = 1. Then from (3.21), we get
FP(fe = 1) fLel (g — 1)7g, = 0. (3.23)

Let z9 be a zero of fi of order ry. Then from (3.23), we see that zg is a pole of g. of order sy (say). Then from (3.23), we get
pro+ro—1=pso+gso+so+1.ie., (p+1)(ro—s0) =gso+2>p+1.ie,

s pratl
q

Again let z; be a zero of f. — 1 of order r;. Then from (3.23), we see that z; will be a pole of g. of order s; (say). So we have
ri+ri—1=ps;+gqgs;+s+1.1ie.,

12%4“,

Let 75 be a zero of f, of order r, which are not the zero of f,(fi — 1), so from (3.23) we see that z; will be a pole of g, of order s; (say).
Then from (3.23), we get rp = psa +¢gsa +s2+ 1. i.e.,

rn>pt+qg+2.

The similar explanations hold for the zeros of g¥(g. — 1)4g’, also. Next we see from (3.23), we have

N (rf2(f— 1)1f) = (;Tf¥—>

- 1)qg*

et)on() )
(i) (g) (rams) ¥ (5me)* Grrama) Y ()

+ (r,8+) +S(r, 8x)-

IA

IN

+
(p+q+1 p+q+3 p+q+2>

By applying Second Fundamental Theorem, we get

T(r,f*) (3.24)
N (r, %*) +N (r, ]%) +N(r, fi) +S(r, f)

(q+2>T(f)+(q+2+2>
7, [«

p+q+1 p+qg+3 p+q+1 p+qg+3 p+gqg+2
X T(r7g*)+s(raf*)+s(r7g*)

IN

IN

Similarly, we get

T(r,8x) (3.25)

IN

q q 2 2
+ T(r,g«)+ + +
(p+q+1 p+q+3) (r:8+) <p+q+1 p+q+3 p+q+2)
X T(r7f*)+s(r’f*)+s(rag*)
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From (3.24) and (3.25), we get

2 4 2
T.(r) < + + T (r) 4 S« (7).
<) < (p+q+1 p+q+3 p+(1+2> () +84(r)
ie.,
2 4 2
(1-2- - )10 <5.0),
p+q+1 p+qg+3 p+qg+2
which contradicts p > ¢ +9. O

Proof of Theorem 1.22. Since f, and g. both are non-constant entire functions, then we may consider the followings two cases.

Case 1. Let f, and g, are two transcendental entire functions. Then it is clear that N(r, fi.) = S(r, fi) and N(r,g«) = S(r,g«). With this the
rest of the proof can be carried out in the line of the proof of Theorem 1.21.

Case 2. Let f, and g, both are polynomials. Since f7(f, — 1)9f] and g¥ (g« — 1)9g". share @ CM, then we must have

(FE (= Difi—a) =k ((g« — 1)78. — ), (3.26)

where K is a non-zero constant.
Subcase 2.1. Suppose k # 1, then from (3.26), we get

SV gh(g— 1)

=1-x. (3.27)
(04 o
Applying Lemma 2.2, we get
T(r f£(fe = 1)10) (3.28)
P _ /
< T (r, f (f*a 1)%) +S(r.f+)
N ff(f* - l)qfl ~ o = o
= (r’ o ) o (r’ - 1)qu) o <” Llg— 1>4g;)

+S(r7f*)

< N(r,ﬂ)—&—ﬁ(r

a T o
i ) (o ) )

Using Lemmas 2.3, 2.4 and (3.27), we get

(P+a)T (1 fs)
< T f2(fe= 1)) +8(r fe)
< TnfA(f—DIf)+T (r, fi) +8(r, f1)
S 4T(r,f*)+3T(r,g*)—O—S(r,f*)

(P+q—=4)T(r,fs) <3T(r,8:) +5(r,84)-
Using Lemma 2.7, we get

ptq+l

rra-a7( ) <3 (L]

)TMﬂJ+ﬂnﬂL

which contradicts p > g+5.
Subcase 2.2. Let ¥ = 1. So from (3.27), we get

ff(f* - l)qf,i Eé’f(é’* - l)qg/*-

Next proceeding exactly same way as done in Subcase 1.3.2 in the proof of Theorem 1.21, we get f = g. O

4. Concluding remarks and some open questions

If we replace the condition “f (f, — 1)7f! and g% (g. — 1)9g, share &t(z) CM” by the condition “f’(f,. —1)9f% and g% (g. — 1)%g/, share z
CM ”, then the conclusions of Theorems 1.21 and 1.22 still hold.
Thus we get the following results

Theorem 4.1. Let f and g hence fi, = f —w), and g« = g —wp, w),, € C be any two non-constant non- entire meromorphic functions,
n>q+9, g €N, be an integer. If P:(f)f. = fF(f —1)9f. and P.(g)g. = g% (g« — 1) f. share z CM, then f = g.

Theorem 4.2. Let f and g hence f. = f —w) and g« = g —wp, wp € C be any two non-constant entire functions, n > q+35, q €N, be an
integer. If 2 (f)f. = fF(fi — 1)if! and P.(g)g. = g (g« — 1)1 f. share z CM, then f = g.
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Note 4.3. If we choose g =m, wy =0, then since p=n+m—q and fx = f —wp, so we get p =n and f, = f, respectively. With this we
see that n > m—+9 in Theorem 4.1 and n > m~+5 in Theorem 4.2.

So from the above note, we observe that Theorem 4.1 and Theorem 4.2 are the direct improvement as well as extension of Theorem H and I
respectively.

Remark 4.4. We see from Note 4.3 that for m =1 and m =2, we get n > 10 and n > 11 respectively in Theorem 4.1 which is a direct
improvement of Theorem E and F.

Remark 4.5. For m = 1, we see from Note 4.3 that n > 6 in Theorem 4.2 which is a direct improvement of Theorem G.
Next for further research in this direction, one my glance over the following remarks.

Remark 4.6. What worth noticing fact is that in [ 13, equation (39)], there is no term which is absent in the expression. So, for the case of h is
constant, [13, equation (40)] implies h¢ —1 =0, where d = ged(n+m+1,n+m,....n+1)=1.ie, h=1and hence f = g. But if we replace
(f = 1)™ in the expression f"(f —1)"™f" by a more general expression f"Py(f)f', where Py(f) = amf™ + am_1f™ ' +... + a1 f +ao,
a; € C, fori=0,1,...,m. It is not always possible to handle the case of h is constant. If somehow one can do that, then from the case of h is
constant, h% —1 =0, where d = ged(n+m+1,n+m,....n+1)#1in general. So we can’t obtained f = g in general.

Based on the above observations, we next pose the following open questions.
Question 4.7. Is it possible to reduce further the lower bounds of p in Theorem 1.21 and Theorem 1.22 ?

Question 4.8. To get the uniqueness between f and g is it possible to replace f(f. —1)4f! and gt (g. — 1)4g, respectively by f£Py(f.)f!
and gV P, (g+)gl, where Py(f) = Pu(f) = amf" + am_1 "~ 4+ ... 4 a1 f« + ap in Theorem 1.21 and Theorem 1.22 ?
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