A Note On Double Walsh—Fourier Coefficients of Functions of Generalized Wiener Class

Kiran N. Darji and Rajendra G. Vyas

1Department of Science and Humanities, Tatva Institute of Technological Studies, Modasa, Arvalli, Gujarat, India.
2Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
*Corresponding author E-mail: darjikiranmsu@gmail.com

Abstract

In this note, we have estimated the order of magnitude of double Walsh—Fourier coefficients of functions of the class \((A^1, A^2)BV(p(n) \uparrow \infty, \phi, [0, 1]^2)\).

Keywords: double Walsh—Fourier coefficients, functions of the class \((A^1, A^2)BV(p(n) \uparrow \infty, \phi, [0, 1]^2)\).

2010 Mathematics Subject Classification: 42C10, 42B05, 26B30, 26D15.

1. Introduction

In 2000, Akhobadze [1] introduced the generalized Wiener class \(BV(p(n) \uparrow p, \phi)\), where \(1 \leq p \leq \infty\). This class is further generalized to the class \(ABV(p(n) \uparrow p, \phi)\) in [5] and the order of magnitude of single Walsh—Fourier coefficients of functions of the class \(ABV(p(n) \uparrow \infty, \phi, [0, 1])\) is estimated in [2]. Recently in [6], introducing the generalized Wiener class \((A^1, A^2)BV(p(n) \uparrow p, \phi, [0, 2\pi]^2)\), where \(1 \leq p \leq \infty\), the order of magnitude of double Walsh—Fourier coefficients of functions of the class \((A^1, A^2)BV(p(n) \uparrow \infty, \phi, [0, 2\pi]^2)\) is estimated. Here, we estimate the order of magnitude of double Walsh—Fourier coefficients of functions of the class \((A^1, A^2)BV(p(n) \uparrow \infty, \phi, [0, 1]^2)\).

2. Notation and definitions

In the sequel \(I = [0, 1)\). \(N = \{0, 1, 2, \cdots\}\), \(L\) is a class of non-decreasing sequences \(\Lambda = \{\lambda_n\}_{n=1}^\infty\) of positive numbers such that \(\sum_n \frac{1}{\lambda_n}\) diverges, and \(\phi(n)\) is a real sequence such that \(\phi(1) \geq 2\) and \(\phi(n) \to \infty\) as \(n \to \infty\).

Consider function \(f\) on \(\mathbb{R}^2\). For \(k = 1\) and \(I = [a, b]\), define \(\Delta f(I) = f(b) - f(a)\). For \(k = 2, I = [a, b]\) and \(J = [c, d]\), define

\[
\Delta f_{(a,c)} = f(I \times J) - f(I, d) - f(I, c) = f(b, d) - f(a, d) - f(b, c) + f(a, c).
\]

Definition 2.1. Given \(\Lambda = \{(\lambda^1_n)_{n=1}^\infty\}, \Lambda' = \{(\lambda^2_n)_{n=1}^\infty\} \subseteq \Lambda\), \(n \geq 1\) for \(r = 1, 2, 1 \leq p(n) \uparrow p\) as \(n \to \infty\) and \(1 \leq p \leq \infty\), a measurable function \(f\) defined on a rectangle \(R^2 : = [a, b] \times [c, d]\) is said to be of \(p(n) - \Lambda\)-bounded variation (that is, \(f \in ABV(p(n) \uparrow p, \phi, R^2)\)) if

\[
V_{\Lambda, \phi(n)}(f, R^2) = \sup_{n \geq 1} \sup_{I_1, I_2} \left\{ V_{\Lambda', \phi(n)}(f, \{I_1\}, \{I_2\}) : \delta(\{I_1\}, \{I_2\}) \geq \frac{(b-a)(c-d)}{\phi(n)} \right\} < \infty,
\]

where

\[
V_{\Lambda, \phi(n)}(f, \{I_1\}, \{I_2\}) = \left(\sum_I \frac{|f(I_1 \times I_2)|^{p(n)}}{\lambda^1_I \lambda^2_J} \right)^{\frac{1}{p(n)}},
\]

in which \(I_1\) and \(I_2\) are finite collections of non-overlapping subintervals in \([a, b]\) and \([c, d]\), respectively, and

\[
\delta(\{I_1\}, \{I_2\}) = \delta(\{|x_{i-1}, x_i|\}, \{|y_{j-1}, y_j|\}) = \inf_{i,j} |(x_i - x_{i-1}) \times (y_j - y_{j-1})|.
\]
Consider a function $f : \mathbb{T}^2 \to \mathbb{R}$ defined by $f(x,y) = g(x) + h(y)$, where g and h are any two arbitrary need not be bounded (or need not be measurable) functions from \mathbb{T} into \mathbb{R}. Then $V_{\lambda}(f, \mathbb{T}^2) = 0$. Thus, a function $f \in \Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ need not be bounded (or need not be measurable).

This class is further generalized to the class $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ in the sense of Hardy as follows.

Definition 2.2. If $f \in \Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ is such that the marginal functions $f(.,c) \in \Lambda^* BV(p(n) \uparrow p, \phi, [a,b])$ and $f(a,.) \in \Lambda^* BV(p(n) \uparrow p, \phi, [c,d])$ (see [5, Definition 1.1, p. 215]) for the definition of $p(n) - \Lambda$–bounded variation over $[a,b]$ then f is said to be of $p(n) - \Lambda^*$–bounded variation (that is, $f \in \Lambda^* BV(p(n) \uparrow p, \phi, R^2)$).

If $f \in \Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ then f is bounded and each of the marginal functions $f(.,s) \in \Lambda^* BV(p(n) \uparrow p, \phi, [a,b])$ and $f(t,.) \in \Lambda^* BV(p(n) \uparrow p, \phi, [c,d])$, where $s \in [c,d]$ and $t \in [a,b]$ are fixed [6, p. 436].

Note that, for $\Lambda^1 = \Lambda^2 = \{1\}$ (that is, $\lambda^1_n = \lambda^2_n = 1$, for all n), the classes $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ and $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ reduce to the classes $\Lambda^1 BV(p(n) \uparrow p, \phi, R^2)$ and $\Lambda^2 BV(p(n) \uparrow p, \phi, R^2)$, respectively. For $p(n) = p$, for all n, the classes $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ and $\Lambda^1 BV(p(n) \uparrow p, \phi, R^2)$ reduce to the classes $\Lambda^1 BV(p \uparrow R^2)$ [3, Definition 4.2, p. 54] and $\Lambda^1 BV(p \uparrow R^2)$, respectively. For $p = \infty$, the classes $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ and $\Lambda^1 BV(p(n) \uparrow p, \phi, R^2)$ reduce to the classes $\Lambda^1 BV(p \uparrow \infty, \phi, R^2)$ and $\Lambda^1 BV(p \uparrow \infty, \phi, R^2)$, respectively.

For $\Lambda^1 = \Lambda^2 = \{1\}$ and $p = \infty$, the classes $\Lambda^* BV(p(n) \uparrow p, \phi, R^2)$ and $\Lambda^1 BV(p(n) \uparrow p, \phi, R^2)$ reduce to the classes $\Lambda^1 BV(p \uparrow \infty, \phi, R^2)$ and $\Lambda^1 BV(p \uparrow \infty, \phi, R^2)$, respectively.

The Walsh orthonormal system $\{\psi_m(x) : m \in \mathbb{N}_0\}$ on the unit interval \mathbb{I} in the Paley enumeration is defined as follows.

Let

$$r_0(x) = \begin{cases} 1, & \text{if } x \in [0, \frac{1}{2}), \\ -1, & \text{if } x \in \left[\frac{1}{2}, 1\right); \end{cases}$$

and extend $r_0(x)$ for the half-line $[0,\infty)$ with period 1.

The Rademacher orthonormal system $\{r_k(x) : k \in \mathbb{N}_0\}$ is defined as

$$r_k(x) = r_0(2^k x), \quad k = 1, 2, \ldots; \ x \in \mathbb{I}.$$

If

$$m = \sum_{k=0}^\infty m_k 2^k, \quad \text{each } m_k = 0 \text{ or } 1,$$

is the binary decomposition of $m \in \mathbb{N}_0$, then

$$\psi_m(x) = \prod_{k=0}^\infty r_k^m(x), \quad x \in \mathbb{I},$$

is called the m^{th} Walsh function in the Paley enumeration.

In particular, we have

$$\psi_0(x) = 1 \quad \text{and} \quad \psi_{2^n}(x) = r_m(x), \ m \in \mathbb{N}_0.$$

Any $x \in \mathbb{I}$ can be written as

$$x = \sum_{k=0}^\infty x_k 2^{-(k+1)}, \quad \text{each } x_k = 0 \text{ or } 1.$$

For any $x \in \mathbb{I} \setminus Q$, there is only one expression of this form, where Q is a class of dyadic rationals in \mathbb{I}. When $x \in Q$ there are two expressions of this form, one which terminates in 0’s and one which terminates in 1’s.

For any $x, y \in \mathbb{I}$ their dyadic sum is defined as

$$x + y = \sum_{k=0}^\infty |x_k - y_k| 2^{-(k+1)}.$$

Observe that, for each $m \in \mathbb{N}_0$, we have

$$\psi_m(x + y) = \psi_m(x) \psi_m(y), \ x, y \in \mathbb{I}, \ x + y \notin Q.$$

For a real-valued function $f \in L^1(\mathbb{T}^2)$, where f is 1–periodic in each variable, its double Walsh–Fourier series is defined as

$$f(x) = \sum_{k \in \mathbb{N}_0^2} \hat{f}(k) \psi_m(x) \psi_n(y) = \sum_{m \in \mathbb{N}_0} \sum_{n \in \mathbb{N}_0} \hat{f}(m,n) \psi_m(x) \psi_n(y),$$

where

$$\hat{f}(k) = \hat{f}(m,n) = \int_{\mathbb{T}^2} f(x,y) \psi_m(x) \psi_n(y) \ dx \ dy$$

denotes the k^{th} Walsh–Fourier coefficient of f.

3. Results

We prove the following results.

Theorem 3.1. If \(f \in \mathcal{A} BV(p(n) \uparrow \infty, \varphi, \mathbb{T}^2) \cap L^\infty(\mathbb{T}^2) \), then

\[
\hat{f}(2^u, 2^v) = O\left(\frac{1}{\left(\frac{n}{2^u + 1} \right)^{\kappa(n) + \mu(n)}} \right),
\]

where

\[
\tau(r) = \min\{s : s \in \mathbb{N}, \varphi(s) \geq r\}, r \geq 1.
\]

Corollary 3.2. If \(f \in \mathcal{A}^* BV(p(n) \uparrow \infty, \varphi, \mathbb{T}^2) \), then (3.1) holds true.

Corollary 3.3. If \(f \in BV_{\varphi}(p(n) \uparrow \infty, \varphi, \mathbb{T}^2) \), then

\[
\hat{f}(2^u, 2^v) = O\left(\frac{1}{(2^{u+1})^{\kappa(n) + \mu(n)}} \right),
\]

where \(\tau(2^{u+1}) \) is defined as in (3.2).

Corollary 3.3 follows from Theorem 3.1.

4. Proof of the results

Proof of Theorem 3.1. For fixed \(u, v \in \mathbb{N}_0 \), let \(h_1 = \frac{1}{2^u+1} \) and \(h_2 = \frac{1}{2^v+1} \). Take

\[
g(x, y) = f(x, y) - f\left(x, y + \frac{1}{2^u+1}\right) - f\left(x + \frac{1}{2^v+1}, y\right) + f\left(x + \frac{1}{2^v+1}, y + \frac{1}{2^u+1}\right),
\]

for all \((x, y) \in \mathbb{T}^2 \).

For \(m = 2^u \) and \(n = 2^v \), \(\psi_m(h_1) = \psi_n(h_2) = -1 \) and \(\psi_m\left(\frac{1}{2^u}\right) = \psi_n\left(\frac{1}{2^v}\right) = 1 \) imply that

\[
\hat{g}(m, n) = \hat{f}(m, n) - \psi_m\left(\frac{1}{2^u+1}\right) \hat{f}(m, n) - \psi_n\left(\frac{1}{2^v+1}\right) \hat{f}(m, n) + \psi_m\left(\frac{1}{2^v+1}\right) \psi_n\left(\frac{1}{2^u+1}\right) \hat{f}(m, n) = 4\hat{f}(m, n)
\]

and

\[
|4\hat{f}(m, n)| \leq \int_{\mathbb{T}^2} \left| f(x, y) - f\left(x, y + \frac{1}{2^u+1}\right) - f\left(x + \frac{1}{2^v+1}, y\right) + f\left(x + \frac{1}{2^v+1}, y + \frac{1}{2^u+1}\right) \right| \, dx \, dy
\]

\[
= \int_{\mathbb{T}^2} \left| f\left(x + \frac{1}{2^v+1}, y + \frac{1}{2^u+1}\right) - f\left(x, y + \frac{1}{2^u+1}\right) - f\left(x, y + \frac{1}{2^v+1}\right) + f\left(x + \frac{1}{2^v+1}, y + \frac{1}{2^u+1}\right) \right| \, dx \, dy
\]

\[
= \int_{\mathbb{T}^2} \left| f\left(x + \frac{1}{2^v+1}, y + \frac{2}{2^u+1}\right) - f\left(x + \frac{2}{2^u+1}, y + \frac{1}{2^v+1}\right) - f\left(x + \frac{2}{2^u+1}, y + \frac{1}{2^v+1}\right) + f\left(x + \frac{1}{2^v+1}, y + \frac{2}{2^u+1}\right) \right| \, dx \, dy.
\]

Similarly, we get

\[
|4\hat{f}(m, n)| \leq \int_{\mathbb{T}^2} \left| f\left(x + \frac{4}{2^u+1}, y + \frac{4}{2^v+1}\right) - f\left(x + \frac{4}{2^v+1}, y + \frac{5}{2^u+1}\right) - f\left(x + \frac{5}{2^v+1}, y + \frac{4}{2^u+1}\right) + f\left(x + \frac{5}{2^u+1}, y + \frac{4}{2^v+1}\right) \right| \, dx \, dy
\]

and in general we have

\[
|4\hat{f}(m, n)| \leq \int_{\mathbb{T}^2} |\Delta f_{jk}(x, y)| \, dx \, dy,
\]

where

\[
\Delta f_{jk}(x, y) = f\left(x + \frac{2j}{2^u+1}, y + \frac{2k}{2^v+1}\right) - f\left(x + \frac{j}{2^v+1}, y + \frac{2k+1}{2^u+1}\right) - f\left(x + \frac{2j+1}{2^u+1}, y + \frac{k}{2^v+1}\right) + f\left(x + \frac{2j+1}{2^u+1}, y + \frac{2k+1}{2^v+1}\right).
\]
for all $j = 1, \ldots, 2^n$ and for all $k = 1, \ldots, 2^i$.

Dividing both sides of the above inequality by $\lambda_j^1 \lambda_k^2$ and then summing over $j = 1$ to 2^n and $k = 1$ to 2^i, we get

$$4|f(2^n, 2^i)| \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{1}{\lambda_j^1 \lambda_k^2} \right) \leq \int \int_{\mathbb{R}^2} \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{|\Delta f_{jk}(x, y)|}{\lambda_j^1 \lambda_k^2} \right) \frac{1}{p(\tau(2^n+i))} \frac{1}{p(\tau(2^n+i))} \frac{1}{p(\tau(2^n+i))} \ dx \ dy,$$

where $q(\tau(2^n+i))$ is the index conjugate to $p(\tau(2^n+i))$.

Applying Hölder’s inequality on the right side of the above inequality, we get

$$4|\hat{f}(2^n, 2^i)| \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{1}{\lambda_j^1 \lambda_k^2} \right) \leq \int \int_{\mathbb{R}^2} \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{|\Delta f_{jk}(x, y)|p(\tau(2^n+i))}{\lambda_j^1 \lambda_k^2} \right) \frac{1}{p(\tau(2^n+i))} \frac{1}{p(\tau(2^n+i))} \ dx \ dy.$$

Hence,

$$4|\hat{f}(2^n, 2^i)| \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{1}{\lambda_j^1 \lambda_k^2} \right) \leq \int \int_{\mathbb{R}^2} \left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{|\Delta f_{jk}(x, y)|p(\tau(2^n+i))}{\lambda_j^1 \lambda_k^2} \right) \frac{1}{p(\tau(2^n+i))} \frac{1}{p(\tau(2^n+i))} \ dx \ dy. \quad (4.2)$$

For any $x, y \in \mathbb{R}$, all these points $x + 2jh_1$, $x + (2j + 1)h_1$, for $j = 1, \ldots, 2^n$, and $y + 2kh_2$, $y + (2k + 1)h_2$, for $k = 1, \ldots, 2^i$, lie in the interval of length 1. Thus, $f \in \Lambda^+ BV(p(n) \uparrow \infty, \varphi, \tau^2)$ implies

$$\left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{|\Delta f_{jk}(x, y)|p(\tau(2^n+i))}{\lambda_j^1 \lambda_k^2} \right) \frac{1}{p(\tau(2^n+i))} = O(1).$$

This together with above inequality (4.2) imply that

$$|\hat{f}(2^n, 2^i)| = O \left(\frac{1}{\left(\sum_{j=1}^{2^n} \sum_{k=1}^{2^i} \frac{1}{\lambda_j^1 \lambda_k^2} \right)^{p(\tau(2^n+i))}} \right).$$

This completes the proof of the theorem.

Proof of Corollary 3.2. Since $f \in \Lambda^+ BV(p(n) \uparrow \infty, \varphi, \tau^2)$ is bounded [6, p. 436] and $\Lambda^+ BV(p(n) \uparrow \infty, \varphi, \tau^2) \subset \Lambda BV(p(n) \uparrow \infty, \varphi, \tau^2)$, the Corollary 3.2 follows from Theorem 3.1.

One can extend these results for functions of N-variables ($N > 2$) analogously to the above-mentioned results for functions of two variables.

References