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Abstract

In this article, we construct an almost complex structure on the cotangent bundle. Then we investigate Nordenian properties of the Riemannian
extension in the cotangent bundle.
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1. Introduction

Let T ∗Mn be the cotangent bundle of n-dimensional differentiable manifold (Mn,g) and π the bundle projection T ∗Mn→Mn. The local

coordinates
(
U,x j) , j = 1, ...,n on Mn induces a system of local coordinates

(
π−1 (U) ,x j,x j̄ = p j

)
, j̄ = n+ 1, ...,2n, on T ∗Mn, where

x j̄ = p j are the components of the covector p in each cotangent space T ∗x Mn, x ∈U , with respect to the natural coframe
{

dx j}. By ℑr
s (M

n)
(resp. ℑr

s (T
∗Mn)) we denote the set of all tensor fields of type (r,s) on Mn(resp. T ∗Mn). Manifolds, tensor fields and connections are

always assumed to be differentiable and of class C∞.
Suppose that a vector and covector (1-form) field X ∈ ℑ1

0(M
n) and ω ∈ ℑ0

1(M
n) have the local expressions X = X j ∂

∂x j and ω = ω jdx j

in U ⊂Mn, respectively. The horizontal and complete lifts HX ,CX ∈ ℑ1
0(T
∗Mn) of X ∈ ℑ1

0(M
n) and the vertical lift V ω ∈ ℑ1

0(T
∗Mn) of

ω ∈ ℑ0
1(M

n) are given, respectively, by

HX = X j ∂

∂x j +∑
j

phΓ
h
jiX

i ∂

∂x j̄
, (1.1)

CX = X j ∂

∂x j −∑
j

ph∂ jXh ∂

∂x j̄
, (1.2)

V
ω = ∑

j
ω j

∂

∂x j̄
(1.3)

with respect to the natural frame
{

∂

∂x j ,
∂

∂x j̄

}
, where Γh

ji are the coefficients of the Levi-Civita connection ∇g on Mn [12].

A pseudo-Riemannian metric R∇ ∈ ℑ0
2 (T

∗Mn) is given by (see [12, p. 268])

R
∇

(
CX ,CY

)
=−γ (∇XY +∇Y X)

for any X ,Y ∈ ℑ1
0 (M

n), where γ (∇XY +∇Y X) = pm
(
X j∇ jY m +Y j∇ jXm). R∇ is called the Riemannian extension of the symmetric

connection ∇ to T ∗Mn. Any tensor field of type (0,2) is entirely detected by its action of HX and V ω on T ∗Mn [12]. Then the Riemann
extension R∇ is defined by

R∇
(V ω,V θ

)
=R∇

(HX ,HY
)
= 0,

R∇
(V ω,HY

)
=V (ω (X)) = ω (X)◦π

(1.4)

for any X ,Y ∈ ℑ1
0 (M

n) and ω,θ ∈ ℑ0
1(M

n) [1].
In this paper, in section 2, we recall the expressions of the Levi-Civita connection of the Riemanian extension from [1] and then we write
their invariant forms by using the horizontal and vertical lifts. In section 3, we define an almost complex structure J. Then we get the
conditions under which the triple

(
T ∗M2n,R∇,J

)
is a Kähler-Norden manifold and an anti-Kähler-Codazzi manifold.
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2. Levi-Civita connection of R∇

In [12, p.238, p.277], the following formulas were given

i)
[HX ,HY

]
= H [X ,Y ]+ γR(X ,Y ) = H [X ,Y ]+V (pR(X ,Y )) ,

ii)
[HX ,V ω

]
= V (∇X ω) , iii)

[V ω,V θ
]
= 0,

iv)V ωV f = 0, v)HXV f = V (X f )
(2.1)

for any X ,Y ∈ ℑ1
0 (M

n), ω,θ ∈ ℑ0
1(M

n), R denoted the curvature tensor of ∇.

The adapted frame {ẽ(β )}= {ẽ( j), ẽ( j̄)}= {HX ( j),
V θ

( j)} (see [12]) to the Levi-Civita connection ∇g on T ∗Mn is given by

ẽ( j) =
HX ( j) =

∂

∂x j +∑
h

paΓ
a
h j

∂

∂xh̄
, (2.2)

ẽ( j̄) =
V

θ
( j)

=
∂

∂x j̄
. (2.3)

Then using (1.2), (1.3), (2.2) and (2.3), we obtain

HX = X j ẽ( j),
HX = (HXα ) =

(
X j

0

)
, (2.4)

V
ω = ∑

j
ω j ẽ( j̄),

V
ω = (V ω

α ) =

(
0
ω j

)
(2.5)

with respect to the adapted frame {ẽ(β )}, where X j and ω j are the local components of X ∈ ℑ1
0 (M

n) and ω ∈ ℑ0
1(M

n), respectively.
Let C∇ be the Levi-Civita connection of R∇, i.e. C∇

(R∇
)
= 0 (C∇ is called the complete lift of ∇ to T ∗Mn). The components of C∇ in

π−1(U)⊂ T ∗Mn, computed in [1], are given by
CΓh

j̄i =
CΓh

jī =
CΓh

j̄ī =
CΓh̄

j̄i =
CΓh̄

j̄ī = 0,
CΓh

ji = Γh
ji,

CΓh̄
jī =−Γi

jh,
CΓh̄

ji =
1
2 pm

(
R jih

m−Rih j
m +Rh ji

m) (2.6)

with respect to the adapted frame {ẽ(β )}, where R jih
a are the local components of the curvature tensor R of ∇g. The curvature tensor satisfies

R jih
m +Rih j

m +Rh ji
m = 0 so we can write

C
Γ

h̄
ji =

1
2

pm
(
R jih

m−Rih j
m +Rh ji

m)= 1
2

pm
(
−2Rih j

m)= pmRhi j
m (2.7)

Let X̃ ,Ỹ ∈ ℑ1
0 (T

∗Mn) and X̃ = X̃β ẽβ ,Ỹ = Ỹ γ ẽγ . Then the covariant derivative C∇Ỹ X̃ along Ỹ has components

C
∇Ỹ X̃β = Ỹ ε ẽε X̃β +C

Γ
β

εα X̃αỸ ε , (2.8)

with respect to the adapted frame {ẽ(β )}.
Using (2.4-2.8) we have the next theorem:

Theorem 2.1. Let (Mn,g) be a n-dimensional differentiable manifold and C∇ be the Levi-Civita connection of the cotangent bundle T ∗Mn

equipped with the Riemann extension R∇. Then C∇ satisfies the following equations:

i)C∇V ω
V θ = C∇V ω

HY = 0,
ii)C∇H X

V ω = V (∇X ω) ,

iii)C∇H X
HY = H (∇XY )+V (pR( ,Y )X)

(2.9)

for all X ,Y ∈ ℑ1
0 (M

n) and ω,θ ∈ ℑ0
1 (M

n), R denoted the curvature tensor of ∇, where (pR( ,Y )X) = paR jki
aX iY k .

3. The Nordenian structures on
(
T ∗M2n,R∇

)
Let M2n be an almost complex manifold with an almost complex structure J. We know the almost complex structure satisfies J2 =−I, where
J ∈ ℑ1

1
(
M2n) is an affinor field and I is the identity transformation.

Let
(
M2n,J

)
be an almost complex manifold. A semi-Riemannian metric g ∈ ℑ0

2
(
M2n) is a Norden metric [2] with respect to J if

g(JX ,Y ) = g(X ,JY ) (3.1)

for any X ,Y ∈ ℑ1
0
(
M2n). This metric was studied as pure, anti-Hermitian and B-metric [4], [5], [7], [8], [9], [11].

If
(
M2n,J

)
is an almost complex manifold with Norden metric g, then we say that

(
M2n,J,g

)
is an almost Norden manifold. If J is integrable,
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then
(
M2n,J,g

)
is a Norden manifold. When J satisfies ∇J = 0 where ∇ is Levi-Civita connection of g,

(
M2n,J,g

)
is to be a Kähler-Norden

manifold. Note that the condition ∇J = 0 is equivalent to φJg = 0, where φJ is the Tachibana operator and

(φJg)(X ,Y,Z) = (JX)(g(Y,Z))−X (g(JY,Z))+g((LY J)X ,Z)

+g(Y,(LZJ)X) (3.2)

for all X ,Y,Z ∈ ℑ1
0
(
M2n), where LY denotes the Lie differentiation with respect to Y [7].

In the paper [1] the authors considered on T ∗M2n the almost complex structure given as the horizontal lift of the almost complex structure
from M2n. Here we construct another tensor field J ∈ ℑ1

1
(
T ∗M2n) given by{

JHX =−V X̃ ,
JV ω = H ω̃

(3.3)

for any X ∈ ℑ1
0
(
M2n) and ω ∈ ℑ0

1
(
M2n), where X̃ = g◦X ∈ ℑ0

1
(
M2n), ω̃ = g−1 ◦ω ∈ ℑ1

0
(
M2n) (the musical isomorphisms [ and ] can be

used instead of the notations g◦X and g−1 ◦ω , respectively (see e.g. [3])). Then we see

J2 (HX
)
= J

(
JHX

)
= J

(
−V X̃

)
=−H ˜̃X =−HX ,

J2 (V ω
)
= J

(
JV ω

)
= J

(H ω̃
)
=−V ˜̃ω =−V ω

for any X ∈ ℑ1
0
(
M2n) and ω ∈ ℑ0

1
(
M2n), i.e. J2 =−I. Hence we have that J is an almost complex structure.

Theorem 3.1. The triple
(
T ∗M2n,R∇,J

)
is an almost Norden manifold.

Proof. Using (3.1) we write

Q
(
X̃ ,Ỹ

)
=R

∇
(
JX̃ ,Ỹ

)
−R

∇
(
X̃ ,JỸ

)
for any X̃ ,Ỹ ∈ ℑ1

0
(
T ∗M2n). From (1.4) and (3.3), we have

Q
(HX ,HY

)
=R∇

(
JHX ,HY

)
−R∇

(HX ,JHY
)

= R∇
(
−V X̃ ,HY

)
−R∇

(HX ,−V Ỹ
)

=−V (X̃ (Y )
)
+
(
Ỹ (X)

)
=−X̃iY i + ỸiX i

=−gkiXkY i +gkiY kX i = 0
Q
(HX ,V ω

)
=R∇

(
JHX ,V ω

)
−R∇

(HX ,JV ω
)

= R∇
(
−V X̃ ,V ω

)
−R∇

(HX ,H ω̃
)
= 0,

Q
(V ω,HY

)
=−Q

(HY,V ω
)
= 0,

Q
(V ω,V θ

)
=R∇

(
JV ω,V θ

)
−R∇

(V ω,JV θ
)

= R∇
(H ω̃,V θ

)
−R∇

(V ω,H θ̃
)
= 0

i.e. R∇ is pure with respect to J. Thus Theorem 3.1 is proved.

From (1.4), (2.1), (3.2) and (3.3) we find the following equations:(
φJ

R∇
)(V ω,HY,HZ

)
=V (pR(Y, ω̃)Z + pR(Z, ω̃)Y ) ,(

φJ
R∇
)(HX ,HY,V ω

)
=−V (g−1 (ω, pR(Y,X))

)
,(

φJ
R∇
)(HX ,V ω,HY

)
=−V (g−1 (ω, pR(Y,X))

) (3.4)

and the others are zero. Therefore we have

Theorem 3.2. The triple
(
T ∗M2n,J,R∇

)
is a Kähler-Norden manifold if and only if M2n is flat.

In [12, p.277], we know that the Lie bracket for complete, horizontal and vertical lifts of vector fields on the cotangent bundle T ∗Mn of Mn

satisfies the following: { [CX ,HY
]
= H [X ,Y ]+V (p(LX ∇)Y ) ,[CX ,V ω
]
= V (LX ω)

(3.5)

for any X ,Y ∈ ℑ1
0(M

n) and ω ∈ ℑ0
1(M

n), where (LX ∇)Y = ∇Y ∇X +R(X ,Y ).
It is well known that if a vector field X ∈ ℑ1

0
(
M2n) satisfies LX g = 0 and LX ∇g = 0, then X is called Killing vector field (or infinitesimal

isometry) and infinitesimal affine transformation, respectively. A Killing vector field is necessarily an infinitesimal affine transformation, i.e.
we have LX ∇g = 0 as a consequence of LX g = 0. If for a vector field X̃ ∈ ℑ1

0
(
T ∗M2n) the Lie derivative (LX̃ J = 0) with respect to almost

Nordenian structure J vanishes, then X̃ is an almost holomorphic vector field [6].
Considering the Lie derivative of J with respect to the complete lift CX . Using (3.3) and (3.5), we get the followings:

(LCX J)V θ = LCX JV θ − J
(
LCX

V θ
)
= LCX

H θ̃ − J
(V (LX θ)

)
= LCX

H θ̃ −H (g−1 ◦ (LX θ)
)

= H [X , θ̃
]
+V (p(LX ∇) θ̃

)
−H (g−1 ◦ (LX θ)

)
= H (LX

(
g−1 ◦θ

)
−g−1 ◦ (LX θ)

)
+V (p(LX ∇) θ̃

)
,

(3.6)

(LCX J)HY = LCX JHY − J
(
LCX

HY
)

= LCX
V Ỹ − J

(H [X ,Y ]+V (p(LX ∇)Y )
)

= V (LX (g◦Y )−g◦LXY )−H (g−1 ◦ p(LX ∇)Y
)
.

(3.7)

By using the relations (3.6) and (3.7) we prove the following result:
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Theorem 3.3. An infinitesimal transformation X of the Riemannian manifold
(
M2n,g

)
is a Killing vector field if and only if its complete lift

CX to the cotangent bundle T ∗M2n is an almost holomorphic vector field with respect to the almost Nordenian structure
(
J,R∇

)
.

Proof. Let X be a Killing vector field, i.e. LX g = 0. Then by virtue of LX ∇g = 0, from (3.6) and (3.7) we have LCX J = 0 (CX is holomorphic
with respect to J). Conversely, if we assume that LCX J = 0 and compute the righthand side of (3.7) at (xi,0), pi = 0, then we get
LX (g◦Y ) = g◦LXY. Thus it follows that LX g = 0.

Let
(
M2n,J,g

)
be an almost Norden manifold. The twin Norden metric defined by

G(X ,Y ) = (g◦ J)(X ,Y ) = g(JX ,Y )

for any X ,Y ∈ ℑ1
0
(
M2n) [5]. If the twin Norden metric G satisfies the Codazzi equation

(∇X G)(Y,Z)− (∇Y G)(X ,Z) = 0

for any X ,Y ∈ ℑ1
0
(
M2n), then the triple

(
M2n,J,g

)
is called an anti-Kähler-Codazzi manifold [10].

Let G be the twin Norden metric with respect to the Riemann extension R∇ and the almost complex structure J. Using G
(
X̃ ,Ỹ

)
=(R∇◦ J

)(
X̃ ,Ỹ

)
=R∇

(
JX̃ ,Ỹ

)
, we have

G
(HX ,HY

)
=R∇

(
JHX ,HY

)
=R∇

(
−V X̃ ,HY

)
=−V (X̃ (Y )

)
=−gi jX iY j =−V (g(X ,Y )) ,

G
(V ω,V θ

)
=R∇

(
JV ω,V θ

)
=R∇

(H ω̃,V θ
)

= V (θ (ω̃)) = gi jωiθ j =
V (g−1 (ω,θ)

)
,

G
(HX ,V θ

)
=R∇

(
JHX ,V θ

)
=R∇

(
−V X̃ ,V θ

)
= 0,

G
(V ω,HY

)
=R∇

(
JV ω,HY

)
=R∇

(H ω̃,HY
)
= 0

for any X ,Y ∈ ℑ1
0
(
M2n) and ω,θ ∈ ℑ0

1
(
M2n).

Now we use the equation
(C∇X̃ G

)(
Ỹ , Z̃

)
−
(C∇Ỹ G

)(
X̃ , Z̃

)
= 0, we find the following:(C∇H X G

)(HY,V ω
)
−
(C∇HY G

)(HX ,V ω
)
= V (g−1 (pR(Y,X) ,ω)

)
,(C∇H X G

)(V ω,HZ
)
−
(C∇V ω G

)(HX ,HZ
)
= V (g−1 (ω, pR( ,Z)X)

)
,(C∇V ω G

)(HY,HZ
)
−
(C∇HY G

)(V ω,HZ
)
= V (g−1 (ω, pR( ,Z)Y )

)
and the others are zero. Then we obtain the following theorem:

Theorem 3.4. The triple
(
T ∗M2n,J,R∇

)
is an anti- Kähler-Codazzi manifold if and only if M2n is flat.
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