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Abstract: Path planning algorithms for mobile robots are concerned with finding a feasible path between a
start and goal location in a given environment without hitting obstacles. In the existing literature, important
performance metrics for path planning algorithms are the path length, computation time and path safety,
which is quantified by the minimum distance of a path from obstacles.

The subject of this paper is the development of path planning algorithms for omni-directional robots,
which have the ability of following paths that consist of concatenated line segments. As the main contribution
of the paper, we develop three new sampling-based path planning algorithms that address all of the stated
performance metrics. The original idea of the paper is the computation of a modified environment map that
confines solution paths to the vicinity of the Voronoi boundary of the given environment. Using this modified
environment map, we adapt the sampling strategy of the popular path planning algorithms PRM (probabilistic
roadmap), PRM* and FMT (fast marching tree). As a result, we are able to generate solution paths with a
reduced computation time and increased path safety. Computational experiments with different environments
show that the proposed algorithms outperform state-of-the-art algorithms.
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1. Introduction

Path planning for mobile robots has attracted much attention in the recent years [1, 2, 3, 4, 5].

Path planning is concerned with finding a feasible robot path between a start and goal location,

while avoiding obstacles in the robot environment [6, 7]. Hereby, the most common performance

metrics to validate the quality of solution paths are computation time, path length and the minimum

distance to obstacles, which quantifies path safety [8, 9].

There are different possible scenarios for robotic path planning depending on the availability of

information about the environment [10, 11, 12, 13, 14], the type of obstacles (static or dynamic)

[15, 16, 17] and the robot type [7, 3, 18]. In this paper, we focus on the path planning for omni-

directional robots in known environments with static obstacles.
ISSN 1309 - 6788 c© 2019 Çankaya University
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In the recent literature, sampling-based algorithms are most popular for path planning in known

environments with static obstacles [5, 10, 12, 13, 14, 9, 19, 20, 21, 22]. A large majority of such

algorithms is based on probabilistic roadmaps (PRM) or rapidly exploring random trees (RRT).

On the one hand, PRMs generate random sample nodes and introduce connections between close

nodes in the obstacle-free region to determine a solution path [10]. On the other hand, RRTs are

based on the idea of growing a tree in the obstacle-free region from the start location to the goal

location [13]. Moreover, there are various extensions of these algorithms. The PRM* and RRT*

algorithms ensure convergence to an optimal path [12] and the FMT algorithm in [14] combines

features of PRMs and RRTs to determine shorter solution paths. The Quick RRT* algorithm in

[21] promises faster convergence to the optimal path and the synchronized biased-greedy RRT in

[22] grows trees towards the goal location. A common feature of these algorithms is that they

focus on the fast computation of minimum length solution paths. Only very recently, confidence

random trees (CRT) [9] were introduced as a sampling-based method for path safety.

Methods that take into account path safety are frequently based on the generalized Voronoi dia-

gram (GVD) [23, 24, 25, 26], which partitions an environment in Voronoi regions of points that are

closest to an obstacle. Then, the Voronoi boundary represents the border of the Voronoi regions

such that each point on the Voronoi boundary has the same distance to its closest obstacles. Using

the GVD, methods such as [24, 26] guide the search for a solution path along the GVD while ap-

plying sampling-based methods in narrow passages [24] or satisfying differential constraints [26].

The method in [25] combines visibility graphs, GVDs and potential fields to obtain short paths.

Although these methods make use of the GVD, they do not specifically address path safety. [23]

first determines a graph from the GVD and then finds the shortest path in that graph using Dijk-

stra’s algorithm [27]. In this case, the solution path has the largest possible distance to obstacles

but can be unnecessarily long. As a remedy, [8] suggests to first refine the shortest path in the

GVD by removing unnecessary turns and then introduces additional points in order to shorten the

solution path. Differently, [28] applies the fast marching method on an inflated Voronoi boundary.

The main objective of this paper is the development of sampling-based methods for robotic path

planning with a small computation time, short path length and guaranteed safety distance to ob-

stacles. To this end, we propose to first compute an inflated Voronoi boundary, which then serves

as the available free space for solution paths. Next, we develop a new sampling strategy that

efficiently generates samples exlusively on the inflated Voronoi boundary. Finally, we adapt the

sampling-based algorithms PRM, PRM* and FMT in order to obtain connections between node

samples that stay within the inflated Voronoi boundary. The resulting methods are denoted as

Inflated PRM (IPRM), Inflated PRM* (IPRM*) and Inflated FMT (IFMT). The quality of the

computed solution paths regarding path length and safety is demonstrated by comprehensive com-

putational experiments with different environments and a comparison to state-of-the-art methods.
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We note that the only existing sampling-based method in combination with the inflated Voronoi

boundary is given by our previous work in [29]. This work only considers the algorithm IPRM

and does not provide a comprehensive evaluation.

The remainder of the paper is organized as follows. Background information on sampling-based

path planning is given in Section 2. The proposed method is introduced in Section 3 and evaluated

in Section 4. Conclusions and an outline of future work are given in Section 5.

2. Background

This section summarizes the required background information for the paper. The notation for

robotic path planning is introduced in Section 2.1 and Section 2.2 explains the generalized Voronoi

diagram. Several relevant state-of-the-art path planning methods are explained in Section 2.3.

2.1. Notation and Path Planning Problem

In this paper, we focus on path planning in two-dimensional (2D) environments. Such environ-

ments are suitable for robots that can navigate along paths that consist of straight-line segments.

A possible example for such robots are omni-directional robots that can turn on the spot [18].

We represent the 2D environment by the configuration space C ∈ R2. Obstacles in C that should

not be hit by the mobile robot are characterized by the obstacle region Cobs ⊆ C as depicted in

Fig. 1. Then, the obstacle-free region that can be used for the robot motion is Cfree = C \Cobs.

FIGURE 1. Example robot environment.

For any point p ∈ C , we write p = (x,y), whereby x and y represent the coordinates of p as shown

in Fig.1. Then, a robot path P can be described by a sequence of vertexes P = (p1, p2, . . . , pn),

whereby pi ∈ C for i = 1, . . . ,n. Here, p1 is the start vertex, pn is the goal vertex and n is the

number of vertexes of the path. Connecting adjacent vertexes pi and pi+1 of a path by straight
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lines li for each i = 1, . . . ,n−1, the overall path consists of the points PP ⊆ C that are covered by

the line segments l1, . . . , ln−1. Accordingly, a path P is collision-free if all points covered by the

path are in the obstacle-free region, that is, PP ⊆ Cfree. The set of all obstacle-free paths is

A = {P|PP ⊆ Cfree}. (1)

The distance between two points pi = (xi,yi), p j = (x j,y j) ∈ C is given by

d(pi, p j) =
√

(xi− x j)2 +(yi− y j)2. (2)

Using (2) and considering a point p ∈ C and subsets C ′,C ′′ ⊆ C , we further write

d(p,C ′) = min
p′∈C ′

d(p, p′) (3)

for the minimum distance of p from points in the set C ′ and

d(C ′,C ′′) = min
p′∈C ′,p′′∈C ′′

d(p′, p′′) (4)

for the minimum distance of points in the sets C ′ and C ′′. Referring to (4), d(PP,Cobs) represents

the minimum distance of a path P from the obstacle region. In addition, the path length of P is

LP =
n−1

∑
i=1

d(pi, pi+1). (5)

Employing the above notation, the path planning problem for mobile robots is concerned with

finding a suitable obstacle-free path between a given start position pS ∈ Cfree and goal position

pG ∈ Cfree. Here, suitability is specified by performance metrics based on the path length (finding

the shortest path), path safety (finding a path distant from obstacles) or the computation time for

finding a path. In this paper, we will consider a combination of the stated performance metrics.

2.2. Generalized Voronoi Diagram

The generalized Voronoi diagram (GVD) is frequently used in robotic path planning [8, 16, 24,

25, 26]. Consider a set of geometric objects O1,O2, . . . ,Om such that Oi ⊆ C for i = 1, . . . ,m. The

Voronoi region Vi of Oi is the set of all points p ∈ C that are closer to Oi than to any other object

O j with i 6= j [24, 25, 26]. Formally,

Vi = {p ∈ C |d(p,Oi)≤ d(p,O j),∀ j 6= i}. (6)

Then, the generalized Voronoi diagram (GVD) is the collection of all regions V1, . . . ,Vm. More-

over, we introduce the notation V for the set of all points on the boundary of a Voronoi region

and we call V the Voronoi boundary. Hereby, it is the case for any p ∈ V that there are at least

two objects Oi,O j with i 6= j and such that d(p,Oi) = d(p,O j). In addition, we define the set of

branching points (BPs) B as the set of all points on the boundary of at least 3 Voronoi regions.
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The existing literature provides a multitude of methods for the computation of GVDs [8, 24, 25,

31]. In this paper, we assume that the robot environment is given in the form of a digital map,

where Cfree and Cobs are represented by white and black pixels, respectively. In this case, the GVD

can be computed by using the morphological operation of thinning as illustrated in Fig.2.

FIGURE 2. Example environment with generalized Voronoi diagram.

.
2.3. Basic Methods

We next describe several popular algorithms for robotic path planning.

2.3.1. Voronoi Diagram and Dijkstra’s Algorithm. GVDs can be used for path planning in

order to obtain a path with a maximum distance from the obstacle region [8, 24, 25, 31]. Hereby,

the existing methods generate the GVD of the environment and extend it by the shortest obstacle-

free connection of the start position pS and goal position pG to the GVD [16, 26, 32]. Then, a

graph G = (V,E) is extracted from this extended GVD such that pS, pG and the BPs correspond

to vertexes in V . The edges E are introduced between vertexes that are connected by the Voronoi

boundary and are labeled with the connection distance. Finally, Dijkstra’s algorithm [27] is applied

to this graph to determine the shortest path in the extended GVD. The described algorithms are

safe but generally produce long paths. An example for the environment in Fig. 1 is given in Fig. 3.

FIGURE 3. Shortest path on the Voronoi boundary.
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2.3.2. Relevant Functions for Sampling-based Methods. Sampling-based algorithms for robotic

path planning are of high interest due to their fast computation of reasonable solution paths. We

next outline common functions of these sampling-based algorithms.

All sampling-based methods are based on the generation of random samples in Cfree. We denote

the function that generates N samples in Cfree that are drawn from a uniform distribution as

Xrand = SampleFree(Cfree,N)⊆ Cfree.

Hereby, each x ∈ Xrand represents a random sample in Cfree. In addition, we introduce the function

Xnew = SampleRad(x,r,N,Cfree)⊆ Cfree

that generates N random samples Xnew in Cfree on a circle with radius r around a point x. Further,

Xnear = Near(V,x,r) = {x̂ ∈V |d(x, x̂)≤ r}

determines all points in the set V that lie on a disk with radius r around a point x. Finally,

CollisionFree(x, x̂,Cobs) =

{
true if lx,x̂∩Cobs 6= /0

false otherwise

returns true if the straight line lx,x̂ between the points x and x̂ intersects Cobs and false otherwise.

2.3.3. Probabilistiy Roadmap (PRM). The PRM algorithm in Algorithm 1 is one of the most

popular algorithms for robotic path planning [10, 11] that has initially been introduced for multi-

query applications. However, the PRM algorithm is as well suitable for single-query applications

[30]. In this case, the PRM algorithm first generates a set of NPRM random nodes in Cfree and

creates a graph G = (V,E). Initially, the vertexes consist of Xrand, pS and pG and there are no

edges. Then, the PRM algorithm iteratively picks one of the sample nodes (line 4) and determines

all neighbor nodes Xnear of xrand within a radius rPRM (line 5). Edges from nodes xnear ∈ Xnear to

xrand are introduced if xrand and xnear do not belong to the same connected component in G and if

they can be connected by a collision free line (line 6 to 9). Each edge (xrand,x),(x,xrand) is labeled

by its cost c((xrand,x)) = c((x,xrand)), which is represented by the distance between the related

nodes (line 10). Finally, the algorithm returns the shortest (minimum cost) path P from ps to pg in

the resulting graph G.
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1 Function P = PRM(pS, pG,NPRM,C ,Cobs,Cfree)
2 Initialize: Xrand = SampleFree(Cfree,NPRM); V = {pS, pG}∪Xrand; E = /0
3 for i = 1, . . . ,NPRM do
4 Pick xrand ∈ Xrand; Xrand = Xrand \{xrand}
5 Xnear = Near(V,xrand,rPRM)

6 for x ∈ Xnear in order of increasing d(x,xrand) do
7 if xrand and x are not in the same connected component of G then
8 if CollisionFree(xrand,x,Cobs) then
9 E = E ∪{(xrand,x),(x,xrand)}

10 c((xrand,x)) = c((x,xrand)) = d(xrand,x),(x,xrand)

11 return shortest path P from pS to pG in G.

Algorithm 1: PRM algorithm (for fixed value of rPRM) and PRM* algorithm (for rPRM =
γPRM · (log(n)/n)2)).

2.3.4. PRM*. The PRM* algorithm was proposed as a modified version of PRM in [12]. Its

only difference to the classical PRM algorithm in Algorithm 1 is that the connection radius rPRM

between nodes in line 5 decreases with an increasing number of nodes in the form rPRM = γPRM ·√
log(n)/n. Hereby, γPRM is a constant that has to be chosen larger than 2 ·

√
1.5 ·µ(Cfree)/π for

2D-environments (µ(Cfree) denotes the area of Cfree). As a result, the PRM* algorithm is expected

to produce shorter solution paths than the PRM algorithm with a possibly increased computational

effort.

2.3.5. Fast Marching Tree (FMT). The FMT algorithm was proposed in [14]. Its set of nodes V

is generated in the same way as for the PRM algorithm. Moreover, it keeps sets of closed (Vclosed),

open (Vopen) and unvisited (Vun) nodes that are initialized in line 2. Hereby, c(x) represents the

cost (distance) of traveling from pS to x along the graph G = (V,E). In each iteration, the FMT

algorithm selects the node with the lowest cost in the open set (line 18) and finds all of its neighbors

Xnear in the unvisited set (line 5). In analogy to PRM*, neighbors are defined based on a connection

distance rFMT = γFMT ·
√

log(n)/n that decreases with the number of iterations. Each neighbor

x ∈ Xnear is then connected to the closest neighbor ymin in the open set Ynear if the connection is

collision free and the relevant sets are updated (line 7 to 15). The algorithm terminates without

success if no more nodes are left to be processed (Vopen = /0 in line 16). Otherwise, a solution path

is returned if pG is found to be the unprocessed node with the lowest cost.
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1 Function P = FMT(pS, pG,NFMT,C ,Cobs, Cfree)
2 Initialize: V = {pS, pG}∪SampleFree(Cfree,NFMT); E = /0; Vun =V \ pS; Vopen = {pS};

Vclosed = /0; c(pS) = 0; z = pS

3 while z 6= pG do
4 V̂open = /0
5 Xnear =Vun∩Near(V \{z},z,rFMT)

6 for x ∈ Xnear do
7 Ynear =Vopen∩Near(V \{x},x,rFMT)

8 ymin = argminy∈Ynear{c(y)+d(y,x)}
9 if CollisionFree(ymin,x,Cobs) then

10 E = E ∪{(ymin,x)}
11 V̂open = V̂open∪{x}
12 Vun =Vun \{x}
13 c(x) = c(ymin)+d(ymin,x)

14 Vopen = (Vopen∪V̂open)\{z}
15 Vclosed =Vclosed∪{z}
16 if Vopen = /0 then
17 return no path found
18 z = argminx∈Vopen{c(x)}
19 return shortest path P from pS to pG in G.

Algorithm 2: FMT algorithm.

2.3.6. Confidence Random Tree (CRT). The previously discussed algorithms are designed for

finding short paths with a small computation time. Including path safety as a performance metric,

the confidence random tree (CRT) algorithm tries to generate solution paths that stay away from

obstacles [9]. To this end, the CRT algorithm introduces the notion of confidence of a node x∈Cfree

as

Conf(x,Cobs) = min{d(x,Cobs)/cmax,1}.

Hereby, cmax is a maximum distance parameter and the confidence gives an indication of the

distance of x to the obstacle region. Then, the CRT algorithm expands a tree G = (V,E) starting

from pS (line 2). In each iteration, a set Xnew of new nodes is determined at a distance d =

Conf(x,Cobs) · cmax from each node x in the current open set Xopen (line 5 to 9). Hereby, each

element of Xnew stores the generated node xnew and its parent node x (line 9). In order to limit

the number of nodes, the CRT algorithm includes a node rejection method to avoid generating

nodes in previously explored areas (line 10 to 23). Here, nodes are rejected if they are too close

to previously explored nodes in Xclosed (line 14 to 17) or if they are too close to an accepted node

xnew with a higher confidence (line 21 to line 23). Accepted nodes xnew are added to Xopen for

processing and an edge to the parent node is introduced in G (line 19 and 20). The CRT algorithm

terminates without a solution path if Xopen is empty or with a solution path P if a connection to pG

is found (line 26).
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Due to the consideration of node confidence, the CRT algorithm generates safe solution paths at

the expense of an increased path length.

1 Function P = CRT(pS, pG,cmax,cmin,C ,Cobs, Cfree)
2 Initialize: Xopen = {pS}; Xclosed = /0; V = {pS}, E = /0
3 while Xopen 6= /0 do
4 Xclosed = Xclosed∪Xopen; Xnew = /0
5 for x ∈ Xopen do
6 Xrand = SampleRad(x,Conf(x,Cobs) · cmax,nCRT,Cfree)

7 for xnew ∈ Xrand do
8 if Conf(xnew,Cobs)≥ cmin then
9 Xnew = Xnew∪{(xnew,x)}

10 Sort Xnew with decreasing confidence
11 Xopen = /0
12 while Xnew 6= /0 do
13 Take first element (xnew,x) from Xnew; Xnew = Xnew \{(xnew,x)}; faccept = 1
14 for x̂ ∈ Xclosed do
15 if Conf(x̂) · cmax > d(xnew, x̂) then
16 faccept = 0
17 break
18 if faccept 6= 0 then
19 Xopen = Xopen∪{xnew}
20 V =V ∪{xnew}; E = E ∪{(x,xnew)}
21 for (x̂new, x̂) ∈ Xnew do
22 if Conf(xnew) · cmax > d(xnew, x̂new) then
23 Xnew = Xnew \{(x̂new, x̂)}

24 xnear = argminx∈Xopen d(x, pG)

25 if Conf(xnear) · cmax > d(xnear, pG) then
26 return path P from pS to pG in G = (V,E)

27 return P = /0

Algorithm 3: CRT algorithm.

For illustration, Fig. 4 shows solution paths for the described algorithms. It is readily observed that

the paths obtained for PRM, PRM* and FMT come very close to the obstacles. This is expected

since these algorithms try to minimize the path length and do not account for path safety. On the

other hand, the example path for CRT in Fig. 4 (d) stays away from the obstacles but leads to an

increased path length. The main focus of this paper is the adaptation of algorithms such as PRM,

PRM* and FMT in order to address path safety without a significant increase in path length.
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FIGURE 4. Example solution paths: (a) PRM; (b) PRM*; (c) FMT; (d) CRT.

3. Proposed Method

This section develops the method for safe and fast path planning based on the knowledge of the

extended GVD and the corresponding Voronoi boundary V in Section 2.3.1. Section 3.1 describes

the general methodology and Section 3.2 and 3.3 combine the proposed methodology with the

classical path planning algorithms described in Section 2.3.

3.1. Inflated Path

We assume that the Voronoi boundary is available in the form of a set of points V ⊆ Cfree and

the start and goal point pS and pG are elements of V in analogy to Section 2.3.1. Specifically,

we consider the case where a solution path exists in the extended GVD.1 As the first step of our

algorithm, we suggest to prune the extended GVD in order to remove parts of V that cannot lie on

a solution path from pS to pG similar to [25].

Next, we define a distance DI and we inflate V by the width DI. Considering that the environment

is given in the form of a digital image (such as JPEG), whereby V is represented by pixels in this

image, the inflated Voronoi boundary VI can be computed by a morphological dilation operation:

VI = V ⊕BDI =
⋃

b∈BDI

Vb, (7)

1We note that this is not a restriction of the general case. If there is no solution in the extended GVD, there is generally
no solution of the path planning problem.



56 M. R. H. AL-Dahhan and K. W. Schmidt

whereby BDI represents a disk with radius DI, ⊕ represents the dilation operation and Vb is the

translation of V by b ∈ BDI . The resulting map for the environment in Fig. 2 with the inflated

pruned Voronoi boundary VI for DI = 6 and DI = 12 is shown in Fig. 5.

FIGURE 5. Example environment with different path width: (a) D = (6 pixels)

(b) D = (12 pixels)

Using VI, the main idea of this paper is a modification of the sampling method SampleFree

used in the sampling-based path planning algorithms in Section 2.3. Instead of generating random

samples in the free space Cfree, we suggest to generate samples only in VI. To this end, we next

both develop an efficient method for generating such samples and provide a formula for deciding

on the number of required node samples.

In order to efficiently generate samples in VI, we first observe that all such samples should have a

maximum distance of DI from the original Voronoi boundary V . That is, we first select a number

of NV random points PV from V . For each point p ∈ PV , we generate random values d ∈ [0,DI]

and θ ∈ [0,2,π] and determine the sample

v = p+d ·

[
cos(θ)

sin(θ)

]
. (8)

That is, each node sample is represented by a point, whose distance to V is bounded by DI. The

proposed procedure is summarized in Algorithm 4.

Writing |V | for the overall sum of all path lengths on V , we observe that the number of required

node samples increases with |V | and decreases with DI since a larger value of DI leaves more free

space for obstacle-free connections (compare Fig. 5 (a) and (b)). Hence, we suggest to compute

the number of node samples as

NV = γV ·
|V |
DI

, (9)
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1 Function S = SampleInflated(NV,V ,DI)
2 Initialize: S = /0
3 Select NV random points PV from V
4 for p ∈ PV do
5 Generate random d ∈ [0,DI]

6 Generate random θ ∈ [0,2,π]
7 Generate new sample v according to (8)
8 S = S∪{v}
9 return S

Algorithm 4: Computation of samples close to V .

whereby γV is a safety coefficient that can be adjusted depending on the specific environment. We

next point out the proposed modifications of the algorithms (PRM, PRM’, FMT) in Section 2.3.

3.2. Inflated-path PRM (IPRM) and Inflated-path PRM* (IPRM*)

The original PRM algorithm (Section 2.3.3, Algorithm 1) computes node samples in the over-

all free space using SampleFree(C ,Cobs,NPRM) and checks if connections between nodes are

collision-free using CollisionFree(xrand,x,Cobs) with the obstacle region Cobs. The pro-

posed algorithms inflated-path PRM (IPRM) and inflated-path PRM* (IPRM*) generate node

samples as described in Section 3.1 and check collision-freeness using the modified obstacle re-

gion Ĉobs = C \VI. That is, line 2 in Algorithm 1 is replaced by

Xrand = SampleInflated(NV ,V ,DI);V = {pS, pG};E = /0

and line 8 in Algorithm 1 is replaced by

if CollisionFree(xrand,x, Ĉobs) then.

3.3. Improved FMT

Similar to the modification of PRM and PRM*, we suggest to change the sampling method and the

obstacle region of the FMT algorithm in Section 2.3.5. To this end, we replace line 2 in Algorithm

2 by

V = {pS, pG}∪SampleInflated(NV ,V ,DI);E = /0;Vun =V \ pS;Vopen = {pS};

In addition, we replace line 9 in Algorithm 2 by

if CollisionFree(ymin,x, Ĉobs) then.



58 M. R. H. AL-Dahhan and K. W. Schmidt

4. Evaluation

We next perform a comparison of the proposed methods and the existing methods in Section 2.3

regarding the resulting path length, safety distance and computation time. Section 4.1 explains the

setup of the computational experiments and Section 4.2 to 4.5 evaluate the considered algorithms

for different environments. A discussion of the obtained results is given in Section 4.6.

4.1. Experimental Setup and Maps

We apply the described algorithms to the environments in Figure 6 which are given as binary

images, where pixels in Cfree are white and pixels in Cobs are black. The start position and the goal

position are shown by a green diamond and red circle, respectively.

The maps are selected according to their different properties as follows. The polygon map in

Fig. 6 (a) has different obstacles that are represented by polygon shapes and that leave sufficient

free space for multiple routes between pS and pG. In the maze map in Fig. 6 (b), obstacles are

represented by straight lines and there are multiple routes between pS and pG. The U-map in Fig.

6 (c) offers U-shaped obstacles, where candidate paths can be trapped. The maze map in Fig. 6

(d) provides a single long and narrow circular solution route.

FIGURE 6. Environments used for the evaluation.
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In order to perform a fair evaluation, all the algorithms were implemented in Matlab using the

same functions for common tasks of the different algorithms as indicated in Section 2.3.2. The

experiments were run on a personal computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

and 8.00 GB RAM. For each environment, 100 test runs of each algorithm were performed.

4.2. Polygon Map

We first consider the polygon map in Fig. 6 (a). Following the procedure in Section 2.2 and 3.1, we

determine the extended GVD and the inflated Voronoi boundary as shown in Fig. 7 for different

values of DI = 14, DI = 10 and DI = 6. Here, VI is shown in white, V is shown in green and Cobs

is shown in black. The light blue region represents the part of Cfree that is not close enough to V

and hence is not considered for solution paths.

extended GVD DI = 14

DI = 10 DI = 6

FIGURE 7. Polygon map: extended GVD and inflated Voronoi boundary.

The computational results for the polygon map are shown in Fig. 8. For each method the average

values of computation time (T̄comp), path length (L̄path), minimum obstacle distance (D̄min) and

number of nodes (N̄nodes) for 100 runs (represented by a bar) are displayed. In addition, the error

bars show the maximum and minimum value among the 100 test runs. We point out the following

main observations from the figure.

• Regarding the computation time, it is observed that the proposed algorithms are always

faster than the related classical algorithm, whereby the computation time increases for a

narrower inflated path. This change in the computation time is directly related to the number

of nodes N̄nodes as computed with (9).
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• Although it is the case that PRM, PRM* and FMT produce short solution paths, these al-

gorithms do not account for path safety, that is, D̄min is small. All the proposed algorithms

achieve increased safety depending on the value of DI. Most interestingly, path safety is

comparable to the results of the CRT algorithm if DI is chosen small enough, whereas the

computation time, the path length and the variation among solutions are smaller for the

proposed algorithms.

• Only the VD algorithm can achieve safer paths than the proposed algorithms but with a

significantly increased path length.

FIGURE 8. Comparison of the performance metrics for the polygon map.

In summary, the proposed algorithms clearly outperform the existing algorithms for the polygon

map when taking into account computation time, path length and safety. For illustration, Fig. 9

compares solution path examples for the different methods (Di = 6). It can be seen that the path

for CRT has unnecessary turns, which extend the path compared to the paths generated by IPRM,

IPRM* and IFMT, which attempt to find the shortest path within the inflated Voronoi boundary.
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CRT IPRM

IPRM* IFMT

FIGURE 9. Solution paths for the polygon map.

4.3. Maze Map with Straight Lines

We next consider the maze map in Fig. 6 (b). The extended GVD and the inflated Voronoi bound-

ary for this map are shown in Fig. 10 for DI = 9, DI = 7 and DI = 5, whereas Fig. 11 depicts the

computational results for this map.

extended GVD DI = 9

DI = 7 DI = 5

FIGURE 10. Maze map: extended GVD and inflated Voronoi boundary.

We point out the following main observations from this experiment.

• Regarding the computation time, it can again be seen that the proposed algorithms are gen-

erally faster than the related classical algorithm, whereby the IPRM* algorithm is fastest.
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• Path safety can be significantly increased compared to the classical algorithms when using

the proposed algorithms. Moreover, an increase in path safety compared to the CRT algo-

rithm is possible at a significantly reduced computation time, path length and variation of

the obtained solutions. Here, the main reason for the increased computation time of the

CRT algorithm is the generation of node samples in parts of the map that are not relevant

for finding a solution path. The proposed algorithms only generate node samples along the

possible routes along the inflated Voronoi boundary.

FIGURE 11. Comparison of the performance metrics for the maze map with

straight lines.

Fig. 12 compares solutions paths of the different methods. Similar to previous section, CRT gen-

erates longer paths due to unnecessary turns when following straight passages. On the contrary,

the solution paths of IPRM, IPRM* and IFMT use straight line connections in such passages.

CRT IPRM

IPRM* IFMT

FIGURE 12. Solution paths for the maze map with straight lines.
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4.4. U-Map

We further study the U-map in 6 (c). The extended GVD and the inflated Voronoi boundary for

this map are shown in Fig. 13 for DI = 20, DI = 15 and DI = 10, whereas Fig. 11 depicts the

computational results for this map.

extended GVD DI = 20

DI = 15 DI = 10

FIGURE 13. U-map: extended Voronoi diagram and inflated Voronoi boundary.

The main observations from this experiment are summarized as follows.

• The proposed algorithms lead to a reduced computation time compared to the existing algo-

rithms except for the VD algorithm, which generates a very long path.

• The proposed algorithms allow adjusting path safety by selecting an appropriate value of DI.

For this environment, it has to be mentioned that the CRT algorithm generates safe paths

with a similar path length as the proposed algorithms. Nevertheless, the CRT algorithm still

leads to a larger computation time and significant variations in the minimum distance from

the obstacle region. The main reason is that the CRT algorithm generates random samples

that can be more or less close to the obstacle region depending on the found confidence

values. On the other hand, the node samples of the proposed algorithms are restricted to the

inflated Voronoi boundary such that the lower bound for Dmin is well-defined.
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FIGURE 14. Comparison of the performance metrics for the U-map.

We further note that the solution paths in Fig. 15 confirm the observations from the previous

sections and solution paths of CRT might come close to obstacles.

CRT IPRM

IPRM* IFMT

FIGURE 15. Solution paths for the U-map.
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4.5. Maze Map with Spiral

We finally investigate the maze map in 6 (d) that has a very long solution path. The extended GVD

and the inflated Voronoi boundary for this map are shown in Fig. 16 for DI = 8, DI = 6 and DI = 4,

whereas Fig. 17 depicts the computational results for this map.

extended GVD DI = 8

DI = 6 DI = 4

FIGURE 16. Polygon map: extended GVD and inflated Voronoi boundary.

We next describe the main observations from this experiment.

• The proposed algorithms mostly lead to significantly smaller computation times compared

to the existing algorithms. It can only be observed that a very small value of DI should be

avoided due to the increase in the required number of nodes.

• For this map with a narrow space between obstacles, the proposed algorithms enable a

significant increase of path safety without much increase in the path length compared to the

classical methods. In addition, the proposed algorithms outperform the CRT algorithm in

all performance metrics.

Finally, the solution paths in Fig. 18 again support the superiority of the proposed methods com-

pared to CRT.
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FIGURE 17. Comparison of the performance metrics for the map in Fig. 6 (d).

CRT IPRM

IPRM* IFMT

FIGURE 18. Solution paths for the maze map with spiral.
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4.6. Discussion

Overall, the computational experiments for different environments indicate that the proposed

methods are superior to both existing sampling-based methods such as PRM [11], PRM* [12] and

FMT [14] as well as recent methods for path safety such as CRT [9]. In particular, the proposed

IPRM algorithm outperforms the original PRM algorithm, the proposed IPRM* algorithm outper-

forms the original PRM* algorithm and the proposed IFMT algorithm outperforms the original

FMT algorithm regarding both computation time and path safety while accepting a slight increase

in path length. Moreover, all the proposed algorithms (IPRM, IPRM* and FMT*) lead to a reduced

computation time and path length while providing comparable path safety as the CRT algorithm.

When comparing the proposed algorithms IPRM, IPRM* and IFMT, it can be observed that all of

these algorithms provide similar results regarding computation time, path length and path safety.

It is only the case that the IFMT algorithm leads to an increased computation time in case of a

small width of the inflated Voronoi boundary and for environments with very long solution paths.

In this context, it has to be noted that the proposed algorithms benefit from confining the generated

node samples to the inflated Voronoi boundary. This helps avoiding the exploration of irrelevant

regions of Cfree. Moreover, this ensures the generation of reliable solution paths with small varia-

tions in the path length, minimum distance from obstacles and computation time.

5. Conclusions

The subject of this paper is the path planning problem for mobile robots in a two-dimensional

configuration space with obstacles. That is, the presented work specifically addresses the case of

omni-directional robots that can perform turning maneuvers on the spot.

As the main contribution, the paper proposes three new path planning algorithms that are exten-

sions of the PRM (probabilistic roadmap) algorithm, PRM* algorithm and FMT (fast marching

tree) algorithm. The underlying idea for defining the new algorithms is to first compute a general-

ized Voronoi diagram (GVD) of the robot environment. The Voronoi boundary of this GVD is then

inflated by a certain width. Each of the stated algorithms (PRM, PRM* and FMT) is adapted such

that node samples are only generated on the inflated Voronoi boundary and node connections lie

fully within the inflated Voronoi boundary. The resulting algorithms are denoted as IPRM (Inflated

PRM), IPRM* (Inflated PRM*) and IFMT (Inflated FMT). As a particular feature, the proposed

algorithms require fewer nodes when determining a solution path and ensure a minimum distance

to obstacles by appropriately choosing the width of the inflated Voronoi boundary.

The proposed algorithms were evaluated by computational experiments with different environ-

ments. In these experiments, it was confirmed that the proposed methods IPRM, IPRM* and

IFMT outperform the existing methods PRM, PRM* and FMT regarding computation time and
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path safety at a slight increase of the path length. Moreover, a comparison with the recent confi-

dence random tree (CRT) algorithm that specifically addresses path safety was performed. This

comparison indicates that the proposed algorithms are significantly faster, generate shorter paths

and lead to a comparable path safety. Furthermore, large variations of these performance metrics

that are observed for the CRT algorithm can be avoided for the proposed algorithms since solu-

tion paths are confined to the inflated Voronoi boundary. As an important result of the paper, we

conclude that it is preferable to apply proven algorithms such as PRM, PRM* or FMT on pre-

processed environment maps instead of designing specific algorithms such as CRT for the original

environment map.

Based on these observations, our future work will focus on additional methods for pre-processing

environment maps and the extraction of map properties such as the density of obstacles.
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