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Abstract

In this paper, for 1 < p < e we define the v, and v;—topologies on the space of bounded linear operators between Banach spaces, and by
way of these topologies we introduce the properties vl*,D and Bv;D for the dual space E'. Under the assumption of the property V;D on

the dual space E ', we obtain a solution of the duality problem for the p-CAP with 2 < p < co. We show that, if M is a closed subspace of
a Banach space E such that M is complemented in the dual space E', then M has the p-CAP (respectively, BCAP) whenever E has the
p-CAP (respectively, BCAP) and the dual space M has the v;D (respectively, Bv;D).
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1. Introduction

As a stronger form of a relatively compact set Sinha and Karn [19] introduced a relatively p-compact set concept, which was motivated
by the well-known Grothendieck’s characterization of a relatively compact set [14]. Then it has appeared plenty of papers related to the
relatively p-compact set concept in different directions. We mention [1], [2], [3], [8], [9], [11], [12], [13], [16], [18] and [20].

Let 1 < p < oo. A Banach space E is said to have the p-approximation property (in short, p-AP) if identity map Ir of E can be uniformly
approximated by finite rank operators on p-compact sets, i.e., there is a net (Sy )¢ of finite rank operators on E such that S — I uniformly

on p-compact subsets of E [19]. If identity map /g can be uniformly approximated by compact operators on p-compact subsets of E, i.e.,
there is a net (S¢ )¢ Of compact operators on E such that S, — I uniformly on p-compact subsets of E, then E is said to have the p-compact

approximation property (in short, p-CAP) [8]. Note that every Banach space has the p-AP for 1 < p <2 [19, Theorem 6.4]. It is clear that
every Banach space with the p-AP has the p-CAP, but the converse is not true in general. Choi and Kim [8, Theorem 5.2] constructed a
Banach space having the the p-CAP, which fails to have the p-AP for every p > 2.

A Banach space E is said to have the p-weak approximation property (in short, p-WAP) if every compact operator from E to E can be
uniformly approximated by finite rank operators on p-compact subsets of E, i.e., for each compact operator S : E — E there is a net (S¢)
of finite rank operators on E such that S — S uniformly on p-compact subsets of E [9]. Changjing and Xiaochun [9] show that a Banach
space E has the p-AP if and only if E has both the p-CAP and p-WAP for 1 < p < eo. So, by [8, Theorem 5.2] there is a Banach space
without the p-WAP for every p > 2.

Let A > 1. A Banach space E is said to have the A-bounded approximation property (in short, A-BAP) if there is a net (S¢) ¢ of finite rank
operators on E such that ||Sg|| < A and S — Ig uniformly on compact subsets of E. If E has the 1-BAP for some A, then E is said to have
the bounded approximation property (in short, BAP)[4], [17]. In this definition if the compact sets are replaced by p-compact sets for any
1 < p < oo, then definition of the p-A-bounded approximation property (in short, p-A-BAP) is obtained. On the other hand, it is well known
that in the definition of A-BAP, instead of compact sets, it is enough to take finite sets only (see, e.g., [17, pp. 37]). Since each p-compact set
is a compact set, then it follows that the p-A-BAP is equivalent to the A-BAP. That is, the p-A-BAP is nothing more than the A-BAP for any
1< p<oo.

A Banach space E is said to have the A-bounded compact approximation property (in short, A-BCAP) if there is a net (S¢ )¢ of compact
operators on E such that ||Sy|| < A and S — Ig uniformly on compact subsets of E. If E has the A-BCAP for some A, then E is said to

have the bounded approximation property (in short, BCAP) [4]. In this definition if the compact sets are replaced by p-compact sets for any
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1 < p < oo, then definition of the p-A-bounded compact approximation property (in short, p-A-BCAP) is obtained. But as similar to the
above, the p-A-BCAP is equivalent to the A-BCAP for any 1 < p < oo,

In this paper, we get some characterizations of the A-BAP (respectively, A-CAP) and the p-CAP. Also, for 1 < p < oo we define the v;, and
vy,-topologies on the space of bounded linear operators from a Banach space E to E and from the dual space E "t E, respectively. By means
of these topologies we introduce the properties v;D and Bvl*,D for the dual space E'. Under the assumption of the property vI*,D on the dual
space E, we get a solution of the duality problem for the p-CAP, that is, for 2 < p < oo if the dual space E' has the p-CAP and the vy, D, then

so does E . If M is a closed subspace of a Banach space E such that M~ is complemented in the dual space E', then we show that M has the
p-AP whenever E has the p-AP, and also we show that M has the p-CAP (respectively, BCAP) whenever E has the p-CAP (respectively,
BCAP) and the dual space M has the v, D (respectively, Bv;,D).

2. Notation and preliminaries

The symbols E and F will always denote complex Banach spaces. Let M be a subset of E. The symbol Ij; will denote the identity mapping
on M, and for any topology 7 on E, M" will denote the T-closure of M in E. The symbol Br represents the closed unit ball of E. The Banach
space of all linear continuous operators from E to F with usual operator norm ||, || is denoted by L(E, F). When F = C we write E' instead of
L(E,C). An operator T in L(E, F) is called compact if 7 (Bg) is a relatively compact subset of F. The subspace of all compact (respectively,
finite rank) operators of L(E, F) is denoted by K (E ,F) (respectively, F (E ,F)). Let A > 1. The space of all compact (respectively, finite
rank) operators with the norm < A is denoted by K* (E,E) (respectively, F (E E )) The space of all compact (respectively, finite rank) and
weak*-to-weak™* continuous operators with the norm < A is denoted by K7L (EE) (respectively, F; (E E')). Let 1 < p < oo, The symbol

I, (E) (respectively, lw(E)) will denote Banach space of all sequences (xn) ~_, in E with } 7 |xn\|p < oo (respectively, sup ||x, || < eo). The
neN
notation co(E) will denote Banach space of all null sequences (x,);-_; in E. Then a subset K of E is said to be relatively p-compact if there

n= l|

exists a sequence (x,)5_; € [,(E) (1 < p <o) ((xn);m_y € co(E) if p = oo) such that K C {Z Xy : (0n)y—y € By, }, where %—0—% =1
[19]. Note that the relatively co-compact sets are the relatively compact sets and also the rela?ivlely p-compact sets are relatively compact
[19]. A relatively p-compact and closed set will be called p-compact.

Throughout the paper the notations 7 and 7, denote the topologies of uniform convergence on the compact subsets and p-compact subsets,
respectively. Recall that the 7 and 7, are locally convex topologies by generated the family of seminorms [8], [19]. Choi and Kim [8,
Proposition 2.2] proved that (L(E,F),t,) is complete for any 1 < p < e, and gave a representation of the dual space (L(E,F),T,)’ for
1 < p < o [8, Theorem 2.5].

Theorem 2.1. [8, Theorem 2.5] Let 1 < p < oo. Then

(L(E,F),5,) = {f:f(S Z Y Y (Sx), )7 CF . (wn)iey €1p(E) and zj = (Al)i_, €1lq for each j€N satisfying
j=1n=1

> ’
Y lzillglly;ll < oo}
j=1

Changjing and Xiaochun [9] obtained the following characterization of the p-WAP.
Theorem 2.2. [9] Let E be a Banach space and let2 < p < oo. E has the p-WAP if and only if for every (x,);_; € Ip(E),

i

x5 | CE and

(x
(/'LJ) | € lg for every j € N with Z ||zj\|q||x]|\ < o and Z Z Al x (Sxn) =0 forall S € F(E,E), we have Zl i(Sx,) =

Jj=1 j=1n=1

HMX

forall S € K(E,E).

3. Characterizations of the 1-BAP (respectively, A-CAP) and the p-CAP

In this section, we will obtain some characterizations of the A-BAP (respectively, A-CAP) and the p-CAP. A characterization for the A-BAP
is given by Caligkan [10]. The following proposition gives another characterization of the A-BAP (respectively, A-CAP) and it can be proved
easily by using Theorem 2.1.

Proposition 3.1. Let E be a Banach space and let A > 1 and 1 < p < oo. Then the following are equivalent.
(a) E has the A-BAP (respectively, A-CAP).

(b) For every ¢ > 0, every (x,);_; € I,(E), (x/j);":1 CE and zj= (M )n | € lq for each j € N with Z szHqu || < oo, and satisfying
Jj=1

i ilnxj(xn) <c

< cfor every S € F*(E,E) (respectively, S € K* (E,E)), we have

Z Z an
j=1n=1

oo oo

Y Y i)

j=ln=1

Proof. (@) = (b) Assume that £ has the A-BAP. Let ¢ > 0, (xa);_y € fp(E). (x,j);'ozl CE and z; = (lr{):f:l € I, for each j € N with
Y llzjllqllx;ll < oo, such that

Z Z l,{x (Sxn)
=1 ==l
by Theorem 2.1, for a given o< (L(E,E),T ) with [@(S)| < ¢ for every S € F}” (E,E), we will show that |@(Ig)| < c¢. Indeed, since by
hypothesis I € FA(E, E) , there exists a net (Sq )¢ C F*(E, E) such that Sy N Ig. Hence ¢(So) — @(Ig). Since |@(S¢)| < ¢ for all

< ¢ for every S € FA*(E,E). We will show that < ¢, or equivalently,

o, then |@(Ig)| = limg |@(Sq)| < ¢, or Z Z l,{x;(x,,)‘ <ec.
j=ln=1
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(b) = (a) By Theorem 2.1, (b) says that for every ¢ € (L(E,E),1,) with |(S)| < c for every S € F*(E,E), we have |¢(Ig)| < c. We
assume, for a contradiction, that I¢ € (L(E,E),t,)\F*(E,E )TP. Then, by Hahn-Banach separation theorem there exists a y € (L(E,E), )’

such that |[y(Ig)| > sup |y(S)|. If we define a functional ¢ by ¢(S) := U — N RS L(E,E), then ¢ € (L(E,E), 1)’
P s WO
SEF*(E.E)
and sup |9(S)|=c. But ¢(Ig)| = —dwUel > ¢ which is a contradiction. Thus, the proof for A-BAP is completed.
SEFZ'(E E) sup |W(S)|
’ SEF*(EE)
The proof for the A-CAP can be done as similar. O

By using the standard methods and Theorem 2.1 we obtain the following characterization for the p-CAP.

Proposition 3.2. Let E be a Banach space and let 2 < p < oo. Then the following are equivalent.
(a) E has the p-CAP.

(b) K(E, E) is ©,-dense in L(E E).

(¢c) K(E, E) is tp-dense in L(F,E) for every Banach space F.

(d) K(E, F) is ©,-dense in L(E, F) for every Banach space F.

(e) For every (x,);m_y € I,(E), ()c/j)j-":1 CE and zj = (lj)n | € lq for each j € N with Z llzllq Hx]|| < oo, and satisfying Z Z Al x (Sxy) =
j=1 j=1n=1

0 for every S € K(E,E), we have Z Z ),,{x,j(xn) =0.
j=1n=1

Proof. 1Tt is easy to show that (a) < (b), (b) < (c) and (a) < (d). The proof of (a) < (e) can be follow from the proof of [8, Theorem
5.1]. O

4. Some topologies on the space of linear operators

Let 1 < p < oo. In this section, by defining two topologies (v, and v7,-topologies) on the space of bounded linear operators, we introduce the
properties v,D and Bv; D for the dual space E'. We show that E has the p-CAP whenever the dual space E " has the p-CAP and the vi;D
(2 < p < o). Later, we show that if M is a complemented subspace of a Banach space E, then the pair (E, M) have the three space property
for the p-CAP (respectively, p-AP). If M is a closed subspace of a Banach space E such that M~ is complemented in the dual space E , then
we show that M has the p-AP whenever E has the p-AP, and also we show that M has the p-CAP (respectively, BCAP) whenever E has the
p-CAP (respectively, BCAP) and the dual space M has the vi,D (respectively, BV;D).

Definition 4.1. (See [6, Definition 2.3] Let 1 < p < oo. For a net (Sq)o and an operator S in L(E E) it is said to be the net (Sq) o converges

to S according to the v,-topology, or Sg s iff
3 ¥ 405 ) L 3 40600
j=1n=1 J=ln=1

for every (x,)5_, € Ip(E), (xlj);-":l CE andzj= (M ) | € lq for each j € N satisfying Z lzillq Hx || < oo
j=1
By Theorem 2.1 we can see that the T,-topology on the space L(E, E) is stronger than the v,-topology.
By using Theorem 2.2, Proposition 3.1, Proposition 3.2 (e), Definition 4.1 and standard methods, we get easily the following characterizations.
e Let2 < p < oo. E Banach space has the p-AP iff Iy € F(E, E)V
« Let I < p < oo. E Banach space has the A-BAP iff I € F*(E,E) (E, E)
* Let 2 < p < oo. E Banach space has the p-CAP iff Iy € K(E,E) .
* Let 1 < p < . E Banach space has the A-CAP iff I € K* (E,E)
« Let 2 < p < oo. E Banach space has the p-WAP iff K(E,E) C F(E,E) .

Definition 4.2. (See [6, Definition 2.4]) Let 1 < p < oo. For a net (To)o and an operator T in L(EI7EI) it is said to be the net (Ty)q

-
converges to T according to the v;-topology, orTq 5 Tiff

Ta x

uMg
HMS

i,{Tx

for every (xn)m_; € Ip(E), (x Ij);":l CE and zj = (l,{)::l € Iy for each j € N satisfying Z \|z,||q|\x;\| < oo,
=1

Remark 4.3. Forany 1 < p < oo, on the space L(E/,E/) the v),-topology is weaker than the vy,-topology. If E is a reflexive Banach space,
then these topologies coincide. Also, we denote that for S and a net (Sq) o in L(E,E)

Vp . / V; /
So S iff So S

Choi and Kim [6, Definiton 2.5] introduced the properties weak* density (in short, W*D) and bounded weak™ density (in short, BW*D) for
compact operators on the dual space E . Similar to these properties we introduce the following notions.
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Definition 4.4. Let E be a Banach space and let 1 < p < oo,
(a) IfK(E'\E') C Ky (E ,E')", then E' is said to have the viD.
TN pyr— P
(B)IfK'(E ,E) CK(E,E") " for some A >0, then E is said to have the Bv),D.

It is well known that the 7-topology is stronger than the 7,-topology [8]. By this property and Remark 4.3, we obtain the following lemma
due to Lindenstrauss and Tzafriri [17] and Choi and Kim [7], which will be used in the proofs of Proposition 4.7 and Theorem 4.12.

Lemma 4.5. (See [17, Lemma 1.e.17], [7, Lemma 3.11]) Let E be a Banach space and let 1 < p < co. Then the following are satisfied.
(a)F(E\E')C Fy(E.E)" CFy(E.E)".

A J— 2 PN A / N
(b) FA*(E'\E')CFX(E'\E')" CFA(E'E")" forall A > 0.

Remark 4.6. Let 2 < p < oo, Choi and Kim [8, Theorem 2.7] showed that if the dual E of a Banach space E has p-AP, then E has the p-AP.
’ ey —
The proof of this theorem can be shortened by using Remark 4.3 and Lemma 4.5. Actually, if E' has p-AP, then Iy € F(E' ,E") ". By Lemma

4.5 (a), Iy € Fy (E’7E')v”. Therefore, by Remark 4.3 Ig € F(E,E)V” which shows that E has the p-AP.
By modification [6, Proposition 2.7] we get the following proposition.

Proposition 4.7. For a Banach space E, we have the following statements.
(a) IfE' is reflexive, then E' has the vi,D and Bvy,D. But, the conserve is not true in general.

(b) IfE/ has the p-WAP, then E' has the vD.
(c) IfE’ has the BAP, then E' has the Bv;D.

Proof. Since the proof is similar to the proof of [6, Proposition 2.7], it is omitted. O

The duality problem for the CAP are not resolved yet (see [4, Problem 8.5]), but Choi and Kim [6, Theorem 3.1] have solved this problem
under the extra assumption. However, the duality problem for the p-AP has a positive solution with 2 < p < oo [§8, Theorem 2.7]. We will
show in the following theorem that under extra assumption on the dual space, the duality problem for the p-CAP has a positive solution with
2< p<oo.

Theorem 4.8. E has the p-CAP whenever the dual space E' has the p-CAP and the vy,D.

Proof. Suppose that the dual space E' has the p-CAP and the V;D, then

.
Vp vy

Iy eK(EE)" and K(E ,E') C Ky (E,E")

By Remark 4.3, since the v),-topology is stronger than the v -topology on the L(E',E'), we have Iy € Ky (E’,E’)V”. Thus Iy € K(E,E)"".
This shows that E has the p-CAP. O

As a result of Proposition 4.7 (a) and Theorem 4.8, we can say that the duality problem of the p-CAP for reflexive Banach spaces has a
positive solution.
Corollary 4.9. Let E be a reflexive Banach space and let 2 < p < oo, If E' has the p-CAP, then E has the p-CAP.

The following theorem will be important in order to show that existence of a Banach space without the Bvy,D.

Theorem 4.10. E has the BCAP whenever the dual space E " has the BCAP and the Bv;‘,D.
Proof. 1f the dual space E " has the BCAP and the Bv;D, then

—— ;o ﬁvﬁ
I e KHEE)" and K'(E ,E') CK™.(E',E) "

V -

—_—— . R
for some A and y > 0. On the other hand, K*(E',E') C Kv%fl (E',E')". Since Iy €K* (EE")", we have Iy € K:}“ (E',E')". Thus, by
Remark 4.3 we obtain I € KAH (E,E )V", which proves that E has the BCAP. O

It is well known that there exists a Banach space E such that E has not the BCAP whenever the dual space E' has the BCAP [5, Theorem
2.5]. So, by Theorem 4.10 E cannot have the Bvy,D. However, it is not known whether every the dual space £ " has the v,D or not.

By a modification [6, Proposition 4.1] we get the solution of there space problems for p-CAP (respectively, p-AP) in terms of complemented
subspace of a Banach space.

Proposition 4.11. Let E be a Banach space and M be a closed subspace of E. If M is complemented in E, then the pair (E,M) have the
there space property for the p-CAP (respectively, p-AP).
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Proof. Let M be a complemented subspace of E. Then there exists an onto projection P, : E — M. Let i, : M — E be the inclusion mapping.
First we will show that M has the p-CAP whenever E has the p-CAP. Since E has the p-CAP, there exists (Sa)a C K(E,E) such that

Sa 2 I. Let us define Ty =P, Sqi,, sothat (Ty)q C K(M,M). If (m,)5_, € 1,(M), (m j)j:1 cM and zj=(Al)>_, €lyforeach jeN
with Z |z llqllm|;|| < oo, then
j=1

o

Z/l

1n=1

™

i 2, Tamn

1n=1

™
uMs

i ,{mP )(i,my) =

J Jj

Since Z Hz,Hqu P || <eoand (i,m,)5_, €1,(M), thus Ty 2, Iy and M has the p-CAP.

j=1
Now, we will show that £ /M has the p-CAP whenever E has the p-CAP. Since M is a complemented subspace, there is a closed subpace N of
E such that N is complementary of M and the spaces E/M and N are isomorphic. By the above argument, we know that every complemented
subspace of E has the p-CAP. Thus since N has the p-CAP, E/M has the p-CAP.
Finally, we will show that E has the p-CAP whenever the spaces M and E /M have the p-CAP. Note that E is the direct sum of M and N
(where, the spaces E/M and N are isomorphic). Hence there is an onto projection P, : E — N and an inclusion i, : N < E. Let K be a given
p-compact subset of E and let € > 0. Since M and N have the p-CAP, there exist R, € K(M,M) and R, € K(N,N) such that

IR, Px—Px|| <€ and |R,Px—Px| <€
forallx € K. Let Tx:=i R Px+i,R,P,x forallx € E. Thus T € K(E,E) and
|ITx—x|| = |li,(R,P.x—Px)+i,(R,P,x—Px)|| < 2¢
for all x € K. Then E has the p-CAP. O

Now let M be a closed subspace of E. It is known that if M is a complemented subspace of E, then so is M+ in E'. But the converse, in
general, is not true. So if we change the hypothesis of Proposition 4.11 with M~ is complemented in E , by a modification [6, Theorem 4.2]
we get the following proposition, which gives conditions for the subspace M to have the p-AP, the p-CAP and the BCAP.

Theorem 4.12. Let E be a Banach space with a closed subspace M such that M- is complemented in E.
(a) M has the p-AP whenever E has the p-AP.
(b) M has the p-CAP whenever E has the p-CAP and M has the v, D.

(¢) M has the BCAP whenever E has the BCAP and M has the Bv;‘,D.

Proof. Since M~ is a complemented subspace of E ', there exists an onto projection P : E' — M. Leti: M < E be the inclusion mapping.
Define the bounded linear operator U from M to E* by the formula U(m ) =x — Px, where x € E with x (m) =m (m) for all m € M. Note
that (Um )m =m (m) for allm € M (see, [15, Lemma 3.6]).

(a) Since E has the p-AP, there exists a net (S¢)q in F(E,E) such that Sy 2y I By Remark 4.3 S, N IJE. On the other hand,

iSU e F(M ,M') and if (mp)yr_y € 1,(M), (mlj);":l c M and Zj = ()L,{)f:l € Iy for each j € N satisfying Z ||z]\|q\|mlj\| < oo, then
j=1

Y sz||q|\Um/jH < o0 and since S, N I, we have

=

A(i'S,, Um

™
s
an

i M (IgUm))

HMS

-
I
3
I

Thus I, € F(M,M)"". By Lemma 4.5 (a), we have Ly € By (M',M')"". Hence by Remark 4.3 Iy; € F(M,M) " This proves that M has
the p-AP.

(b) Suppose that E has the p-CAP and M has the v,D. Then there exists a net (Sg)q in K(E,E) such that S 2y I By Remark 4.3,
Sy N I;. On the other hand, i S,U € K(M',M'). Thus, similar to (a) we get that I, € K(M',M')"". By hypothesis, since M has the v;D,

Ly € Ky (M, M ) and hence Iy; € K(M,M)'"”, which shows that M has the p-CAP.

(c) Suppose that E has the BCAP and M’ has the Bv:D. Then I € K* (E.E)" and K! (M M) c K~ (M',M')V” for some p > 0. Hence, by
the method given in the proof of (b) we get i/S/aU €K (M/,M/) such that

i SeUll < A[[U]]-

—_——V} e —
Then I,/W S K‘ﬁ}HUH (M M) " or equivalently by € KHAIUI (M,M)VF . This proves that M has the BCAP. O
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