On \mathcal{I}_2-Convergence and \mathcal{I}_2^*-Convergence of Double Sequences in Fuzzy Normed Spaces

Erdinç Dündar1,2 and Muhammed Recai Türkmen3

1Department of Mathematics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
2Department of Mathematics, Faculty of Education, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
3Corresponding author E-mail: edundar@aku.edu.tr

Abstract

In this paper first, we investigate some properties of \mathcal{I}_2-convergence in fuzzy normed spaces. After, we study some relationships between \mathcal{I}_2-convergence and \mathcal{I}_2^*-convergence of double sequences in fuzzy normed spaces.

Keywords: Double sequences, \mathcal{I}_2-convergence, \mathcal{I}_2-Cauchy, Fuzzy normed space.

2010 Mathematics Subject Classification: 34C41, 40A35, 40G15

1. Introduction and Background

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [11] and Schoenberg [30]. A lot of developments have been made in this area after the various studies of researchers [21, 25]. The idea of \mathcal{I}-convergence was introduced by Kostyrko et al. [15] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers \mathbb{N}. Das et al. [3] introduced the concept of \mathcal{I}-convergence of double sequences in a metric space and studied some properties of this convergence. A lot of developments have been made in this area after the works of [4, 16, 27, 31].

The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [18] and proved some basic theorems for sequences of fuzzy numbers. Nanda [23] studied the sequences of fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers are a complete metric space. Şençimen and Pehlivan [29] introduced the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Hazarika [13] studied the concepts of \mathcal{I}-convergence, \mathcal{I}^*-convergence and \mathcal{I}-Cauchy sequence in a fuzzy normed linear space. Dündar and Talo [8, 9] introduced the concepts of \mathcal{I}_2-convergence and \mathcal{I}_2-Cauchy sequence for double sequences of fuzzy numbers and studied some properties and relations of them. Hazarika and Kumar [14] introduced the notion of \mathcal{I}_2-convergence and \mathcal{I}_2-Cauchy double sequences in a fuzzy normed linear space. A lot of developments have been made in this area after the various studies of researchers [17, 20, 32, 26].

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence and fuzzy normed and some basic definitions (see [1, 2, 5, 6, 7, 8, 10, 11, 12, 19, 20, 21, 22, 24, 25, 28, 29]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each element $x \in X$ is assigned a membership grade $\mu(x)$ taking values in $[0, 1]$. The function $\mu : X \to [0, 1]$ is called a fuzzy set.

A fuzzy set μ on \mathbb{R} is called a fuzzy number if it has the following properties:

1. μ is normal, that is, there exists an $a_0 \in \mathbb{R}$ such that $\mu(a_0) = 1$;
2. μ is fuzzy convex, that is, for $x, y \in \mathbb{R}$ and $0 \leq \lambda \leq 1$, $\mu(\lambda x + (1 - \lambda)y) \geq \min\{\mu(x), \mu(y)\}$;
3. μ is upper semicontinuous;
4. $\operatorname{supp}(\mu) = \{x \in \mathbb{R} : \mu(x) > 0\}$, or denoted by $|\mu|$, is compact.

Let $L(\mathbb{R})$ be the set of all fuzzy numbers. If $u \in L(\mathbb{R})$ and $u(t) = 0$ for $t < 0$, then u is called a non-negative fuzzy number. We write $L^+(\mathbb{R})$ by the set of all non-negative fuzzy numbers. We can say that $u \in L^+(\mathbb{R})$ if $u_{\alpha} \geq 0$ for each $\alpha \in [0, 1]$. Clearly we have $0 \in L(\mathbb{R})$. For
u ∈ L(ℝ), the α level set of u is defined by
\[|u|_α^u = \begin{cases} \{ x ∈ ℝ : u(x) ≥ α \}, & \text{if } α ∈ (0, 1] \\ \{ x ∈ ℝ : u(x) ≥ α \}, & \text{if } α = 0. \end{cases} \]

A partial order ≤ on L(ℝ) is defined by u ≤ v if uα ≤ vα for all α ∈ [0, 1]. Arithmetic operation for t ∈ ℝ, ⊕, ⊗, and ⊙ on L(ℝ) are defined by
\[(u ⊕ v)(t) = \sup_{s ∈ ℝ} \{ u(s) ∧ v(t − s) \}, \quad (u ⊗ v)(t) = \sup_{s ∈ ℝ} \{ u(s) ∧ v(s − t) \}, \quad (u ⊙ v)(t) = \sup_{s ∈ ℝ} \{ u(s) ∧ v(s) \} \]

for k ∈ ℝ+*, ku is defined as ku(t) = u(t/k) and 0u(t) = 0, t ∈ ℝ.

Some arithmetic operations for α-level sets are defined as follows:
\[|u|_α^u = [u_α^u, u_α^u], \quad |v|_α^v = [v_α^v, v_α^v], \quad |u ⊕ v|_α^v = [u_α^v + v_α^v, u_α^v + v_α^v], \quad |u ⊗ v|_α^v = [u_α^v − v_α^v, u_α^v − v_α^v], \quad |u ⊙ v|_α^v = [u_α^v, v_α^v] \]

and \[1 ⊓ u|_α^u = [1/α, 1], \quad u_α^u > 0. \]

For u, v ∈ L(ℝ), the supremum metric on L(ℝ) is defined as
\[D(u, v) = \sup_{0 ≤ α ≤ 1} \max \{ |u|_α^u − |v|_α^v, |v|_α^v − |u|_α^u \} \]

It is known that D is a metric on L(ℝ) and (L(ℝ), D) is a complete metric space.

A sequence \(x = (x_0) \) of fuzzy numbers is said to be convergent to the fuzzy number \(x_0 \), if for every \(ε > 0 \) there exists a positive integer \(k_0 \) such that \(D(x_k, x_0) < ε \) for \(k > k_0 \) and a sequence \(x = (x_0) \) of fuzzy numbers convergent to levelwise to \(x_0 \) if and only if \(\lim_{k→∞} |x_k|_α^x = |x_0|_α^x \) and \(\lim |x_k|_α^x = |x_0|_α^x \), where \(|x_k|_α^x = (\{ x_k(α) \}_α^x, \{ x_k(α) \}_α^x) \) and \(|x_0|_α^x = (\{ x_0(α) \}_α^x, \{ x_0(α) \}_α^x) \), for every \(α ∈ (0, 1) \).

Let X be a vector space over ℝ, \(|| \cdot ||_X : X → L^*(ℝ) \) and the mappings \(L, R \) respectively, left norm and right norm) : \([0, 1] × [0, 1] → [0, 1] \) be symmetric, nondecreasing in both arguments and satisfy \(L(0, 0) = 0 \) and \(R(1, 1) = 1 \).

The quadruple \((X, || \cdot ||_X, L, R) \) is called fuzzy normed linear space (briefly FNS) and || \·|| a fuzzy norm if the following axioms are satisfied

1. \(||x|| = \bar{0} \) if \(x = 0 \).
2. \(||x + y|| ≤ ||x|| + ||y|| \) and \(||ax|| = |a| ||x|| \) for \(x ∈ X \), \(r ∈ ℝ \).
3. For all \(x, y ∈ X \)
 \((a) \) \(||x + y|| + \delta (s + t) ≤ ||x|| + ||y|| + \delta (s + t) \), whenever \(s ≤ ||x||, t ≤ ||y|| \) and \(s + t ≤ ||x + y|| \),
 \((b) \) \(||x + y|| + \delta (s + t) ≤ \psi (s + t) \), whenever \(s ≥ ||x||, t ≥ ||y|| \) and \(s + t ≥ ||x + y|| \).

Let \((X, || \cdot ||_C) \) be an ordinary normed linear space. Then, a fuzzy norm \(|| \cdot || \) on X can be obtained by
\[||x|| = \begin{cases} 0, & \text{if } t ≤ a ||x||_C \text{ or } t ≥ b ||x||_C \\ \frac{t}{(t-a)||x||_C} - \frac{a}{t}, & \text{if } a ||x||_C ≤ t ≤ ||x||_C \\ \frac{b}{(t-b)||x||_C}, & \text{if } ||x||_C ≤ t ≤ b ||x||_C \end{cases} \]

where ||x||_C is the ordinary norm of x (≠ 0), 0 < a < 1 and 1 < b < ∞. For x = 0, define ||x|| = 0. Hence, \((X, || \cdot ||) \) is a fuzzy normed linear space.

Let us consider the topological structure of an FNS \((X, || \cdot ||) \). For every \(ε > 0, α ∈ (0, 1] \) and \(x ∈ X \), the \((ε, α) \) neighborhood of x is the set \(N(ε, α) = \{ y ∈ X : ||x - y||_α^x ≤ ε \} \).

Let \((X, || \cdot ||) \) be an FNS. A sequence \((x_n)_{n=0}^{∞} \) in X is convergent to \(x ∈ X \) with respect to the fuzzy norm on X and we denote by \(x_n^{FN} x \), provided that \(D(0) = \lim_{n→∞} ||x_n - x||_α^x = 0 \); i.e., for every \(ε > 0 \) there is an \(N(ε) ∈ N \) such that \(D(0) = ||x_n - x||_α^x < ε \) for all \(n > N(ε) \). This means that for every \(ε > 0 \) there is an \(N(ε) ∈ N \) such that for all \(n > N(ε) \), \(\sup_{α ∈ [0, 1]} ||x_n - x||_α^x = ||x_n - x||_0^x < ε \).

Let \((X, || \cdot ||) \) be an FNS. Then a double sequence \((x_{jk}) \) is said to be convergent to \(x ∈ X \) with respect to the fuzzy norm on X if for every \(ε > 0 \) there exist a number \(N = N(ε) \) such that \(D(0) = ||x_{jk} - x||_α^x < ε \), for all \(j, k > N \).

In this case, we write \(x_{jk}^{FN} x \). This means that, for every \(ε > 0 \) there exist a number \(N = N(ε) \) such that \(\sup_{α ∈ [0, 1]} ||x_{jk} - x||_α^x = ||x_{jk} - x||_0^x < ε \), for all \(j, k > N \). In terms of neighborhoods, we have \(x_{jk}^{FN} x \) provided that for every \(ε > 0 \), there exist a number \(N = N(ε) \) such that \(x_{jk} ∈ N(ε, α) \) whenever, \(j, k > N \).

Let \(X ≠ Θ \). A class \(J \) of subsets of X is said to be an ideal in X provided:
(i) \(Θ ∈ J \), (ii) \(A, B ∈ J \) implies \(A ∪ B ∈ J \), (iii) \(A ∈ J, B ⊆ A \) implies \(B ∈ J \).

\(J \) is called a nontrivial ideal if \(x ∉ J \). A nontrivial ideal \(J \) in X is called admissible if \(\{ x \} ∈ J \) for each \(x ∈ X \).

A nontrivial ideal \(J_2 \) of \(N × N \) is called strongly admissible if \(\{ i \} × N \) and \(N × \{ i \} \) belong to \(J_2 \) for each \(i ∈ N \). It is evident that a strongly admissible ideal is also admissible. Throughout the paper we take \(J_2 \) as a strongly admissible ideal in \(N × N \).

Let \(J_2 = \{ A ⊆ N × N : \sup \{ m(A), i, j \} = m(A) \} \). Then \(J_2 \) is a strongly admissible ideal and clearly an ideal \(J_2 \) is strongly admissible if and only if \(J_2^0 \) is a subfilter.

Let \(X ≠ Θ \). A nonempty class \(F \) of subsets of X is said to be a filter in X provided:
(i) \(Θ ∉ F \), (ii) \(A, B ∈ F \) implies \(A ∩ B ∈ F \), (iii) \(A ∈ F, A ⊆ B \) implies \(B ∈ F \).

\(F \) is a nontrivial ideal in X, \(X ≠ Θ \), then the class \(F(\mathcal{F}) = \{ M ⊆ X : (\exists A ∈ F)(M = X \setminus A) \} \) is a filter on X, called the filter associated with \(F \).
Let \((X, \rho)\) be a linear metric space and \(\mathcal{I} \subseteq 2^{\mathbb{N} \times \mathbb{N}}\) be a strongly admissible ideal. A double sequence \(x = (x_{mn})\) in \(X\) is said to be \(\mathcal{I}\)-convergent to \(L \in X\), if for any \(\varepsilon > 0\) we have \(A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \geq \varepsilon\} \in \mathcal{I}\) and we write \(\lim_{m,n \to \infty} x_{mn} = L\).

If \(\mathcal{I} \subseteq 2^{\mathbb{N} \times \mathbb{N}}\) is a strongly admissible ideal, then usual convergence implies \(\mathcal{I}\)-convergence.

Let \((X, \|\cdot\|)\) be a fuzzy normed space. A double sequence \(x = (x_{mn})\) is said to be \(\mathcal{I}\)-convergent to \(L \in X\) with respect to fuzzy norm on \(X\), if for each \(\varepsilon > 0\), the set \(A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L\|_{\varepsilon} \geq \varepsilon\} \in \mathcal{I}\). In this case, we write \(x_{mn} \xrightarrow{\mathcal{I}} L_1\) or \(x_{mn} \rightarrow L_1\) if for every \(\varepsilon > 0\) there exists a \(K(\varepsilon) \in \mathbb{N}\) such that \(\|x_{mn} - L_1\|_{\varepsilon} < \varepsilon\) holds for all \(m, n \geq K(\varepsilon)\). Note that \(x_{mn} \xrightarrow{\mathcal{I}} L_1\) if and only if \(\lim_{m,n \to \infty} x_{mn} = L_1\).

A useful interpretation of the above definition is the following:

\[x_{mn} \xrightarrow{\mathcal{I}} L_1 \iff \forall \varepsilon > 0, \exists K(\varepsilon) \in \mathbb{N} : \|x_{mn} - L_1\|_{\varepsilon} < \varepsilon, \forall m, n \geq K(\varepsilon)\]

Let \((X, \|\cdot\|)\) be a fuzzy normed space. A double sequence \(x = (x_{mn})\) is said to be \(\mathcal{I}\)-convergent to \(L \in X\) with respect to the fuzzy norm on \(X\) if there exists a set \(M \in \mathcal{I}(\mathcal{I})\), \(M = \{m_1 < \cdots < m_k < \cdots : n_1 < \cdots < n_j < \cdots \} \subseteq \mathbb{N} \times \mathbb{N}\) such that \(\lim_{m,n \to \infty} x_{mn} = L_1\) in \(X\). In terms of neighborhoods, we have \(x_{mn} \xrightarrow{\mathcal{I}} L_1\) if and only if \(\lim_{m,n \to \infty} x_{mn} = L_1\).

2. Main Results

In this section, we investigate some properties of \(\mathcal{I}\)-convergence in fuzzy normed spaces. After, we study some relationships between \(\mathcal{I}\)-convergence and \(\mathcal{I}\)-convergence of double sequences in fuzzy normed spaces.

Theorem 2.1. Let \((X, \|\cdot\|)\) be a fuzzy normed space. If a double sequence \((x_{mn})\) in \(X\) is \(\mathcal{I}\)-convergent to \(L_1\), then \(L_1\) determined uniquely.

Proof. Let \((x_{mn})\) be any double sequence and suppose that

\[F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_1\quad \text{and} \quad F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_2,\]

where \(L_1 \neq L_2\). Since \(L_1 \neq L_2\), we may suppose that \(L_1 > L_2\). Select \(\varepsilon = \frac{L_1 - L_2}{2}\), so that the neighborhoods \((L_1 - \varepsilon, L_1 + \varepsilon)\) and \((L_2 - \varepsilon, L_2 + \varepsilon)\) of \(L_1\) and \(L_2\) respectively are disjoint. Since \(L_1\) and \(L_2\) both are \(\mathcal{I}\)-limit of the sequence \((x_{mn})\). Therefore, both the sets

\[A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L_1\|_{\varepsilon} \geq \varepsilon\}\quad \text{and} \quad B(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L_2\|_{\varepsilon} \geq \varepsilon\}\]

belongs to \(\mathcal{I}\). This implies that the sets

\[A'(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L_1\|_{\varepsilon} < \varepsilon\}\quad \text{and} \quad B'(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L_2\|_{\varepsilon} < \varepsilon\}\]

belongs to \(\mathcal{I}(\mathcal{I})\). Since \(\mathcal{I}(\mathcal{I})\) is a filter on \(\mathbb{N} \times \mathbb{N}\) therefore \(A'(\varepsilon) \cap B'(\varepsilon)\) is a non-empty set in \(\mathcal{I}(\mathcal{I})\). In this way we obtain a contradiction to the fact that the neighborhoods \((L_1 - \varepsilon, L_1 + \varepsilon)\) and \((L_2 - \varepsilon, L_2 + \varepsilon)\) of \(L_1\) and \(L_2\), respectively, are disjoint. Hence, we have \(L_1 = L_2\).

Theorem 2.2. Let \((X, \|\cdot\|)\) be a fuzzy normed space. \((x_{mn})\) be a double sequence in \(X\) and \(L_1 \in X\). Then, \(F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_1 \iff F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_1\).

Proof. Let \(F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_1\). For \(\varepsilon > 0\) there exists a positive integer \(k_0 = k_0(\varepsilon)\) such that \(\|x_{mn} - L_1\|_\varepsilon < \varepsilon\), whenever \(m, n > k_0\). This implies that the set

\[A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L_1\|_{\varepsilon} \geq \varepsilon\} \subseteq (\mathbb{N} \times \{1,2,\ldots,k_0\}) \cup \{(1,2,\ldots,k_0) \times \mathbb{N}\}.

Since \(\mathcal{I}\) is a admissible ideal, then

\[(\mathbb{N} \times \{1,2,\ldots,k_0\}) \cup \{(1,2,\ldots,k_0) \times \mathbb{N}\} \subseteq \mathcal{I}\]

and so \(A(\varepsilon) \subseteq \mathcal{I}\). Hence, we have

\[F \mathcal{I} - \lim_{m,n \to \infty} x_{mn} = L_1.\]
Theorem 2.3. Let \((X, \|\|)\) be a fuzzy normed space.

(i) If \(X\) has no accumulation point, then \(F_{\mathcal{F}_2}\)-convergence and \(F_{\mathcal{F}_2^\ast}\)-convergence coincide for each strongly admissible ideal \(\mathcal{F}_2\).

(ii) If \(X\) has an accumulation point \(L\), then there exists a strongly admissible ideal \(\mathcal{F}_2\) and a double sequence \((x_{mn})\) for which \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\) but \(F_{\mathcal{F}_2}\lim_{m,n \to \infty} x_{mn}\) does not exist.

Proof. (i) Let \(x = (x_{mn})\) be a double sequence in \(X\) and \(L \in X\). By Lemma 1.1, \(x_{mn} \xrightarrow{F_{\mathcal{F}_2}} L_1\) implies \(x_{mn} \xrightarrow{F_{\mathcal{F}_2^\ast}} L_1\). Assume that \(F_{\mathcal{F}_2}\lim_{m,n \to \infty} x_{mn} = L\). Since \(X\) has no accumulation point, so there exists \(\varepsilon > 0\) such that

\[B_L(\varepsilon, 0) = \{x \in X : \|x - L\|_0^+ < \varepsilon\} = \{L\}.
\]

Since \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\), so

\[
\{(m,n) \in N \times N : \|x_{mn} - L\|_0^+ \geq \varepsilon\} \subseteq \mathcal{F}_2.
\]

Hence, we have

\[
\{(m,n) \in N \times N : \|x_{mn} - L\|_0^+ \geq \varepsilon\} \subseteq (\{m,n) \in N \times N : \|x_{mn} - L\|_0^+ = 0\} \subseteq \mathcal{F}(\mathcal{F}_2).
\]

Therefore, \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\).

(ii) Since \(L\) is an accumulation point of \(X\), so there exists a sequence \((t_i)_{i \in \mathbb{N}}\) of distinct points all different from \(L\) in \(X\) which is convergent to \(L\) such that the sequence \(\{\|t_i - L\|_0^\delta\}_{i \in \mathbb{N}}\) is decreasing to 0. Let \((T_i)_{i \in \mathbb{N}}\) be a decomposition of \(\mathbb{N}\) onto infinite sets and put \(\Delta_i = \{(m,n) : \min\{m,n\} \in T_i\}\). Then, \(\Delta_i \subseteq \mathbb{N}\) is a decomposition of \(\mathbb{N} \times \mathbb{N}\) and the ideal

\[\mathcal{F}_2 = \{A : A \text{ is included in a finite union of } \Delta_i\}\]

is a strongly admissible ideal. Put \(x_{mn} = t_i\) if and only if \((m,n) \in \Delta_i\). Put \(s_n = \{\|t_n - L\|_0^\delta\}_{i \in \mathbb{N}}\), for \(n \in \mathbb{N}\). Let \(\delta > 0\) be given. Select \(\gamma \in \mathbb{N}\) such that \(s_\gamma < 4\). Then,

\[A(\delta) = \{(m,n) \in N \times N : \|x_{mn} - L\|_0^+ \geq \delta\} \subseteq \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_\gamma.
\]

Hence, \(A(\delta) \subseteq \mathcal{F}_2\) and \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\).

Now suppose that \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\). Then, there exists \(H \in \mathcal{F}_2\) such that for \(M = N \times N \setminus H\) we have \(FP - \lim_{m,n \to \infty} x_{mn} = L\), for \((m,n) \in M\).

By definition of the ideal \(\mathcal{F}_2\), there exists \(k \in \mathbb{N}\) such that

\[H \subseteq \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_k.
\]

But then, \(\Delta_{k+1} \subseteq N \times N \setminus H = M\). Then, from the construction of \(\Delta_{k+1}\) it follows that for any \(n_0 \in \mathbb{N}\),

\[\|x_{mn} - L\|_0^+ = s_{k+1} > 0
\]

hold for infinitely many \((m,n)\)'s with \((m,n) \in M\) and \(m,n \geq n_0\). This contradicts that \(FP - \lim_{m,n \to \infty} x_{mn} = L\), for \((m,n) \in M\). Also the assumption \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = q\), for \(q \neq L\) leads to the contradiction. \(\square\)

Theorem 2.4. Let \((X, \|\|)\) be a fuzzy normed space. If \(X\) has at least one accumulation point and for any arbitrary double sequence \((x_{mn})\) of elements of \(X\) and for each \(L \in X\), \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\) implies \(F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L\), then \(\mathcal{F}_2\) has the property \((AP_2)\).

Proof. Assume that \(L \in X\) is an accumulation point of \(X\). There exists a sequence \((t_k)_{k \in \mathbb{N}}\) of distinct elements of \(X\) such that \(t_k \neq L\) for any \(k\), \(\lim_{k \to \infty} t_k = L\) and the sequence \(\{\|t_k - L\|_0^\delta\}_{k \in \mathbb{N}}\) is decreasing to 0. Put

\[s_k = \{\|t_k - L\|_0^\delta\}_{k \in \mathbb{N}}\]

for \(k \in \mathbb{N}\). Let \(\{A_i\}_{i \in \mathbb{N}}\) be a disjoint family of nonempty sets from \(\mathcal{F}_2\).

Define a sequence \((x_{mn})\) as following:

\[x_{mn} = \begin{cases} t_i, & \text{if } (m,n) \in A_i \\ L, & \text{if } (m,n) \notin A_i \end{cases}
\]

for any \(i\). Let \(\delta > 0\). Select \(k \in \mathbb{N}\) such that \(s_k < \delta\). Then,

\[A(\delta) = \{(m,n) \in N \times N : \|x_{mn} - L\|_0^+ \geq \delta\} \subseteq A_1 \cup A_2 \cup \cdots \cup A_k.
\]

Hence, \(A(\delta) \subseteq \mathcal{F}_2\) and so,

\[F_{\mathcal{F}_2}\lim_{m,n \to \infty} x_{mn} = L.
\]

By virtue of our assumption, we have

\[F_{\mathcal{F}_2^\ast}\lim_{m,n \to \infty} x_{mn} = L.
\]

So, there exists a set \(H \in \mathcal{F}_2\) such that \(M = N \times N \setminus H \in \mathcal{F}(\mathcal{F}_2)\) and

\[\lim_{m,n \to \infty} x_{mn} = L.\quad (2.1)
\]
Now, put \(H_i = A_i \cap H \), for \(i \in \mathbb{N} \). Then, \(H_i \in \mathcal{F}_2 \), for each \(i \in \mathbb{N} \). Also,

\[
\bigcup_{i=1}^{\infty} H_i = H \cap \bigcup_{i=1}^{\infty} A_i \subset H \quad \text{and so} \quad \bigcup_{i=1}^{\infty} H_i \in \mathcal{F}_2.
\]

Fix \(i \in \mathbb{N} \). If \(A_i \cap M \) is not included in the finite union of rows and columns in \(\mathbb{N} \times \mathbb{N} \), then \(M \) must contain an infinite sequence of elements \(\{(m_k, n_k)\} \), where both \(m_k, n_k \to \infty \) and \(x_{m_kn_k} = l_k \neq L \), for all \(k \in \mathbb{N} \) which contradicts (2.1). Hence, \(A_i \cap M \) must be contained in the finite union of rows and columns in \(\mathbb{N} \times \mathbb{N} \). Therefore,

\[
A_i \Delta H_i = A_i \setminus H_i = A_i \setminus H = A_i \cap M
\]

is also included in the finite union of rows and columns. Thus, \(\mathcal{F}_2 \) has the property (AP2).

\[\square \]

References