

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

On Asymptotically I-lacunary Statistical Equivalent Functions of Order α

Rahmet Savas^{1*} and Sefa Anıl Sezer¹

¹*Department of Mathematics, Faculty of Engineering and Natural Sciences, ˙Istanbul Medeniyet University, ˙Istanbul, Turkey* **Corresponding author E-mail: rahmet.savas@medeniyet.edu.tr*

Abstract

The aim of this paper is to provide a new approach to some well known summability methods. We first define asymptotically I-statistical equivalent functions of order α , asymptotically I_θ-statistical equivalent functions of order α and strongly I-lacunary equivalent functions of order α by taking two nonnegative real-valued Lebesgue measurable functions $x(t)$ and $y(t)$ in the interval (1,∞) instead of sequences and later we investigate their relationship.

Keywords: Lacunary statistical convergence, I*-lacunary statistical equivalence of order* α*, asymptotically equivalent functions, ideal, filter, lacunary sequence.*

2010 Mathematics Subject Classification: 40A30, 40A35, 40D25.

1. Introduction and Preliminaries

The idea of statistical convergence was formerly introduced under the name almost convergence by Zygmund [\[20\]](#page-4-0) in 1935. The concept was formally presented by Steinhaus [\[19\]](#page-4-1) and Fast [\[3\]](#page-4-2) and later was presented independently by Schoenberg [\[18\]](#page-4-3). In 1993, Marouf [\[8\]](#page-4-4) gave definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson [\[9\]](#page-4-5) extended these definitions by presenting an asymptotically statistical equivalent analogue of these consepts. Recently, Das, Savas and Ghosal [\[2\]](#page-4-6) provided a new approach to well-known methods of summability by using ideal, introduced new notions such as I-statistical convergence and I-lacunary statistical convergence. In [\[14,](#page-4-7) [10,](#page-4-8) [11,](#page-4-9) [17\]](#page-4-10) several results on asymptotically I-lacunary statistical equivalent sequences are developed.

In [\[12,](#page-4-11) [13\]](#page-4-12) Savas gave generalized summability methods of functions and also introduced statistically convergent functions via ideals. Some other works on ideals can be found in [\[15,](#page-4-13) [16\]](#page-4-14).

We now give some definitions will be needed in the sequel.

Definition 1.1 (Marouf, [\[8\]](#page-4-4)). *Two nonnegative sequences* $x = (x_k)$ *and* $y = (y_k)$ *are called asymptotically equivalent if* \lim_k $\frac{x_k}{y_k} = 1$ *(denoted*) $by x \sim y$).

Definition 1.2 (Fridy, [\[4\]](#page-4-15)). A sequence $x = (x_k)$ is called statistically convergent (or S-convergent) to L, denoted by $st - \lim x_k = L$, if for *each* $\varepsilon > 0$ *,*

lim *n* 1 $\frac{1}{n}$ {*the number of k* $\leq n$: $|x_k - L| \geq \varepsilon$ } = 0.

The following definition is a combination of these two definitions.

Definition 1.3 (Patterson, [\[9\]](#page-4-5)). *Two nonnegative sequence* $x = (x_k)$ *and* $y = (y_k)$ *are called asymptotically statistical equivalent of multiple L*, denoted by $x \stackrel{s_L}{\sim} y$, if for each $\varepsilon > 0$,

$$
\lim_{n} \frac{1}{n} \left\{ the \ number \ of \ k < n : \ \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} = 0.
$$

This definition is called simply asymptotically statistical equivalent if $L = 1$ *.*

On the other hand, Colak [\[1\]](#page-4-16) extend the definition of statistical convergence as follows.

Email addresses: rahmet.savas@medeniyet.edu.tr (R. Savas), sefaanil.sezer@medeniyet.edu.tr (S. A. Sezer)

Definition 1.4 (Colak, [\[1\]](#page-4-16)). A sequence $x = (x_k)$ is called statistically convergent of order α where $0 < \alpha \leq 1$ (or S^{α} -convergent) to L, if *for each* $\varepsilon > 0$ *,*

$$
\lim_{n} \frac{1}{n^{\alpha}} \text{ {the number of } } k \leq n : |x_k - L| \geq \varepsilon \} = 0.
$$

A lacunary sequence $\theta = (p_r)_{r \in \mathbb{N}_0}$ where $p_0 = 0$, $p_{r-1} < p_r$ for all r and $h_r = p_r - p_{r-1} \to \infty$ as $r \to \infty$. Also let denote $q_r = \frac{p_r}{p_{r-1}}$ and $I_r = (p_{r-1}, p_r).$

Definition 1.5 (Fridy and Orhan [\[5\]](#page-4-17)). *A sequence* $x = (x_k)$ *is called lacunary statistically convergent (or* S_θ *convergent) to L*, *if for each* $\varepsilon > 0$,

$$
\lim_{r} \frac{1}{h_r} |\{k \in I_r : |x_k - L| \ge \varepsilon\}| = 0.
$$

Here and in the sequel, the vertical bars indicate the cardinality of the enclosed set.

Definition 1.6 (Kostyrko et al., [\[6\]](#page-4-18)). *A non-empty family* I ⊂ 2 *^Y of subsets of a non-empty set Y is said to be an ideal in Y if the following conditions hold:*

- *(i)* $A, B \in I$ *implies* $A \cup B \in I$ *,*
- *(ii)* $A \in I, B \subset A$ *imply* $B \in I$ *.*

Definition 1.7 (Kostyrko et al., [\[7\]](#page-4-19)). A non-empty family $F \subset 2^{\mathbb{N}}$ is said to be filter of \mathbb{N} if the following conditions hold:

(i) $\emptyset \notin F$,

- *(ii)* $A, B \in F$ *implies* $A ∩ B \in F$ *,*
- *(iii)* $A \in F$, $B \subset A$ *imply* $B \in F$.

If I is a proper ideal of N (i.e. $\mathbb{N} \notin I$) then the family of sets $F(I) = \{M \subset \mathbb{N} : \exists A \in I : M = \mathbb{N}/A\}$ is a filter of N. It is called the filter *associated with the ideal.*

Definition 1.8 (Kostyrko et al., [\[6\]](#page-4-18)). *A proper ideal* I *is to be admissible if* $\{n\} \in I$ *for each* $n \in \mathbb{N}$.

Definition 1.9 (Kostyrko et al., [\[6\]](#page-4-18)). *Given* $I \subset 2^{\mathbb{N}}$ *be a non-trivial ideal in* \mathbb{N} . A sequence (x_k) called I-convergent to L if for each $\varepsilon > 0$, $A(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\} \in I.$

Definition 1.10 (Das et al., [\[2\]](#page-4-6)). *A sequence* (x_k) *is called* I-statistically convergent (or S(I)-convergent) to L, if for each $\varepsilon > 0$ and $\delta > 0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{n} \left|\left\{k \leq n : |x_k - L| \geq \varepsilon\right\}\right| \geq \delta\right\} \in I.
$$

In this case we write $x_k \to L(S(I))$ *. The class of all I-statistically convergent sequences is denoted by* $S(I)$ *.*

Definition 1.11 (Das et al., [\[2\]](#page-4-6)). Let θ be a lacunary sequence. A sequence $x = (x_k)$ is said to be I_θ -statistically convergent (or $S_\theta(I)$ *convergent) to L, if for all* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{r \in \mathbb{N} : \frac{1}{h_r} \left|\left\{k \in I_r : |x_k - L| \ge \varepsilon\right\}\right| \ge \delta\right\} \in \mathcal{I}.
$$

In this case, we write $(x_k) \to L(S_\theta(I))$ *. The class of all* I_θ-statistically convergent sequences is denoted by S_θ (I).

Definition 1.12 (Das et al., [\[2\]](#page-4-6)). Let θ be a lacunary sequence. A sequence $x = (x_k)$ is said to be strong I-lacunary convergent to (or N_{θ} (I)*-convergent*) to *L*, if for any $\varepsilon > 0$,

$$
\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} |x_k - L| \ge \varepsilon \right\} \in I.
$$

In this case, we write $x_k \to L(N_\theta(I))$ *. The class of all strong I-lacunary convergent sequences is denoted by* $N_\theta(I)$ *.*

Definition 1.13 (Savas, [\[10\]](#page-4-8)). *Two nonnegative sequences* $x = (x_k)$ *and* $y = (y_k)$ *are said to be asymptotically* I-statistical equivalent of *multiple L provided that for every* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{n \in \mathbb{N}: \frac{1}{n} \left| \left\{k \leq n : \left|\frac{x_k}{y_k} - L\right| \geq \varepsilon\right\}\right| \geq \delta \right\} \in I \text{ (denoted by } x^{S^L(\mathbb{I})}y)
$$

and simply asymptotically I-statistical equivalent if $L = 1$.

Definition 1.14 (Savas, [\[10\]](#page-4-8)). *Two nonnegative sequences* $x = (x_k)$ *and* $y = (y_k)$ *are said to be asymptotically* I_0 -statistical equivalent of *multiple L provided that for every* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{k \in I_r : \left|\frac{x_k}{y_k} - L\right| \ge \varepsilon\right\} \right| \ge \delta \right\} \in I \text{ (denoted by } x^{S_0^L(1)}y)
$$

and simply asymptotically I_θ -statistical equivalent if $L = 1$.

Definition 1.15 (Savas, [\[10\]](#page-4-8)). *Two nonnegative sequences* $x = (x_k)$ *and* $y = (y_k)$ *are said to be strong asymptotically* I-lacunary equivalent *of multiple L provided that for every* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \in I \text{ (denoted by } x_{\sim}^{N_{\theta}^L(1)}(y)
$$

and simply strong asymptotically I-lacunary equivalent if $L = 1$.

2. New Definitions

Inspired by the definitions given in the previous section, we introduce new definitions on the asymptotically equivalent functions of order α .

Definition 2.1. Let θ be a lacunary sequence, and I be an admissible ideal in $\mathbb N$ and $x(t)$ and $y(t)$ be two nonnegative real valued Lebesgue *measurable functions in the interval* $(1, \infty)$ *. We say that the functions* $x(t)$ *and* $y(t)$ *are asymptotically* I-statistical equivalent of order α of *multiple L if for each* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}} \left| \left\{t \leq n : \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right| \geq \delta \right\} \in I, \text{ (denoted by } x^{S^L(1)^{\alpha}} y)
$$

and simply asymptotically I-statistical equivalent of order α if $L = 1$.

Definition 2.2. Let θ be a lacunary sequence, and I be an admissible ideal in $\mathbb N$ and $x(t)$ and $y(t)$ be two nonnegative real valued Lebesgue *measurable functions in the interval* $(1, \infty)$ *. We say that the functions* $x(t)$ *and* $y(t)$ *are asymptotically lacunary statistical equivalent of order* α *to multiple L if for each* $\varepsilon > 0$,

$$
\lim_{r \to \infty} \frac{1}{h_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right| = 0 \text{ (denoted by } x(t) \stackrel{S_\theta^{L^{\alpha}}}{\sim} y(t))
$$

and simply asymptotically lacunary statistical equivalent of order α *if* $L=1$.

Definition 2.3. Let θ be a lacunary sequence, and I be an admissible ideal in $\mathbb N$ and $x(t)$ and $y(t)$ be two nonnegative real valued Lebesgue *measurable functions in the interval* $(1, \infty)$ *. We say that the functions* $x(t)$ *and* $y(t)$ *are asymptotically* I_{θ} *-statistical equivalent of order* α *of multiple L if for each* $\varepsilon > 0$ *and* $\delta > 0$ *,*

$$
\left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \left| \left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right| \geq \delta \right\} \in I \text{ (denoted by } x(t)^{S_{\infty}^L(1)^{\alpha}} y(t))
$$

and simply asymptotically I_θ -statistical equivalent of order α if $L=1$. *Note that asymptotically* I_θ -statistical equivalent also called as asymptotically I-lacunary statistical equivalent.

Definition 2.4. Let θ be a lacunary sequence, and I be an admissible ideal in $\mathbb N$ and $x(t)$ and $y(t)$ be two nonnegative real valued Lebesgue *measurable functions in the interval* (1,∞)*. We say that the functions x*(*t*) *and y*(*t*) *are strong asymptotically* I*-lacunary equivalent of order* α *of multiple L provided that for every* $\varepsilon > 0$ *,*

$$
\left\{r \in \mathbb{N} : \frac{1}{h_r^\alpha} \int_{t \in I_r} \left| \frac{x(t)}{y(t)} - L \right| dt \ge \varepsilon \right\} \in I \text{ (denoted by } x(t)^{N_\infty^L(1)^\alpha} y(t))
$$

and simply strong asymptotically I*-lacunary equivalent of order* α *if L=1.*

 $If I = I_{fin} = {A \subseteq N: A \text{ is a finite subset }}, then, it follows that, if I can be defined by the following inequality.$ *equivalent of order* α *that is given as:*

$$
\lim_{r \to \infty} \frac{1}{h_r^{\alpha}} \int_{t \in I_r} \left| \frac{x(t)}{y(t)} - L \right| dt = 0.
$$

3. Main Results

In this section, we establish some implication relations.

Theorem 3.1. Suppose that $0 < \alpha \leq \beta \leq 1$. Then, $x(t) \int_{\alpha}^{S^L_{\alpha}(1)^{\alpha}} y(t)$ implies $x(t) \int_{\alpha}^{S^L_{\alpha}(1)^{\beta}} y(t)$.

Proof. For $0 < \alpha < \beta < 1$ we have

$$
\frac{\left|\left\{t\in I_r:\left|\frac{x(t)}{y(t)}-L\right|\geq \varepsilon\right\}\right|}{h_r^{\beta}}\leq \frac{\left|\left\{t\in I_r:\left|\frac{x(t)}{y(t)}-L\right|\geq \varepsilon\right\}\right|}{h_r^{\alpha}},
$$

Then for some $\delta > 0$,

$$
\left\{r \in \mathbb{N}: \frac{\left|\left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right|}{h_r^{\beta}} \geq \delta\right\} \subset \left\{r \in \mathbb{N}: \frac{\left|\left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right|}{h_r^{\alpha}} \geq \delta\right\}.
$$

Thus if the set on the right hand side is included in the ideal I then clearly the set on the left hand side included in I. This completes the proof of the theorem. \Box

Remark. Consider that $0 < \alpha < 1$. If $x(t) \int_{0}^{S_u^L(1)^\alpha} y(t)$ holds, then $x(t) \int_{0}^{S_u^L(1)} y(t)$.

We may prove the following theorem in a similar way. So, we skip the proof.

Theorem 3.2. *Suppose that* $0 < \alpha < \beta < 1$ *. Then*

(i)
$$
x(t) \stackrel{S_{\theta}^{L^{\alpha}}}{\sim} y(t)
$$
 implies $x(t) \stackrel{S_{\theta}^{L^{\beta}}}{\sim} y(t)$.

(ii) In particularly $x(t) \stackrel{S_{\theta}^{L^{\alpha}}}{\sim} y(t)$ *implies* $x(t) \stackrel{S_{\theta}^{L}}{\sim} y(t)$ *.*

Theorem 3.3. *Let* θ *be a lacunary sequence,*

(i) if
$$
x(t)^{N_Q^L(1)^\alpha} y(t)
$$
, then $x(t)^{S_Q^L(1)^\alpha} y(t)$,
\n(ii) if $x(t)$, $y(t) \in B(X, Y)$ and $x(t)^{S_Q^L(1)^\alpha} y(t)$, then $x(t)^{N_Q^L(1)^\alpha} y(t)$,
\n(iii) $x(t)^{S_Q^L(1)^\alpha} y(t) \cap B(X, Y) = x(t)^{N_Q^L(1)^\alpha} y(t) \cap B(X, Y)$,

where B(*X*,*Y*) *is the set of bounded functions.*

Proof. (i) Let $\varepsilon > 0$ and $x(t) \int_{0}^{N_{\theta}^{L}(I)^{\alpha}} y(t)$. We obtain

$$
\int_{t \in I_r} \left| \frac{x(t)}{y(t)} - L \right| dt \ge \int_{t \in I_r \& \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon} \left| \frac{x(t)}{y(t)} - L \right| dt
$$
\n
$$
\ge \varepsilon \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right|
$$

and then,

$$
\frac{1}{\varepsilon h_r^{\alpha}} \int_{t \in I_r} \left| \frac{x(t)}{y(t)} - L \right| dt \ge \frac{1}{h_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right|.
$$

Hence, for some $\delta > 0$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \left| \left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \subseteq \left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \int_{t \in I_r} \left|\frac{x(t)}{y(t)} - L\right| dt \geq \varepsilon. \delta\right\} \in I.
$$

Therefore we have $x(t) \int_{0}^{S_{\theta}^{L}(I)^{\alpha}} y(t)$.

(ii) Assume $x(t)$ and $y(t)$ are in $B(X,Y)$ and $x(t) \stackrel{S_b^L(T)^\alpha}{\sim} y(t)$. Then there exists a positive *K* satisfying $\Big|$ *x*(*t*) $\left| \frac{x(t)}{y(t)} - L \right| \leq K$ for every *t*. Given $\varepsilon > 0$, we get

$$
\frac{1}{h_r^{\alpha}} \int_{t \in I_r} \left| \frac{x(t)}{y(t)} - L \right| dt = \frac{1}{h_r^{\alpha}} \int_{t \in I_r \& \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon} \left| \frac{x(t)}{y(t)} - L \right| dt + \frac{1}{h_r^{\alpha}} \int_{t \in I_r \& \left| \frac{x(t)}{y(t)} - L \right| < \varepsilon} \left| \frac{x(t)}{y(t)} - L \right| dt
$$
\n
$$
\le \frac{K}{h_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \frac{\varepsilon}{2} \right\} \right| + \frac{\varepsilon}{2}.
$$

Thus, we observe

$$
\left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \int_{t \in I_r} \left|\frac{x(t)}{y(t)} - L\right| dt \geq \varepsilon\right\} \subseteq \left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \left|\left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \frac{\varepsilon}{2}\right\}\right| \geq \frac{\varepsilon}{2K}\right\} \in I.
$$

Consequently, we obtain $x(t) \stackrel{N_{\Theta}^L(1)^{\alpha}}{\sim} y(t)$.

(iii) It can be proved by using (*i*) and (*ii*).

Theorem 3.4. Let θ be a lacunary sequence with $\liminf_r q_r^{\alpha} > 1$, then $x(t) \int_{-\infty}^{S^L(1)^{\alpha}} y(t)$ implies $x(t) \int_{-\infty}^{S^L(1)^{\alpha}} y(t)$.

Proof. Assume that $\liminf q_r^{\alpha} > 1$. Hence, there exist a $\beta > 0$ such that $q_r^{\alpha} \geq 1 + \beta$ for large enough *r*, that implies

$$
\frac{h_r^{\alpha}}{p_r^{\alpha}} \ge \frac{\beta}{1+\beta}.
$$

Provided that $x(t) \int_{0}^{S} (t) \alpha^{i} y(t)$, then for all $\varepsilon > 0$ and large enough *r*, we find

$$
\frac{1}{p_r^{\alpha}} \left| \left\{ t \le p_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right| \ge \frac{1}{p_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right| \\
\ge \frac{\beta}{1 + \beta} \frac{1}{h_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right|.
$$

Thus, for $\delta > 0$, we obtain

$$
\left\{r \in \mathbb{N}: \frac{1}{h_r^\alpha} \left| \left\{t \in I_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \subseteq \left\{r \in \mathbb{N}: \frac{1}{p_r^\alpha} \left| \left\{t \leq p_r: \left|\frac{x(t)}{y(t)} - L\right| \geq \varepsilon\right\}\right| \geq \frac{\delta\beta}{(1+\beta)}\right\} \in I,
$$

which completes the proof.

For the next theorem we suppose that the lacunary sequence θ satisfies that for any set $C \in F(I)$, $\bigcup \{n : p_{r-1} < n < p_r, r \in C\} \in F(I)$.

 \Box

 \Box

Theorem 3.5. Let θ be a lacunary sequence that satisfy the condition above, then $x(t) \int_{\infty}^{S_e^L(1)^\alpha} y(t)$ implies $x(t) \int_{\infty}^{S_e^L(1)^\alpha} y(t)$ provided that $B := \sup_r$ *r*−1 ∑ *i*=0 h_{i+1}^{α} *p* α *r*−1 < ∞*.*

Proof. Assume $x(t) \int_{0}^{S_E^L(1)^\alpha} y(t)$. For $\delta, \delta_1, \varepsilon > 0$ introduce the sets

$$
C = \left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ t \in I_r : \left| \frac{x(t)}{y(t)} - L \right| \ge \varepsilon \right\} \right| < \delta \right\}
$$

and

 $T = \left\{ n \in \mathbb{N} : \frac{1}{\sqrt{n}} \right\}$ *n* α $\begin{array}{c} \hline \end{array}$ $\left\{ t \leq n : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon \bigg\} \bigg|$ $<\delta_1\,\Bigr\}$

It is clear that $C \in F(I)$, the filter associated with the ideal I. Besides see that, for every $j \in C$ $A_j = \frac{1}{\mu}$ *h* α *j* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\{ t \in \mathbf{I}_j : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon \bigg\} \bigg|$ $< \delta$. Assume *n* ∈ N be such that $p_{r-1} < n < p_r$ for some *r* ∈ *C*. Next, 1 *n* α $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\{ t \leq n : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon \bigg\} \bigg|$ $\leq \frac{1}{\alpha}$ *p* α *r*−1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\{ t \leq p_r : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon \bigg\} \bigg|$ $=\frac{1}{\alpha}$ *p* α *r*−1 $\left\{ t \in I_1 : \right\}$ *x*(*t*) $\left| \frac{x(t)}{y(t)} - L \right|$ $\geq \varepsilon \left\} + ... + \frac{1}{\alpha}$ *p* α *r*−1 $\left\{ t \in \mathrm{I}_r : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon$ $=\frac{p_1^{\alpha}}{p_{r-1}^{\alpha}}$ $\frac{1}{\sqrt{1}}$ *h* α 1 $\left\{ t \in I_1 : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon \bigg\} \bigg|$ $+\frac{(p_2-p_1)^{\alpha}}{\alpha}$ *p* α *r*−1 $\frac{1}{\sqrt{1}}$ *h* α 2 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\{ t \in I_2 : \right\}$ *x*(*t*) $\left| \frac{x(t)}{y(t)} - L \right|$ $\geq \varepsilon \bigg\} \bigg|$ $+\ldots+\frac{(p_r-p_{r-1})^{\alpha}}{\alpha}$ *p* α *r*−1 $\frac{1}{\sqrt{16}}$ *h* α *r* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\{ t \in \mathrm{I}_r : \right\}$ *x*(*t*) $\frac{x(t)}{y(t)} - L$ $\geq \varepsilon$ $=\frac{p_1^{\alpha}}{p_{r-1}^{\alpha}}A_1 + \frac{(p_2 - p_1)^{\alpha}}{p_{r-1}^{\alpha}}$ $\frac{(p_r - p_{r-1})^{\alpha}}{p_{r-1}^{\alpha}} A_2 + \dots + \frac{(p_r - p_{r-1})^{\alpha}}{p_{r-1}^{\alpha}}$ $\frac{P^{r-1}}{P_{r-1}^{\alpha}}$.*A_r* $\leq \sup_{j \in C} A_j \cdot \sup_r$ *r*−1 ∑ *i*=0 $(p_{i+1} - p_i)^{\alpha}$ $\frac{p_1}{p_{r-1}^{\alpha}}$ < *B*.δ.

Considering $\delta_1 = \frac{\delta}{B}$ and since $\bigcup \{n : p_{r-1} < n < p_r, r \in C\} \subset T$ where $C \in F(I)$, it is concluded from the condition on θ that also $T \in F(I)$. This completes the proof.

References

- [1] R. Colak, Statistical convergence of order α, Modern Methods in Analysis and its Applications, Anamaya Pub., New Delhi, (2010), 121–129.
- [2] P. Das, E. Savas and S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509–1514.
- [2] P. Das, E. Savas and S. K. Ghosal, On generalizations of certain summab [3] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [4] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [5] J. A. Fridy and C. Orhan, Lacunary statistical convergence. Pac. J. Math. 160 (1993), 43–51.
- [6] P. Kostyrko, T. Salat, W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2000/01), 669–685.
- [7] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I–Convergence and extremal I–Limit points, Math. Slovaca, 55 (2005), 443—464.
- [8] M. S. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16 (1993), 755–762.
- [9] R. F. Patterson, On asymptotically statistical equivalent sequences, Demonstratio Math. 36 (2003), 149–153.
- [10] E. Savas, On I-Asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ. 2013:111 (2013), 7 p. [11] E. Savas, On asymptotically I-Lacunary statistical equivalent sequences of order α, The International Conference on Pure Mathematics-Applied
- Mathematics Venice, Italy, (2014).
- [12] E. Savas, Generalized summability methods of functions using ideals, AIP Conference Proceedings V. 1676, (2015).
- [13] E. Savas, On generalized statistically convergent functions via ideals, Appl. Math. 10 (2016), 943–947.
- [14] E. Savas, Asymptotically I-Lacunary statistical equivalent of order α for sequences of sets, J. Nonlinear Sci. Appl. 10 (2017), 2860–2867.
- [15] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826–830.
- [16] E. Savas, P. Das and S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett., 25 (2012), 733–738.
- [17] E. Savas and H. Gumus, A generalization on I–asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., 2013:270 (2013), 9 p.
- [18] I.J.Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
- [20] A. Zygmund, *Trigonometric Series*, Cambridge University Press, Cambridge, UK, 1979.