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Abstract

In this paper, we generalize Fibonacci quaternion, octonion, sedenion, trigintaduonion, etc. and define Horadam 2k-ions and investigate their
properties. Each Horadam (such as Fibonacci, Lucas, Pell) quaternions, octonions and sedenions are Horadam 2k-ions. We also present
connection to some earlier works.
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1. Introduction

In this work we generalize Fibonacci quaternion, octonion, sedenion, trigintaduonion and so on. In section 1 we give definition of 2k-ions
and in section 2 we give definition of Horadam numbers which is generalization of Fibonacci numbers and contains Fibonacci, Lucas,
Pell, Jacobsthal and all other second order sequences. In section 3, we introduce Horadam 2k-ions which contains Fibonacci, Lucas, Pell,
Jacobsthal quaternions (octonions and sedenions). Moreover, in that section we give Binet formula, generating function, norm value of
Horadam 2k-ions and also Catalan identity, Cassini identity, d’Ocagne identity and a summation formula. In section 4 we present matrix
methods in Horadam 2k-ions.
In the following, we will briefly present important and very known algebra: Cayley-Dickson algebra.
In 1843, William Rowan Hamilton discovered the quaternions (H), which is a 4 = 22-dimensional algebra over R. This algebra is an
associative and a noncommutative algebra. In 1843, John Graves discovered the octonions (O), a 8 = 23-dimensional algebra over R which
is a nonassociative and a noncommutative algebra. In 1845, these algebras were rediscovered by Arthur Cayley. They are also known as
the Cayley numbers. This process, of passing from R to C, from C to H and from H to O was generalized to algebras over arbitrary fields
and rings. It is called the Cayley-Dickson doubling process or the Cayley–Dickson process. The next doubling process applied to O then
produces an algebra S (dim 24 = 16) called the sedenions. This doubling process can be extended beyond the sedenions to form what are
known as the 2k-ions (see for example [1], [18], [22]).
Now, we explain this doubling process. The Cayley-Dickson algebras are a sequence A0,A1, ... of non-associative R-algebras with involution.
The term “conjugation” can be used to refer to the involution because it generalizes the usual conjugation on the complex numbers. For a full
explanation of the basic properties of Cayley-Dickson algebras, see [1]. Cayley-Dickson algebras are defined inductively. We begin by
defining A0 to be R. Given Ak−1, the algebra Ak is defined additively to be Ak−1×Ak−1. Conjugation in Ak is defined by

(a,b) = (a,−b)

and multiplication is defined by

(a,b)(c,d) = (ac−db,da+bc) (1.1)

and addition is defined by componentwise as

(a,b)+(c,d) = (a+ c,b+d).

Ak has dimension N = 2k as an R−vector space. If we set, as usual, ‖x‖=
√

Re(xx) for x ∈ Ak then xx = xx = ‖x‖2 .
For specific k, how 2k-ions are called, is given in the following table.
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Table 1.

k 2 3 4 5 ...

2k-ions Quaternions Octonions Sedenions Trigintaduonions ...

Now, for a fixed k suppose that BN = {ei ∈ Ak : i = 0,1,2, ...,N− 1} is the basis for Ak, where N = 2k is the dimension of Ak, e0 is the
identity (or unit) and e1,e2, ...,eN−1 are called imaginaries. Then a 2k-ions S ∈ Ak can be written as

S =
N−1

∑
i=0

aiei = a0 +
N−1

∑
i=1

aiei

where a0,a1, ...,aN−1 are all real numbers. Here a0 is called the real part of S and ∑
N−1
i=1 aiei is called its imaginary part.

Addition of 2k-ions is defined as componentwise and multiplication is defined as follows: if S1,S2 ∈ Ak then we have

S1S2 =

(
N−1

∑
i=0

aiei

)(
N−1

∑
i=0

biei

)
=

N−1

∑
i, j=0

aib j(eie j). (1.2)

The operations requiring for the multiplication in (1.2) are quite a lot. At the hypercomplex algebra the most time-consuming operation is the
multiplication of two hypercomplex numbers. This is because the multiplication of two N-dimensional hypercomplex numbers requires N2

real multiplications and N(N−1) real additions. For example, the computation of a trigintaduonions multiplication (product) using the naive
method requires 1024 real multiplications and 992 real additions, while an algorithm which is given in [5] can compute the same result in
only 498 real multiplications (or multipliers – in hardware implementation case) and 943 real additions, for details see [5].
Using direct multiplication, the number of the operations requiring for the multiplication of two (specific) 2k-ions is given in the following
table.
Table 2.

2k-ions Computation method Multiplications Additions
Quaternions Based on expression (1.2) 16 12
Octonions Based on expression (1.2) 64 56
Sedenions Based on expression (1.2) 256 240

Trigintaduonions Based on expression (1.2) 1024 992
Efficient algorithms for the multiplication of quaternions, octonions, sedenions, and trigintaduonions with reduced number of real multiplica-
tions is already exist and results of synthesizing an efficient algorithm of computing the two 2k-ions product are presented in the following
table.
Table 3.

2k-ions Computation method Multiplications Additions
Quaternions Algorithm in [24] 8 −
Octonions Algorithm in [3] 32 88
Sedenions Algorithm in [4] 122 298

Trigintaduonions Algorithm in [5] 498 943

2. Horadam Numbers

Now let us recall the definition of Horadam numbers. In 1965, Horadam [15] defined a generalization of Fibonacci sequence, that is, he
defined a second-order linear recurrence sequence {Wn(a,b; p,q)}, or simply {Wn}, as follows:

Wn = pWn−1 +qWn−2; W0 = a, W1 = b, (n≥ 2) (2.1)

where a,b, p and q are arbitrary real numbers, see also Horadam [13], [16] and [17], . Now these numbers {Wn(a,b; p,q)} are called
Horadam numbers.
For some specific values of a,b, p and q, it is worth presenting these special Horadam numbers in a table as a specific name.
Table 4.

Name of sequence Wn(a,b; p,q) Binet Formula

Fibonacci Wn(0,1;1,1) = Fn

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n

√
5

Lucas Wn(2,1;1,1) = Ln

(
1+
√

5
2

)n
+
(

1−
√

5
2

)n

Pell Wn(0,1;2,1) = Pn

(
1+
√

2
)n
−
(

1−
√

2
)n

2
√

2
Pell-Lucas Wn(2,2;2,1) = pn

(
1+
√

2
)n

+
(

1−
√

2
)n

Jacobsthal Wn(0,1;1,2) = Jn
2n−(−1)n

3
Jacobsthal-Lucas Wn(2,1;1,2) = jn 2n +(−1)n

We can list some important properties of Horadam numbers that are needed.

• Binet formula of Horadam sequence can be calculated using its characteristic equation which is given as

t2− pt−q = 0.
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The roots of characteristic equation are

α =
p+
√

∆

2
, β =

p−
√

∆

2
.

where ∆ = p2 +4q. Using these roots and the recurrence relation Binet formula can be given as follows

Wn =
Aαn−Bβ n

α−β
(2.2)

where A = b−aβ and B = b−aα.
• The generating function for Horadam numbers is

g(t) =
W0 +(W1− pW0) t

1− pt−qt2 . (2.3)

• The Cassini identity for Horadam numbers is

Wn+1Wn−1−W 2
n = qn−1(pW0W1−W 2

1 −W 2
0 q). (2.4)

• A summation formula for Horadam numbers is
n

∑
i=0

Wi =
W1−W0(p−1)+qWn−Wn+1

1− p−q
. (2.5)

• For ∆ = p2 +4q > 0, α and β are reals and α 6= β . Note also that

α
2 = α

√
∆−q (2.6)

and

β
2 =−β

√
∆−q. (2.7)

•

Aα
n = αWn +qWn−1,

Bβ
n = βWn +qWn−1.

3. Horadam 2k-ions

In this section we introduce Horadam 2k-ions and present their important properties. We give Binet formula, generating function, Cassini
identity, summation formula and norm of these 2k-ions. First, we give some information about (Horadam) quaternion, octonion, sedenion
and trigintaduonion sequences from the literature.

• Horadam [14] introduced nth Fibonacci and nth Lucas quaternions as

Qn = Fn +Fn+1e1 +Fn+2e2 +Fn+3e3 =
3

∑
s=0

Fn+ses

and

Rn = Ln +Ln+1e1 +Ln+2e2 +Ln+3e3 =
3

∑
s=0

Ln+ses

respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers respectively. See also Halici and Karataş [12], and Polatlı [23].
• Various families of octonion number sequences (such as Fibonacci octonion, Pell octonion, Jacobsthal octonion, and third order

Jacobsthal octonion) have been defined and studied by a number of authors in many different ways. For example, Keçilioglu and
Akkuş [21] introduced the Fibonacci and Lucas octonions as

Qn =
7

∑
s=0

Fn+ses

and

Rn =
7

∑
s=0

Ln+ses

respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers respectively. In [10], Çimen and İpek introduced Jacobsthal
octonions and Jacobsthal-Lucas octonions. See also Tasci [26] for k-Jacobsthal and k-Jacobsthal-Lucas Quaternions and see İpek and
Çimen [19] and Karataş and Halici [20] for Horadam type octonions. Moreover, we refer to Szynal-Liana and Wlock [25] for Pell
quaternions and Pell octonions and Catarino [6] for Modified Pell and Modified k-Pell Quaternions and Octonions.
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• A number of authors have been defined and studied sedenion number sequences (such as second order sedenions: Fibonacci sedenion,
k-Pell and k-Pell–Lucas sedenions, Jacobsthal and Jacobsthal-Lucas sedenions). For example, Bilgici, Tokeşer and Ünal [2] introduced
the Fibonacci and Lucas sedenions as

F̂n =
15

∑
s=0

Fn+ses

and

L̂n =
15

∑
s=0

Ln+ses

respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers respectively. In [7], Catarino introduced k-Pell and k-Pell–Lucas
sedenions. In [9], Çimen and İpek introduced Jacobsthal and Jacobsthal-Lucas sedenions.

• Gül [11] introduced the k-Fibonacci and k-Lucas trigintaduonions as

T Fk,n =
31

∑
s=0

Fk,n+ses

and

T Lk,n =
31

∑
s=0

Lk,n+ses

respectively, where Fk,n and Lk,n are the nth k-Fibonacci and k-Lucas numbers respectively.

Definition 3.1. The Horadam 2k-ions sequence
{

Ŵn

}
n≥0

is defined by the following recurrence relation:

Ŵn =
N−1

∑
s=0

Wn+ses (3.1)

where Wn is the nth generalized Horadam number.

Note that from the definition of (2.1) and (3.1) we have the following recurrence relation:

Ŵn = pŴn−1 +qŴn−2. (3.2)

Firstly, we present the Binet formula. This formula is very useful for finding desired Horadam 2k-ions and takes part at many theorems’
proof. From now on, for fixed k (so that the dimension of Horadam 2k-ions is 2k = N) we fixed the following notations:

α̂ =
N−1

∑
s=0

α
ses, β̂ =

N−1

∑
s=0

β
ses.

Theorem 3.2. The Binet formula for Horadam 2k-ions is

Ŵn =
Aα̂αn−Bβ̂β n

α−β
. (3.3)

Proof. Repeated use of (2.2) in (3.1) enable us to write:

Ŵn =
N−1

∑
s=0

Wn+ses =

(
Aαn−Bβ n

α−β

)
e0 +

(
Aαn+1−Bβ n+1

α−β

)
e1

+

(
Aαn+2−Bβ n+2

α−β

)
e2 + ...+

(
Aαn+N−1−Bβ n+N−1

α−β

)
eN−1

=
Aα̂αn−Bβ̂β n

α−β
.

Alternative Proof of Theorem 3.2: We use the following identities:

Aα
n = αWn +qWn−1,

Bβ
n = βWn +qWn−1.

Note that

αŴn +qŴn−1 = α(Wn +Wn+1e1 + ...+Wn+N−1eN−1)+q(Wn−1 +Wne1 + ...+Wn+N−2eN−1)

= (αWn +qWn−1)e0 +(αWn+1 +qWn)e1 + ...+(αWn+N−1 +qWn+N−2)eN−1

From the identity Aαn = αWn +qWn−1 for nth Horadam number Wn, we have

αŴn +qŴn−1 = Aα̂α
n. (3.4)
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Similarly, we obtain

βŴn +qŴn−1 = Bβ̂β
n (3.5)

Substracting (3.5) from (3.4), we have

αŴn−βŴn = Aα̂α
n−Bβ̂β

n. (3.6)

So this proves (3.3).
For some particular cases of Binet formulas for Horadam 2k-ions, see Tables 5,6,7 and 8.
It is well known that for Horadam 2k-ions Ŵn defined by (3.1) the ordinary generating function is g(t) = ∑

∞
n=0 Ŵntn. In the following theorem

we present the generating function for Horadam 2k-ions.

Theorem 3.3. The generating function for Horadam 2k-ions is

g(t) =
Ŵ0 +(Ŵ1− pŴ0)t

1− pt−qt2 . (3.7)

Proof. Let

g(t) =
∞

∑
n=0

Ŵntn

be generating function of Horadam 2k-ions. Then using definition of Horadam 2k-ions, and substracting ptg(t) and qt2g(t) from g(t) we
obtain (note the shift in the index n in the third line)

(1− pt−qt2)g(t) =
∞

∑
n=0

Ŵntn− pt
∞

∑
n=0

Ŵntn−qt2
∞

∑
n=0

Ŵntn

=
∞

∑
n=0

Ŵntn− p
∞

∑
n=0

Ŵntn+1−q
∞

∑
n=0

Ŵntn+2

=
∞

∑
n=0

Ŵntn− p
∞

∑
n=1

Ŵn−1tn−q
∞

∑
n=2

Ŵn−2tn

= (Ŵ0 +Ŵ1t)− pŴ0t +
∞

∑
n=2

(
Ŵn− pŴn−1−qŴn−2

)
tn

= Ŵ0 +(Ŵ1− pŴ0)t.

Rearranging above equation, we get

g(t) =
Ŵ0 +(Ŵ1− pŴ0)t

1− pt−qt2 .

For Horadam 2k-ions Ŵn defined by (3.1), the exponential generating function is defined by e(t) = ∑
∞
n=0 Ŵn

tn

n! .

Theorem 3.4. For Ŵn, we have

e(t) =
Aα̂eαt −Bβ̂eβ t

α−β
. (3.8)

Proof. Using (3.3) in e(t) = ∑
∞
n=0 Ŵn

tn

n! , we obtain

e(t) =
∞

∑
n=0

(
Aα̂αn−Bβ̂β n

α−β

)
tn

n!
. (3.9)

Combining the formula et = ∑
∞
n=0

tn

n! and (3.9), we get (3.8).
There are three well-known identities for Fibonacci type numbers, namely, Catalan’s, Cassini’s, and d’Ocagne’s identities. The proofs of
these identities are based on Binet formulas. We can obtain these types of identities for Horadam 2k-ions using the Binet formulas derived
above. Two different Catalan’s identities for Horadam 2k-ions are given in the next theorem.

Theorem 3.5 (Catalan’s Identity). For any integers m and n we have

(a)

Ŵm−nŴm+n−Ŵ 2
m =

AB(αβ )m(β−n−α−n)(β nα̂β̂ −αnβ̂ α̂)

(α−β )2 (3.10)

(b)

Ŵm+nŴm−n−Ŵ 2
m =

AB(αβ )m(β−n−α−n)(β nβ̂ α̂−αnα̂β̂ )

(α−β )2 (3.11)
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Proof. By using Binet formula, we obtain

Ŵm−nŴm+n−Ŵ 2
m =

Aα̂αm−n−Bβ̂β m−n

α−β

Aα̂αm+n−Bβ̂β m+n

α−β
−

(
Aα̂αm−Bβ̂β m

α−β

)2

.

After necessary calculations we get the identity (3.10). Similarly we obtain (3.11).
Taking n = 1 in Catalan’s identitity we obtain Cassini’s identitity for Horadam 2k-ions. In the next theorem, we state two different Cassini
identities.

Corollary 3.6 (Cassini’s Identitity). For any integer m, we have

(a)

Ŵm−1Ŵm+1−Ŵ 2
m =

AB(αβ )m−1(βα̂β̂ −αβ̂ α̂)

α−β
, (3.12)

(b)

Ŵm+1Ŵm−1−Ŵ 2
m =

AB(αβ )m−1(ββ̂ α̂−αα̂β̂ )

α−β
. (3.13)

Note that from non-commutativity α̂β̂ 6= β̂ α̂ and so βα̂β̂ −αβ̂ α̂ 6= α̂β̂ (β −α).
We emphasize some particular cases of Binet formulas, generating functions and Cassini’s identities for Horadam 2k-ions:

• Let a = 0, b = p = q = 1. For k = 2, k = 3, k = 4 and k = 5 we get the Binet formula, generating function, Cassini’s identitity for
Fibonacci quaternions which is given by Halici and Karataş in [12], the Binet formula, generating function, Cassini’s identitity for
Fibonacci octonions which is given by Keçilioğlu and Akkuş in [21] or Halici and Karataş [12], the Binet formula, generating function,
Cassini’s identitity for Fibonacci sedenions which is given by Bilgici, Tokeşer and Ünal [2], and the Binet formula, generating function,
Cassini’s identitity for Fibonacci trigintaduonions which is given by Gül in [11], respectively.

• Let a = 2, b = p = q = 1. For k = 2, k = 3, k = 4 and k = 5 we obtain the Binet formula, generating function, Cassini’s identitity
for Lucas quaternions which is given by Halici and Karataş in [12], the Binet formula, generating function, Cassini’s identitity for
Lucas octonions which is given by Halici and Karataş in [12], the Binet formula, generating function, Cassini’s identitity for Lucas
sedenions which is given by Bilgici, Tokeşer and Ünal in [2], and the Binet formula, generating function, Cassini’s identitity for Lucas
trigintaduonions which is given by Gül in [11], respectively.

• Let a = 0, b = 1, p = 2, q = 1. For k = 2, k = 3, and k = 4, we get the Binet formula, generating function, Cassini’s identitity for Pell
quaternions which is given by Szynal-Liana and Wloch in [25], the Binet formula, generating function, Cassini’s identitity for Pell
octonions which is given by Szynal-Liana and Wloch in [25] and the Binet formula, generating function, Cassini’s identitity for Pell
sedenions which is given by Catarino in [7], respectively.

• Let a = 0, b = p = 1, q = 2. For k = 2, k = 3, and k = 4, we obtain the Binet formula, generating function, Cassini’s identitity for
Jacobsthal quaternions which is given by Tasci in [26], the Binet formula, generating function, Cassini’s identitity for Jacobsthal
octonions which is given by Çimen and İpek in [10] and the Binet formula, generating function, Cassini’s identitity for Jacobsthal
sedenions which is given by Çimen and İpek in [9], respectively.

We give the next four tables to show the differences of the formulas for particular case even they looks the same.
In the following table we present Cassini’s identities and Binet formulas for some Horadam (Fibonacci, Lucas, Pell, Jacobsthal) quaternions:
Table 5.

Horadam 22-ions:
Cassini’s Identity
Ŵm−1Ŵm+1−Ŵ 2

m
Binet Formula

Fibonacci Quaternion
(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

α̂

(
1+
√

5
2

)n
−β̂

(
1−
√

5
2

)n

√
5

Lucas Quaternion
−5(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

√
5α̂

(
1+
√

5
2

)n
−
√

5β̂

(
1−
√

5
2

)n

Pell Quaternion
(−1)m−1

(
(1−
√

2)α̂β̂−(1+
√

2)β̂ α̂

)
2
√

2
α̂(1+

√
2)

n−β̂(1−
√

2)
n

2
√

2

Jacobsthal Quaternion (−2)m−1(−α̂β̂−2β̂ α̂)
3

α̂2n−β̂ (−1)n

3
where

α̂ =
3

∑
s=0

α
ses, β̂ =

3

∑
s=0

β
ses.

In the next table we give Cassini’s identities and Binet formulas for some Horadam (Fibonacci, Lucas, Pell, Jacobsthal) octonions:
Table 6.

Horadam 23-ions:
Cassini’s Identity
Ŵm−1Ŵm+1−Ŵ 2

m
Binet Formula

Fibonacci Octonions
(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

α̂

(
1+
√

5
2

)n
−β̂

(
1−
√

5
2

)n

√
5

Lucas Octonions
−5(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

√
5α̂

(
1+
√

5
2

)n
−
√

5β̂

(
1−
√

5
2

)n

Pell Octonions
(−1)m−1

(
(1−
√

2)α̂β̂−(1+
√

2)β̂ α̂

)
2
√

2
α̂(1+

√
2)

n−β̂(1−
√

2)
n

2
√

2

Jacobsthal Octonions (−2)m−1(−α̂β̂−2β̂ α̂)
3

α̂2n−β̂ (−1)n

3
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where

α̂ =
7

∑
s=0

α
ses, β̂ =

7

∑
s=0

β
ses.

In the following table we present Cassini’s identities and Binet formulas for some Horadam (Fibonacci, Lucas, Pell, Jacobsthal) sedenions:
Table 7.

Horadam 24-ions:
Cassini’s Identity
Ŵm−1Ŵm+1−Ŵ 2

m
Binet Formula

Fibonacci Sedenions
(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

α̂

(
1+
√

5
2

)n
−β̂

(
1−
√

5
2

)n

√
5

Lucas Sedenions
−5(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

√
5α̂

(
1+
√

5
2

)n
−
√

5β̂

(
1−
√

5
2

)n

Pell Sedenions
(−1)m−1

(
(1−
√

2)α̂β̂−(1+
√

2)β̂ α̂

)
2
√

2
α̂(1+

√
2)

n−β̂(1−
√

2)
n

2
√

2

Jacobsthal Sedenions (−2)m−1(−α̂β̂−2β̂ α̂)
3

α̂2n−β̂ (−1)n

3
where

α̂ =
15

∑
s=0

α
ses, β̂ =

15

∑
s=0

β
ses.

In the following table we give Cassini’s identities and Binet formulas for some Horadam (Fibonacci, Lucas, Pell, Jacobsthal) trigintaduonions:
Table 8.

Horadam 25-ions:
Cassini’s Identity
Ŵm−1Ŵm+1−Ŵ 2

m
Binet Formula

Fibonacci Trigintaduonions
(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

α̂

(
1+
√

5
2

)n
−β̂

(
1−
√

5
2

)n

√
5

Lucas Trigintaduonions
−5(−1)m−1

((
1−
√

5
2

)
α̂β̂−

(
1+
√

5
2

)
β̂ α̂

)
√

5

√
5α̂

(
1+
√

5
2

)n
−
√

5β̂

(
1−
√

5
2

)n

Pell Trigintaduonions
(−1)m−1

(
(1−
√

2)α̂β̂−(1+
√

2)β̂ α̂

)
2
√

2
α̂(1+

√
2)

n−β̂(1−
√

2)
n

2
√

2

Jacobsthal Trigintaduonions (−2)m−1(−α̂β̂−2β̂ α̂)
3

α̂2n−β̂ (−1)n

3
where

α̂ =
31

∑
s=0

α
ses, β̂ =

31

∑
s=0

β
ses.

Remark 3.7. The formulas in the above last four tables looks the same but notice the differencies of α̂ and β̂ ’s for each case of k.

The following theorem gives d’Ocagne’s identity for Horadam 2k-ions.

Theorem 3.8 (d’Ocagne’s Identity). For any integers m and n, we have

ŴmŴn+1−Ŵm+1Ŵn =
AB(αnβ m−αmβ n)(βα̂β̂ −αβ̂ α̂)

(α−β )2 . (3.14)

Proof. By using Binet formula, we obtain

ŴmŴn+1−Ŵm+1Ŵn =
Aα̂αm−Bβ̂β m

α−β

Aα̂αn+1−Bβ̂β n+1

α−β
− Aα̂αm+1−Bβ̂β m+1

α−β

Aα̂αn−Bβ̂β n

α−β

After necessary calculations we get the identity (3.14).
In the next Theorem, we give the summation formula for the first n+1 Horadam 2k-ions.

Theorem 3.9. The sum formula for Horadam 2k-ions is

n

∑
i=0

Ŵi =
1

α−β

(
Bβ̂β n+1

1−β
− Aα̂αn+1

1−α

)
+C, (3.15)

where

C =
Aα̂ (1−β )−Bβ̂ (1−α)

(α−β )(1−α)(1−β )
.

Proof. By using the Binet formula and then geometric series we obtain

n

∑
i=0

Ŵi =
Aα̂

α−β

n

∑
i=0

α
n− Bβ̂

α−β

n

∑
i=0

β
n

=
Aα̂

α−β

1−αn+1

1−α
− Bβ̂

α−β

1−β n+1

1−β
.
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After some calculations we get

n

∑
i=0

Ŵi =
1

α−β

(
Bβ̂β n+1

1−β
− Aα̂αn+1

1−α

)
+

Aα̂ (1−β )−Bβ̂ (1−α)

(α−β )(1−α)(1−β )
.

This completes the proof.
By using the initial values and roots of characteristic equation we can state the norm of nth Horadam 2k-ions as follows.

Theorem 3.10. The norm of nth Horadam 2k-ions is

Nr(Ŵn) =
A2α2n(1+α2 +α4 + · · ·+αN−2)+B2β 2n(1+β 2 +β 4 + · · ·+β N−2)

(α−β )2 −D (3.16)

where

D =
2AB(−q)n(a+(−q)+ · · ·+(−q)

N
2 −1)

(α−β )2 and N = 2k.

Proof. We have defined nth Horadam 2k-ions as

Ŵn =Wne0 +Wn+1e1 + · · ·+Wn+N−1eN−1.

Thus, norm of nth Horadam 2k-ions is

Nr(Ŵn) = ŴnŴn = ŴnŴn =W 2
n +W 2

n+1 + · · ·+W 2
n+N−1.

Making necessary calculations and using the identities α +β = p and αβ =−q, we obtain

Nr(Ŵn) =
A2α2n(1+α2 +α4 + · · ·+αN−2)

(α−β )2 +
B2β 2n(1+β 2 +β 4 + · · ·+β N−2)

(α−β )2 −

2AB(−q)n(a+(−q)+ · · ·+(−q)
N
2 −1)

(α−β )2 .

4. Matrix Methods in Horadam 2k-ions

We now consider the following two special cases of {Wn} :

Un : =Un(p,q) =Wn(0,1; p,q),

Vn : =Vn(p,q) =Wn(2, p; p,q),

Then {Un} and {Vn} can be expressed in the form

Un = (αn−β
n)/(α−β ), (4.1)

Vn = α
n +β

n. (4.2)

These numbers Un and Vn are called fundamental numbers and primordial numbers, respectively. Note that if p = 1,q = 1 then (Un) and
(Vn) are classical Fibonacci and Lucas sequences, i.e,

Fn = Wn(0,1;1,1) =Un,

Ln = Wn(2,1;1,1) =Vn.

The matrix method is very useful method in order to obtain some identities for special sequences. We define the square Horadam matrix M
of order 2 as:

M =

(
p q
1 0

)
=

(
U2 qU1
U1 qU0

)
.

Note that

Mn =

(
Un+1 qUn
Un qUn−1

)
. (4.3)

For a proof of (4.3), see [8]. We can give a Corollary of the formula (4.3).

Corollary 4.1. [8] For every n≥ 1 we have

(a) det(Mn) = (−q)n

(b) Un+1Un−1−U2
n =−(−q)n−1 (Cassini formula).
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Writing the recurrence (2.1) as(
Wn

Wn−1

)
=

(
p q
1 0

)(
Wn−1
Wn−2

)
in matrix form leads readily to the matrix power equation(

Wn
Wn−1

)
=

(
p q
1 0

)n−1( W1
W0

)
(4.4)

which holds for n≥ 1. Also we can write(
Un+1
Un

)
=

(
p q
1 0

)(
Un

Un−1

)
and(

Vn+1
Vn

)
=

(
p q
1 0

)(
Vn

Vn−1

)
.

Now we define the matrix MW as

MW =

(
Ŵ2 qŴ1
Ŵ1 qŴ0

)
. (4.5)

This matrice MW can be called Horadam 2k-ions matrix.

Theorem 4.2. For n≥ 0, the following holds:

MW

(
p q
1 0

)n

=

(
Ŵn+2 qŴn+1
Ŵn+1 qŴn

)
(4.6)

Proof. We prove by mathematical induction on n. If n = 0 then the result is clear. Now, we assume it is true for n = k, that is

MW Mk =

(
Ŵk+2 qŴk+1
Ŵk+1 qŴk

)
.

If we use (3.2), then for k ≥ 1, we have Ŵk+3 = pŴk+2 +qŴk+1 and Ŵk+2 = pŴk+1 +qŴk. Then by induction hypothesis, we obtain

MW Mk+1 = (MW Mk)M =

(
Ŵk+2 qŴk+1
Ŵk+1 qŴk

)(
p q
1 0

)
=

(
pŴk+2 +qŴk+1 qŴk+2
pŴk+1 +qŴk qŴk+1

)
=

(
Ŵk+3 qŴk+2
Ŵk+2 qŴk+1

)
=

(
Ŵ(k+1)+2 qŴ(k+1)+1
Ŵ(k+1)+1 qŴ(k+1)

)

Thus, (4.6) holds for all non-negative integers n.

Corollary 4.3. For n≥ 0, the following holds:

Ŵn+1 = Ŵ1Un+1 +qŴ0Un.

Proof. The proof can be seen by using the matricies in (4.3) and (4.5) and the identity (4.6).

Corollary 4.4. For n≥ 0, the following (Cassini formula) holds:

Ŵn+1Ŵn−1−Ŵ 2
n = (Ŵ2Ŵ0−Ŵ 2

1 )(−q)n−1.

Proof. From (4.6), we have

det
(

Ŵn+2 qŴn+1
Ŵn+1 qŴn

)
= det(MW )det

(
p q
1 0

)n

⇒ Ŵn+2qŴn−Ŵn+1qŴn+1 = (qŴ2Ŵ0−qŴ 2
1 )(−q)n

⇒ Ŵn+1Ŵn−1−Ŵ 2
n = (Ŵ2Ŵ0−Ŵ 2

1 )(−q)n−1.

Theorem 4.5. Let n and m nonnegative integers. Then we have the following relation between fundamental and primordial 2k-ions, i.e., Ûn
and V̂n,

V̂n+m =Um+1V̂n +qUmV̂n−1. (4.7)
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Proof. If m = 0 then

V̂n+0 =U0+1V̂n +qU0V̂n−1

which is true. Assume that the equality holds for m≤ k. For m = k+1, we have

V̂n+(k+1) = pV̂n+k +qV̂n+(k−1)

= p(Uk+1V̂n +qUkV̂n−1)+q(U(k−1)+1V̂n +qU(k−1)V̂n−1)

= (pUk+1 +qUk)V̂n +q(pUk +qU(k−1))V̂n−1

= Uk+2V̂n +qUk+1V̂n−1 =U(k+1)+1V̂n +qU(k+1)V̂n−1.

By strong induction on m, this proves (4.7).
Second method. We use Theorem 3.2 and formula (4.1). Note that A = b−aβ = p−2β and B = b−aα = p−2α. Now we have

Um+1V̂n +qUmV̂n−1 =
αm+1−β m+1

α−β

(p−2β )α̂αn− (p−2α)β̂β n

α−β

+q
αm−β m

α−β

(p−2β )α̂αn−1− (p−2α)β̂β n−1

α−β

=
(p−2β )α̂αn+m− (p−2α)β̂β n+m

α−β

= V̂n+m.
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