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Abstract
The reciprocal complementary distance (RCD) matrix of a graph G is defined as RCD(G) = [rij ], where
rij = 1

1+D−dij if i 6= j and rij = 0, otherwise, where D is the diameter of G and dij is the distance
between the vertices vi and vj in G. The RCD-energy of G is defined as the sum of the absolute values
of the eigenvalues of RCD-matrix. Two graphs are said to be RCD-equienergetic if they have same
RCD-energy. In this paper, the RCD-energy of the complement of line graphs of certain regular graphs
in terms of the order and degree is obtained and as a consequence, pairs of RCD-equienergetic graphs of
same order and having different RCD-eigenvalues are constructed.
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1. Introduction
Let G be a simple, undirected, connected graph with n vertices and m edges. Let the vertex set of G be

V (G) = {v1, v2, . . . , vn}. The adjacency matrix of a graph G is the square matrix A(G) = [aij ] of order n, in which
aij = 1 if vi is adjacent to vj and aij = 0, otherwise. The eigenvalues of A(G) are the adjacency eigenvalues of G, and
they are labeled as λ1 ≥ λ2 ≥ · · · ≥ λn. Two non-isomorphic graphs are said to be adjacency cospectral or simply
cospectral if they have same adjacency eigenvalues [3].

The distance between the vertices vi and vj , denoted by dij , is the length of the shortest path joining vi and vj .
The diameter of a graph G, denoted by diam(G) , is the maximum distance between any pair of vertices of G. A
graph G is said to be r-regular graph if all of its vertices have same degree equal to r. The complement of a graph
G, denoted by G, is a graph with vertex set V (G) and two vertices in G are adjacent if and only if they are not
adjacent in G. The line graph of G, denoted by L(G) is the graph whose vertices corresponds to the edges of G and
two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G. For k = 1, 2, . . ., the k-th
iterated line graph of G is defined as Lk(G) = L(Lk−1(G)), where L0(G) = G and L1(G) = L(G) [5].

The line graph of a regular graph G of order n0 and of degree r0 is a regular graph of order n1 = (n0r0)/2 and
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of degree r1 = 2r0 − 2. Consequently the order and degree of Lk(G) are [1, 2]

nk =
rk−1nk−1

2
(1.1)

and
rk = 2rk−1 − 2, (1.2)

where ni and ri stands for order and degree of Li(G), i = 0, 1, . . ..

Therefore
rk = 2kr0 − 2k+1 + 2 (1.3)

and

nk =
n0
2k

k−1∏
i=0

ri =
n0
2k

k−1∏
i=0

(2ir0 − 2i+1 + 2). (1.4)

The reciprocal complementary distance matrix or RCD-matrix [6, 8] of a graph G is an n× n matrix RCD(G) = [rij ],
where

rij =

{ 1
1+D−dij if i 6= j

0 if i = j,

where D is the diameter of G and dij is the distance between the vertices vi and vj in G.
The reciprocal complementary distance matrix is an important source of structural descriptors in the quantitative

structure property relationship (QSPR) model in chemistry [6, 8].
The eigenvalues of RCD(G), labeled as µ1 ≥ µ2 ≥ · · · ≥ µn are said to be the reciprocal complementary distance

eigenvalues or RCD-eigenvalues of G and their collection is called RCD-spectra of G. Two non-isomorphic graphs are
said to be RCD-cospectral if they have same RCD-spectra.

The reciprocal complementary distance energy or RCD-energy of a graph G, denoted by RCDE(G), is defined as
[11]

RCDE(G) =

n∑
i=1

|µi|. (1.5)

The Eq. (1.5) is defined in full analogy with the ordinary graph energy E(G) , defined as [4]

E(G) =

n∑
i=1

|λi|,

where λ1, λ2, . . . , λn are the adjacency eigenvalues of G. The ordinary graph energy has a relation with the total
π-electron energy of a molecule in quantum chemistry [9].

Two connected graphsG1 andG2 are said to be reciprocal complementary distance equienergetic orRCD-equienergetic
if RCDE(G1) = RCDE(G2) . In [10, 11] RCD-equienergetic graphs are obtained. In this paper we obtain the
RCD-energy of the complement of iterated line graphs of certain regular graphs and thus give another construction
of RCD-equienergetic graphs having different RCD-spectra.

We need following results.

Theorem 1.1. [3] If G is an r-regular graph, then its maximum adjacency eigenvalue is equal to r.

Theorem 1.2. [13] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the
adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times.

Theorem 1.3. [12] Let G be an r-regular graph of order n. If r, λ2, . . . , λn are the adjacency eigenvalues of G, then the
adjacency eigenvalues of G are n− r − 1 and −λi − 1, i = 2, 3, . . . , n.

Theorem 1.4. [11] LetG be an r-regular graph on n vertices and diam(G) = 2. If r, λ2, . . . , λn are the adjacency eigenvalues
of G, then its RCD-eigenvalues are n− 1− r

2 and −1− λi

2 , i = 2, 3, . . . , n.

Lemma 1.1. [7] Let G be an r-regular graph on n vertices. If r ≤ n−1
2 then diam

(
Lk(G)

)
= 2, k ≥ 1.
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2. RCD-Energy

Theorem 2.1. Let G be a regular graph of order n and degree r ≥ 4. If r ≤ n−1
2 , then

RCDE
(
L2(G)

)
=

3nr

2
(r − 2).

Proof. Let the adjacency eigenvalues of G be r, λ2, . . . , λn. By Theorem 1.2, the adjacency eigenvalues of L(G) are

2r − 2, and

λi + r − 2, i = 2, 3, . . . , n, and

−2, n(r − 2)/2 times.

 (2.1)

Since L(G) is a regular graph of order nr/2 and of degree 2r − 2, by Theorem 1.2 and Eq. (2.1), the adjacency
eigenvalues of L2(G) are

4r − 6, and

λi + 3r − 6, i = 2, 3, . . . , n, and

2r − 6, n(r − 2)/2, and

−2, nr(r − 2)/2 times.


(2.2)

From Theorem 1.3 and Eq. (2.2), the adjacency eigenvalues of L2(G) are

(nr(r − 1)/2)− 4r + 5, and

−λi − 3r + 5, i = 2, 3, . . . , n, and

−2r + 5, n(r − 2)/2, and

1, nr(r − 2)/2 times.


(2.3)

The graph L2(G) is a regular graph of order nr(r − 1)/2 and of degree (nr(r − 1)/2)− 4r + 5. Since r ≤ n−1
2 , by

Lemma 1.1, diam
(
L2(G)

)
= 2. Therefore by Theorem 1.4 and Eq. (2.3), the RCD-eigenvalues of L2(G) are

(nr2 − nr + 8r − 14)/4, and

(λi + 3r − 7)/2, i = 2, 3, . . . , n, and

(2r − 7)/2, n(r − 2)/2, and

−(3/2), nr(r − 2)/2 times.


(2.4)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition −r ≤ λi ≤ r [3].
If r ≥ 4, then (nr2 − nr + 8r − 14) ≥ 0, λi + 3r − 7 ≥ 0 and 2r − 7 ≥ 0.
Therefore by Eq. (2.4),

RCDE
(
L2(G)

)
=

nr2 − nr + 8r − 14

4
+

n∑
i=2

(λi + 3r − 7)

2

+

(
2r − 7

2

)
n(r − 2)

2
+

∣∣∣∣−3

2

∣∣∣∣ nr(r − 2)

2

=
3nr

2
(r − 2) since

n∑
i=2

λi = −r.
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Corollary 2.1. Let G be a regular graph of order n0 and of degree r0 ≥ 4. Let nk and rk be the order and degree respectively
of the k-th iterated line graph Lk(G), k ≥ 2. If r0 ≤ n0−1

2 , then

RCDE
(
Lk(G)

)
=

3nk−2rk−2

2
(rk−2 − 2).

Proof. If r0 ≤ n0−1
2 , then by Eqs. (1.1) and (1.2), we have

r1 = 2r0 − 2 ≤ n0 − 3 ≤ 1

2

(n0r0
2
− 1
)
=
n1 − 1

2
.

Hence
rk−2 ≤

nk−2 − 1

2
.

Therefore by Theorem 2.1,

RCDE
(
Lk(G)

)
= RCDE

(
L2(Lk−2(G))

)
=

3nk−2rk−2

2
(rk−2 − 2).

Corollary 2.2. Let G be a regular graph of order n0 and of degree r0 ≥ 4. Let nk and rk be the order and degree respectively
of the k-th iterated line graph Lk(G), k ≥ 2. If r0 ≤ n0−1

2 , then

RCDE
(
Lk(G)

)
=

3

2
n0(r0 − 2)

k−2∏
i=0

(2ir0 − 2i+1 + 2).

Theorem 2.2. Let G be a cubic graph of order n ≥ 7. Then

RCDE
(
L(G)

)
=

3n+ E(G)

2
.

Proof. Let the adjacency eigenvalues of G be 3, λ2, . . . , λn. From Theorem 1.2, the adjacency eigenvalues of L(G) are

4, and

λi + 1, i = 2, 3, . . . , n, and

−2, n/2 times.

 (2.5)

From Theorem 1.3 and the Eq. (2.5), the adjacency eigenvalues of L(G) are

(3n/2)− 5, and

−λi − 2, i = 2, 3, . . . , n, and

1, n/2 times.

 (2.6)

Since G is a cubic graph on n ≥ 7 vertices, 3 ≤ n−1
2 . Therefore by Lemma 1.1, diam

(
L(G)

)
= 2.

Therefore by Theorem 1.4 and Eq. (2.6), the RCD-eigenvalues of L(G) are

(3n+ 6)/4, and

λi

2 , i = 2, 3, . . . , n, and

(−3/2), n/2 times.

 (2.7)

Therefore

RCDE
(
L(G)

)
=

∣∣∣∣3n+ 6

4

∣∣∣∣+ n∑
i=2

∣∣∣∣λi2
∣∣∣∣+ ∣∣∣∣−3

2

∣∣∣∣ n2
=

3n

4
+

3

2
+

1

2
(E(G)− 3) +

3n

4

=
3n+ E(G)

2
.
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3. RCD-Equienergetic graphs

If G1 and G2 are two regular graphs of same order and of same degree, then by Eq. (1.3) and (1.4) for any k ≥ 1,
Lk(G1) and Lk(G2) are also regular graphs of the same order and have the same number of edges. Hence Lk(G1)

and Lk(G2) are regular graphs of the same order and have the same number of edges.

Proposition 3.1. Let G1 and G2 be regular graphs of the same order n and of the same degree r. If r ≤ n−1
2 , then for k ≥ 1,

Lk(G1) and Lk(G2) are RCD-cospectral if and only if G1 and G2 are cospectral.

Proof. If G1 and G2 are regular cospectral graphs then applying Theorem 1.2 repeatedly we get that Lk(G1) and
Lk(G2) are cospectral for k ≥ 1. Therefore by Theorem 1.3, Lk(G1) and Lk(G2) are cospectral. Since r ≤ n−1

2 ,

by Lemma 1.1, diam
(
Lk(G1)

)
= 2 and diam

(
Lk(G2)

)
= 2. Therefore by Theorem 1.4, Lk(G1) and Lk(G2) are

RCD-cospectral.
Conversely, let Lk(G1) and Lk(G2) are RCD-cospectral. Suppose G1 and G2 are not cospectral. Then by

Theorem 1.2, Lk(G1) and Lk(G2) are not cospectral for k ≥ 1. Hence by Theorem 1.3, Lk(G1) and Lk(G2) are not
cospectral. Now, by using Theorem 1.4, Lk(G1) and Lk(G2) are not RCD-cospectral, which is a contradiction.
Hence G1 and G2 are cospectral.

Theorem 3.1. Let G1 and G2 be regular, not cospectral graphs of the same order n and of the same degree r ≥ 4. If r ≤ n−1
2 ,

then L2(G1) and L2(G2) form a pair of not RCD-cospectral, RCD-equienergetic graphs of equal order and of equal number
of edges.

Proof. If G1 and G2 are regular, not cospectral graphs of the same order n, same degree r ≥ 4 and r ≤ n−1
2 , then by

Proposition 3.1, L2(G1) and L2(G2) form a pair of not RCD-cospectral graphs of same order and same size. And
by Theorem 2.1, RCDE

(
L2(G1)

)
= 3nr

2 (r− 2) = RCDE
(
L2(G2)

)
, which implies that L2(G1) and L2(G2) form a

pair RCD-equienergetic graphs.

Theorem 3.2. Let G1 and G2 be regular, not cospectral graphs of the same order n and of the same degree r ≥ 4. If r ≤ n−1
2 ,

then for k ≥ 2, Lk(G1) and Lk(G2) form a pair of not RCD-cospectral, RCD-equienergetic graphs of equal order and of
equal number of edges.

Proof. Since Lk(G1) = L2(Lk−2(G1)) and Lk(G2) = L2(Lk−2(G2)), the result follows from Theorem 3.1.

Proposition 3.2. Let G1 and G2 be cubic graphs of order n ≥ 7, such that E(G1) = E(G2). Then

RCDE
(
L(G1)

)
= RCDE

(
L(G2)

)
.

Proof. The result follows from Theorem 2.2 as E(G1) = E(G2).
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