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Abstract  Özet  

The flux, speed, and torque control performance of 

asynchronous motors are affected by parameter deviations 

and nonlinear variations of the asynchronous motor. In this 

study, Direct Torque Control (DTC) and Indirect Field 

Oriented Control (IFOC) structures are examined and 

asynchronous motor parameter deviations in both control 

structures are varied to desensitize with Artificial Neural 

Networks (ANN). In the literature, PI controllers are used 

in the IFOC structure. ANN is proposed for parameter 

desensitization, to the best of our knowledge no comparison 

and assessment has been made in the literature for these two 

methods. Comparisons are usually on the Direct Field 

Oriented Control (DFOC). This study proposes the 

parameter desensitization of IFOC and DTC with / without 

artificial neural networks and examines the effect on output 

performance. With the proposed control structure, it has 

been observed that the values of flux, torque and speed of 

asynchronous motor outputs capture the reference value at 

the desired performance and decrease the error values. With 

the proposed desensitization with ANN, IFOC performed 

over 50% better particularly in the time of overshoot and 

sitting than DTC. The proposed algorithms are 

implemented with Matlab / Simulink and the same 

reference values are used for each method. 

 Asenkron motorların akı, hız ve tork kontrolü performansı, 

motorun parametre sapmalarından ve doğrusal olmayan 

varyasyonlarından etkilenmektedir. Bu çalışmada, 

Doğrudan Moment Kontrolü (DMK) ve Dolaylı Alan 

Yönlendirmeli Kontrol (DAYK) yapıları incelenmiş ve her 

iki kontrol yapısındaki motor parametre sapmalarını yapay 

nöral ağlar (YNA) ile duyarsızlaştırılmaya çalışılmıştır. 

Literatürde Dolaylı Alan Yönlendirmeli Kontrol yapısında 

PI denetleyiciler kullanılmaktadır. Parametre 

duyarsızlaştırması için ANN önerilmesi ve bu iki yöntem 

için literatürde karşılaştırma ve değerlendirme 

yapılmamıştır. Karşılaştırmalar genellikle Doğrudan Alan 

Yönlendirmeli Kontrol üzerinedir. Bu çalışma, yapay nöral 

ağları olan/olmayan DAYK ve DMK’ nın parametre 

duyarsızlaştırması önererek ve çıkış performanslarına 

etkisini incelemektedir. Önerilen kontrol yapısı ile 

asenkron motor çıkışındaki akı, tork ve hızın istenen 

performansta verilen referans değeri yakaladığı ve hata 

değerlerinin azaldığı görülmektedir. YNA ile yapılan 

duyarsızlaştırma ile DAYK ’ın DMK’ e göre, özellikle 

aşma ve oturma zamanında %50 ’nin üzerinde daha iyi 

performans gösterdiği saptanmıştır.  Önerilen algoritmalar 

Matlab/Simulink ile gerçeklenmiş ve her metot için aynı 

referans değerleri kullanılmıştır. 

Keywords: Asynchronous motor, Direct torque control, 

Indirect field oriented control, Speed control, Torque 

control, Matlab/Simulink 

 Anahtar kelimeler: Asenkron motor, Doğrudan moment 

kontrolü, Dolaylı alan yönlendirmeli kontrol, Hız kontrolü, 

Tork kontrolü, Matlab/Simulink 

1 Introduction 

Asynchronous motors are the electrical drive systems 

preferred by the industry due to their superior features such 

as simple structures, low maintenance, cheap prices, robust 

structures, high power/weight ratio and ability to operate in 

all kinds of environmental conditions. Nowadays, 

asynchronous motors are used in elevators, textile looms, 

eccentric presses, CNC looms, electric or hybrid cars. In 

addition, unlike DC motors, asynchronous motors can be 

used for many years as there is no brush structure [1] 

Asynchronous motors are the machines that convert 

electrical energy perfectly into mechanical energy besides 

the advantages mentioned above. However, mechanical 

energy is often required at different speeds and moments. 

The way to do this in a three-phase motor is to apply variable 

frequency and voltage [2].  

In the asynchronous motor, speed control is done by 

changing the stator voltage, stator winding pole pair, stator 

frequency and rotor resistance. Speed control can be done by 

changing the amplitude and frequency of the stator voltage. 

In order to change the motor speed, it is desired to keep the 

amplitude constant while decreasing the frequency of the 

voltage applied to the motor. This causes the motor to draw 

too much current from the source. In many applications, it is 

sufficient to keep the voltage frequency ratio constant. 

However, in the high performance applications where speed 

and torque change suddenly, it can be difficult to keep this 

ratio constant [3]. Vector control methods can be developed 

https://orcid.org/0000-0002-9903-2074
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which can be adjusted flux and torque as desired. Thus, 

nonlinear values in the variables of the asynchronous motor 

can be better observed and controlled. In the vector control 

methods, the rotor flux spatial position is calculated and 

controlled by the driver by comparing the rotor angular 

velocity obtained by speed feedback and the stator current 

vector.  The major disadvantage of vector control is the 

requirement to use a tachogenerator or encoder to achieve 

high accuracy. This makes it difficult to implement the driver 

system and increases its price. Vector control is divided into 

two categories which are known as direct vector control and 

indirect vector control. Linear controllers are used in the 

direct vector control. In the indirect vector control, 

calculations are performed with reactive energy equations 

[4]. 

The vector control method and the asynchronous motor's 

movement and moment are eliminated by the interlocking 

between each other. The moment correlation of the 

asynchronous motor with the lifting of the interlock between 

the flux and the moment becomes similar to the moment 

correlation of a DC motor. Thus, with the vector control of 

the asynchronous motor, the moment component of the stator 

current can be controlled linearly by keeping the flux 

component constant, as in the DC motors. Here, it is 

necessary to know the amplitude or position of one of the 

rotors, stator or air gap flux vectors in order to remove the 

interlock between the flux and the moment. Depending on 

the manner in which these vectors are obtained, the vector 

control is performed in two different ways, directly and 

indirectly. In the direct vector control method, the flux vector 

information generated in the motor is directly measured by 

the sensors. In the indirect vector control method, the 

position of the flux vector is found from the measured rotor 

speed/position and the calculated angular shift velocity. In 

the direct vector control method, flux information is obtained 

by measurement by the motor, therefore it requires special 

motors [5].  

Consequently, direct vector applications are restricted 

and the indirect vector control is particularly preferred in 

practice. The major disadvantage of the indirect vector 

control is the need for a speed sensor with a high speed 

accuracy. The necessity of speed sensor sensitivity for 

detecting motor variables could create major disadvantages 

[6]. 

In the indirect vector control of asynchronous motors, the 

nonlinear structure of these motors and the time-varying 

parameters during the study are important problems 

encountered in the direct/indirect vector control method 

which is very sensitive to the parameter change. In these 

control methods, since the slip frequency depends on the 

rotor time constant, the change in the rotor time constant may 

result in incorrect calculation of the slip and as a result, the 

misalignment of the field. In addition, due to the non-

linearity of the speed-moment characteristic of the 

asynchronous motors, sudden speed-moment changes can 

lead to instability of the motor. In order to overcome such 

drawbacks, the speed controller used in the control structure 

is required to be resistant to parameter changes and 

disturbing inputs [7, 8].  

The research in recent years has shifted towards a more 

durable and non-linear controller design because it is quite 

difficult to address these problems with a conventional 

hysteresis and PI controller. For this purpose, due to non-

linear structures of artificial neural networks (ANNs), fuzzy 

controllers (FC) and neural fuzzy controllers (NFC), 

adaptation and learning abilities, as well as the control of 

electric motors and the control of electric motors due to the 

lack of complex mathematical operations during the design 

phase, these methods have become widely studied and used 

[9]. NFC is mainly based on the realization of the functions 

of FC by ANN. Since it has a structure in which FC and ANN 

have superior characteristics, it has the capability of 

adaptation, learning and inference. The problems 

encountered in the vector control of asynchronous motors 

could be solved by these features and the non-linear structure 

of NFC. In the literature, NFC was used as the speed and 

speed monitor, parameter identifier and speed controller in 

the vector control of asynchronous motors. Although it is a 

controller which is resistant to parameter changes in its use 

as a speed controller, it cannot be able to resolve the steady 

state errors as it is still a problem to be solved for NFC 

similar to ANN and UN [10,11]. 

In this study, the speed control of an asynchronous motor 

was performed with both of these structures. Artificial neural 

networks were used because of the slowness of PI controllers 

and control structures’ resistance to parameter changes. 

Thus, it is intended to obtain a non-linear controller that is 

resistant to load change, which does not require the 

mathematical equation of the motor for the controller design. 

In addition, an integral controller has been installed at the 

ANN output to eliminate any continuous faults. With the 

proposed audit structure, the training of the ANN was carried 

out in real time with the reference input signal using the feed 

forward propagation algorithm. By using the ANN 

parameters obtained as a result of the training, the simulation 

results were presented by evaluating the durability of this 

controller against constant and nonlinear loads were applied 

to the engine at different speed and torque values. 

2 Materials and methods  

2.1 Control structures 

In this study, the block diagram of the asynchronous 

motor in the speed control is used. As a speed controller in 

the block diagram, PI controllers are preferred mostly 

because of their simple structure. However, PI parameters 

designed according to constant motor parameters can be 

insufficient under the motor dynamics and non-linear load 

conditions. This problem can be addressed by having the 

controller with adaptive parameters. For this purpose, NFC 

is used because of its non-linear structure, its ability to make 

learning, adaptation and inference, and its non-linear control 

system. As a controller, despite all these significant 

advantages, NFC as a supervisor is not sufficient to remedy 

the steady-state errors in the speed controls of drive systems, 

as in the ANN and the UN. This problem is solved by 

connecting the integral controller to the output of the NFC 

[12, 13]. Thus, a temporary and continuous state of changing 

the load and the parameters of the control structure is 
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intended to be resistant. In the DTC method, the motor’s flux 

and torque were calculated with the help of measurable 

magnitudes by motor parameters. The control method is 

based on applying a switching series, which shall directly 

eliminate errors that may occur in the torque, through the 

reference given as value and the calculated flux, to the power 

switching elements in the inverter, and the torque reference 

is obtained from PI controller output [14]. The application of 

direct torque control of an asynchronous motor is given in 

Figure 1. 

 

 

Figure 1. Direct torque control structure of an 

asynchronous motor 

 

Vector control technique is based on the simulation of the 

torque and flux control components of the motor by 

simulating the DC motor model of AC motor. In this way, 

the torque and speed of the AC motor will be directly related 

to the electromagnetic state of the motor and can be easily 

controlled as a DC motor [15]. 

To achieve DC motor performance, Clarke and Park 

transformations must be applied. The Clarke transform 

represents the transition from the three-phase ABC reference 

to the two-phase αβ reference, while the Park transformation 

represents the transition from the two-phase αβ reference to 

the rotary d-q reference [16, 17]. 

The voltage equations in the d-q coordinates of the 

asynchronous motor are given as follows: 

 

𝑢𝑑𝑠 =  𝑅𝑠𝑖𝑑𝑠 + 𝑝𝜆𝑑𝑠 − 𝜔𝑒𝜆𝑞𝑠 (1) 

 

𝑢𝑞𝑠 =  𝑅𝑠𝑖𝑞𝑠 + 𝑝𝜆𝑞𝑠 − 𝜔𝑒𝜆𝑑𝑠 (2) 

 

0 =  𝑅𝑟𝑖𝑑𝑟 + 𝑝𝜆𝑑𝑟 − (𝜔𝑒 − 𝜔𝑟)𝜆𝑞𝑟  (3) 

 

0 =  𝑅𝑟𝑖𝑞𝑟 + 𝑝𝜆𝑞𝑟 − (𝜔𝑒 − 𝜔𝑟)𝜆𝑑𝑟 (4) 

 

𝑅𝑟𝑖𝑑𝑟 + 𝑝𝜆𝑟 = 0 (5) 

 

𝑅𝑟𝑖𝑞𝑟 + 𝜔𝑠𝑙𝜆𝑟 = 0 (6) 

 

𝑖𝑑𝑠 = 𝑖𝑓 = [1 + 𝜏𝑟𝑝]
𝜆𝑟

𝐿𝑚

 (7) 

 

𝑖𝑞𝑠 = 𝑖𝑇 =
𝜏𝑟𝜆𝑟𝜔𝑠𝑙

𝐿𝑚

 (8) 

 

𝑇𝑒 = 𝑛𝑝

𝐿𝑚

𝐿𝑟

𝜆𝑑𝑟𝑖𝑞𝑠 = 𝑛𝑝

𝐿𝑚

𝐿𝑟

𝜆𝑑𝑟𝑖𝑇 (9) 

 

As shown in Equation 9, the electromagnetic torque is 

proportional to the rotor flux and the stator current in the q 

axis. This statement is similar to the torque statement of the 

DC motor. The DC motor is directly proportional to the field 

flux and inductive current in torque. Hasse flux estimation 

on this control structure has suggested that the sensor is not 

needed, it can be measured by estimating the rotor flux or it 

can be measured mathematically or by motor parameters [18, 

19]. In this way, the cost of the control structure is reduced 

and the ease of application is ensured. The application of the 

indirect field-oriented control structure to the asynchronous 

motor is shown in Figure 2. ASR and ATR blocks are PI 

controllers that control speed and torque changes [20]. The 

torque command is derived from the function Te* speed error 

signal, and the current command iT
* is derived from the 

function of the torque error signal. 

 

 

Figure 2. Indirect field oriented control structure 

 

2.1.1 Design PI Controller with Conventional Approach 

The simplest dynamic speed and torque model that can 

be used in an asynchronous motor is as in the block diagrams 

shown in Figure 3-4 [21]. 

 

 

Figure 3. Block diagram of speed controller 

 

 

Figure 4: Block diagram of torque controller 

 

If TL = 0, the closed loop transfer function for both block 

diagrams is as follows as, 
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𝐺(𝑠) =
(𝐾𝑝𝑠 + 𝐾𝑖)

𝑃
𝐽

𝑠2 +
𝑓𝑐 + 𝐾𝑝

𝐿𝑟
𝑠 +

𝐾𝑖

𝐽

 (10) 

 

𝐺(𝑠) =
(𝐾𝑝𝑠 + 𝐾𝑖)

𝑃
𝐽

𝑠2 +
𝑓𝑐 + 𝐾𝑝

𝐿𝑟
𝑠 +

𝐾𝑖

𝐽

 (11) 

 

The characteristic equivalence of the transfer function is 

as follows, 

𝑃(𝑠) = 𝑠2 +
𝑓𝑐 + 𝐾𝑝𝑃

𝐽
𝑠 +

𝐾𝑖𝑃

𝐽
= 0 (12) 

 

By applying of the two-poles complex root  𝑠1,2 =
 𝜌(−1 ± 𝑗), Ki and Kp coefficient expressions are obtained. 

Ρ is a positive constant 

 

𝐾𝑝 =    
2𝑝𝐽 − 𝑓𝑐

𝑃
      𝐾𝑖  =

2𝑗𝜌2

𝑃
 (13) 

 

Ρ is a positive constant, PI coefficients are given below 

in Table 1. 

 

Table 1. PI controller coefficients 

Coefficients Kp Ki 

In DTC 0.711             17.121 

In ASR 0.210                             20.010  

In ATR 1.010                         10.024 

 

2.1.2 Neural Network Structure 

There are many network structures in the use of neural 

networks in the audit area. However, due to the simplicity of 

its structure and its effectiveness in the control of non-linear 

systems, the so-called adaptive neural network system 

(ANNS) is preferred [22]. In this study, this network 

structure is used as a speed controller and its structure is 

presented in Figure 3. This network structure, which is used 

as a speed controller, has been selected as one, two and three 

inputs and single outputs according to the control block 

shown in Figure 5 and 7. ANN consists of a total of five 

layers and the functions performed in these layers are 

described below. 

1-Layer: The first layer is the membership function layer 

and the membership function degree for each input variable 

is calculated in this layer. In this case, three functions for 

each input are selected, one for bell function and two for 

sigmodal function.  

The first layer output of the ANN is y1, and the 

membership function parameters are a, b and c. The 

membership function degrees that connect to the output are 

calculated as follows: 

 

𝑦𝑖𝑗
1 =

1

1 + 𝑒−𝑎𝑖𝑗(𝑥𝑖
1−𝑐𝑖𝑗)

, 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,3 (14) 

 

𝑦𝑖2
1 =

1

1 + |
𝑥𝑖

1 − 𝑐𝑖2

𝑎𝑖2
|

2𝑏𝑖2
 

(15) 

 

The parameters a, b and c are also referred to as input 

parameters of the ANN. 

2- Layer: The second layer of the ANN constitutes the 

rule base and fuzzy rules are determined in this layer. The 

second layer output is y2, any k. The node is calculated as 

follows: 

 

𝑦𝑘
2 = ∏ 𝑦𝑖𝑗

1

𝑖

 𝑘 = 1,2, … ,9 (16) 

 

3- Layer: This layer is called the normalization layer and 

it calculates the degree of accuracy of fuzzy rules. Any k. 

normalization process for the node, k. fuzzy rule is obtained 

by dividing the degree of precision by the sum of the rules of 

certainty. 

 

𝑦𝑘
3 =

𝑦𝑘
2

∑ 𝑦𝑘
2

𝑘

 (17) 

 

4-Layer: The fourth layer of the NFC is called the size 

of the firing degree of a rule. The degree of firing of the 

normalized rules in this layer is multiplied by a linear 

function f and the fuzzy rules are cleared. 

 

𝑦𝑘
4 = 𝑦𝑘

4𝑓𝑘 (18) 

 

𝑓𝑘 = 𝑝𝑘𝑥1 + 𝑞𝑘𝑥2 + 𝑟𝑘 (19) 

 

Here, p, q and r are the parameters of the function f and 

are called the output parameters of the NFC. 

5-Layer: This layer is the output node of the SB and it 

transfers its sum to its output. 

 

𝑦5 = ∑ 𝑦𝑘
4

𝑘

 (20) 

 

Artificial neural network block which is established in Figure 

5 is implemented to the control structures and simulated using 

Matlab/Simulink software. Differences from previously 

designed control structures were observed and advantages 

and disadvantages of artificial neural networks are studied. 

 

 

Figure 5. The structure of artificial neural networks 

and layers 
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3 Results and discussion 

The ANN structure is added to the indirect field-oriented 

control system and simulated with the same reference speed 

and torque values. Figure 6 and 7 present the system with 

artificial neural network and without artificial neural 

network. 

 

 

Figure 6. Indirect field oriented control without artificial 

neural network structure 

 

 

Figure 7. Indirect field oriented control with artificial 

neural network structure 

 

Same additions also realized for the direct torque control 

structure. Artificial neural network is connected instead of 

PID and hysteresis controllers. To be able to observe the 

performance results, same reference speed and torque values 

are given to the system. Figures 8 and 9 show the direct torque 

control structures with and without artificial neural networks. 

The sampling period is Ts = 2e-6 in the methods. 

 

 

Figure 8. Direct torque control without artificial neural 

network structure 

 

After the modelling of these structures, speed responses, 

torque responses and flux estimations of the systems were 

simulated. Figure 10 and 11 show the flux estimations of the 

systems, respectively. Estimation of rotor flux which is one 

of the important design parameters will reduce the negative 

effects of long control processes and costly drive operations 

on engineering applications. Flux estimation errors of the 

methods were calculated according to the actual flux and 

estimated flux. 

 

 

Figure 9. Direct torque control with artificial neural 

network structure 

 

The flux estimation errors for ANN-IFOC, ANN-DTC, 

IFOC, DTC structures are calculated as 2%, 3%, 6% and 8%, 

respectively. 

 

 
 

 

Figure 10. Flux estimations of the systems 

 

 
 

 
 

Figure 11. Flux estimations with estimation errors 
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As seen in Figure 10 and 11, flux estimations of the 

systems show very close results to each other. The main 

differences are control structures and the addition of artificial 

neural network algorithm. The second comparison parameter 

is speed responses of the systems. Figure 12 shows the speed 

response of four systems. The reference speed is set 500 

rad/sec and systems are compared according to this value. 

 

 
 

 
 

Figure 12. Speed responses of the systems 

 

Table 2 expresses Figure 12 mathematically. Overshoot, 

rise time, settling time and final values of the systems are 

shown as a comparison parameter. 

 

Table 2. Comparison of speed responses 

Methods Overshoot Rise Time Settling Time 
Steady 

State 
Error 

Indirect Field 

Oriented 

Control with 
ANN 

10.9% 1.45 sec 4.81 sec 
0.002% 

error 

Direct Torque 

Control with 
ANN 

23.2% 1.58 sec 8.88 sec 
0.004% 

error 

Indirect Field 

Oriented 

Control 

41.7% 1.68 sec 9.71 sec 
0.008% 

error 

Direct Torque 

Control 
43.6% 1.80 sec 12.85 sec 

0.01% 

error 

 

As presented in Table 2, IFOC shows slightly better 

results similar to studies previously mentioned in the 

literature (Bose et al.,1997). When artificial neural networks 

are added to the system, difference between these two 

systems was increased as observed. Artificial neural network 

structure gives better performance with both of these control 

methods. Overshoot values, rise time and settling time values 

are decreased and a better convergence is made thanks to 

artificial neural networks. With the addition of ANN to both 

methods, there is close to 100% improvement by decreasing 

the overshoot from 23.2% to 10.9% and settling time from 

8.88 s to 4.81 s in the IFOC method speed graph. Same 

procedure is repeated for torque values. Figure 13 shows the 

torque responses of the systems. Initially the torque values 

were set 350 Nm and it instantly increased up to 1000 Nm in 

the first second. Table 3 expresses the Figure 13 

mathematically. Overshoot, rise time, settling time and final 

values of the systems are shown in Table 3 as a comparison 

parameter. 

 

 
 

 

Figure 13. Torque responses of the systems 

 

With the addition of ANN to both methods, the IFOC 

method decreased overshoot from 2.84% to 1.26% and the 

steady state error rate was the lowest with 0.001%. 

 

Table 3. Comparison of torque responses 

Methods Overshoot Rise Time Settling Time 
Steady 
State 

Error 
Indirect Field 

Oriented 
Control with 

ANN 

1.26% 6.5 sec 8.52 sec 
0.001% 
error 

Direct Torque 

Control with 

ANN 

2.84% 7.85 sec 11.5 sec 
0.003% 
error 

Indirect Field 
Oriented 

Control 

4.12% 9.38 sec 14.9 sec 
0.006% 

error 

Direct Torque 

Control 
6.48% 11.4 sec 18.9 sec 

0.008% 

error 

 

Different torque and speed values are simulated in Figure 

14 and 15, respectively. Black line which is given as a 

reference signal represents a real time signal. This signal 

provides more realistic information about changes and 

responses. It is seen that methods including ANN follow the 

reference torque -53N, 12N, 55N, 35N, 50N better and IFOC 

with ANN gives the closest output to the reference. Addition 

of the ANN structure has improved the speed. Reference 

speed -50 rad/s, 10 rad/s, 50 rad/s values were followed by 

IFOC with ANN and DTC with ANN. Unfortunately, DTC 

and IFOC couldn't follow the speed reference correctly. An 

undesired small shift in the motor parameters changes the 

output by changing the flux angle and switching states. The 

ANN structure eliminates these changes. The DTC method 

uses only stator resistance value as a motor parameter and 

possible changes in resistance due to the motor temperature 

will have a direct effect on the DTC performance. 
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Figure 14. Torque settlings 

 

 

Figure 15. Speed settlings 

 

ANN structure was added to minimize changes in the 

resistance for the DTC method and to keep rotor time 

constant in the IFOC method. In order to make a comparison 

of performances with DTC, IFOC and the proposed ANN-

DTC, ANN-IFOC methods, different ranges of speed and 

load values were also applied to the IM. While DTC has a 

simple structure, the method is sensitive to the parameter 

changes. On the other hand, IFOC is robust to the varying 

parameters due to its structure. The dynamic performance of 

IFOC is preferred under this comparison. Both the overshoot 

and the settling time of IFOC are much smaller than DTC. 

ANN-IFOC and ANN-DTC structures show better results 

than IFOC and DTC structures. ANN-IFOC structure has the 

fastest response and it can catch the sharpest changes during 

the process.  

 

 
 

 

Figure 15. Total harmonic distortions of the methods 

 

 

Figure 16 shows the total harmonic distortion values for 

each method. Since the drives are directly switched in the 

DTC method, it generates more harmonics than the IFOC 

method. Total harmonic values were 18.86% for DTC, 

12.21% for IFOC, 5.82% for ANN-DTC and 2.57% for 

ANN-IFOC. The fundamental frequency is 1Khz and the 

switching frequency is 5kHz. As shown in Figure 16, the 

ANN-IFOC structure has produced the least harmonic. 

4 Conclusion 

In this study, the control of an asynchronous motor drive 

in the direct torque control structure and indirect field 

oriented control structure is realized using with and without 

artificial neural network structures. Using the ANN 

controller, there is no need for intensive mathematical 

operations required for controller design. Thus, the effect of 

the time-varying parameters encountered in the control of the 

asynchronous motor has a positive effect on the performance 

of the asynchronous motor. The response of the IFOC and 

DTC structures to the parameter sensitization by using 

artificial neural networks can be seen from Figures. Majority 

of studies in the literature compared direct torque control 

structure and field orientated control structure. In our study, 

the performance of the indirect field orientated control 

structure compared to the direct torque control structure have 

been evaluated and have shown clearly. Due to the fact that 

the IFOC structure is particularly successful, the flux 

estimation has been performed on the reactive power. As 

shown in Table 2 and 3, speed and torque responses provided 

better results with ANN structure. Particularly for the speed 

outcomes, the IFOC structure with ANN has reached the 

settling time value 46% faster than DTC. In addition, it has 

responded 26% faster for the torque outcomes. THD levels 

with ANN have suppressed harmonics above 20Khz in both 

methods. In this study, outcomes of all structures have been 

explored and compared and according to our analysis, the 

ANN-IFOC structure gave the best performance result 

among all structures. Hence, the ANN-IFOC structure has 

the potential to provide better quality drive in industrial 

applications regardless of the parameters. 

Appendix  

 The asynchronous motor has following parameters; 

P =4                     Number of poles 

f0 =60                  Base frequency (Hz) 

Vs=470/1.73        Rated Voltage (V) 

T=350-1000         Rated Torque (Nm) 

Rs = 0.01485       Stator Resistance (ohm) 

Rr=0.009295       Rotor resistance (ohm) 

Rc=2000               Core loss equivalent resistance (ohm) 

ls=0.0003027       Stator Leakage Inductance  (H) 

lr = ls                    Rotor Leakage (H) 

Lm=0.01046         Constant Mutual Inductance (H) 

Prot=40000          Rotational Losses (W) 

Çıkar çatışması 

Yazarlar çıkar çatışması olmadığını beyan etmektedir. 
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