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Abstract 
The power of some statistical methods to detect major genes controlling quantitative traits was evaluated using simulated data. The data were 
simulated according to a balanced half-sib family structure. One hundred and twenty eight scenario of major gene segregation based on all 
possible combinations from 4 levels of polygenic heritability (0.2, 0.4, 0.6 and 0.8), 2 modes of inheritance (additive and dominant), 4 levels of 

gene frequency (0.2, 0.4, 0.6 and 0.8) and 4 levels of major gene effect in phenotypic standard deviation ( Pσ =0.5, 1, 2 and 3) were considered. 

The powers of 7 normality tests were compared for the detection of major genes. As tests of normality, power of tests of skewness and kurtosis 
coefficients, Bowman-Shenton, Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling normality tests were evaluated. 
The results showed that the power of all tests advanced with the increase of gene effects and the determination of dominant genes was easier than 
additive ones. The best power was obtained from Shapiro-Wilk, Bowman-Shenton and Anderson-Darling normality tests. In conclusion, these 
simple tests could be used in a systematic way as first indicators of major gene segregation in animal populations.  
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Kantitatif Karakterlere Etkili Major Genlerin Belirlenmesi Bakımından Kimi İstatistiki Testlerin Güçleri: II. 
Normal Dağılışa Uyum Testleri 

Özet 
Kantitatif karakterlere etkili major genlerin belirlenmesi bakımından kimi istatistiki metotların güçleri simülasyonla türetilen veriler 
kullanılarak değerlendirilmiştir. Veriler, dengeli bir üvey-kardeş familya yapısına göre türetilmiştir. Poligenik kalıtım derecesinin 4 
düzeyi (0,2, 0,4, 0,6 ve 0,8), iki farklı kalıtım tarzı (kodominant ve dominant), 4 farklı gen frekansı düzeyi (0,2, 0,4, 0,6 ve 0,8) ve 4 

farklı gen etkisi düzeyinin ( Pσ = 0,5, 1,0, 2,0 ve 3,0) tüm olası kombinasyonuna dayanan toplam 128 farklı major gen açılımı senaryosu 

değerlendirilmiştir. Major genlerin belirlenmesi amacıyla farklı 7 normal dağılışa uyum (normalite) ve 4 familya-içi varyans homojenliği 
testinin güçleri karşılaştırılmıştır. Normalite testi olarak, çarpıklık ve diklik katsayılarının testi ile Bowman-Shenton, Shapiro-Wilk, 
Kolmogorov-Smirnov, Cramer-von Mises ve Anderson-Darling testlerinin güçleri belirlenmiştir. Sonuçlar gen etkisindeki yükselme ile 
birlikte tüm testlerin gücünün arttığını ve dominant etkili genlerin belirlenmesinin kodominant etkili genlerden çok daha kolay olduğunu 
ortaya koymuştur. Değerlendirilen testler içerisinde en yüksek güç sırasıyla Shapiro-Wilk, Bowman-Shenton ve Anderson-Darling 
normalite testlerinden elde edilmiştir. Sonuç olarak, bu basit metotlar hayvan populasyonlarında major genlerin açılımının ilk göstergesi 
olarak kullanılabilirler. 

Anahtar kelimeler: Kantitatif karakterler, major gen, belirleme, normalite testi, simülasyon 

Introduction 

According to quantitative theory, most traits of economic 
importance in livestock are assumed to be controlled by 
many genes each having a small effect. This theory has 
been successfully applied in animal breeding up to date. 
However, in the last two decade, several major genes or 
quantitative trait loci (QTL) having an important effect on 
quantitative traits has been identified in farm animals. 
Major genes or QTL with large effects are loci that have a 
large effect on the phenotypic appearance of the trait 
(Roberts and Smith, 1982; Miyake et al., 1999). The 
Booroola and Inverdale genes affecting ovulation rate 

(Piper and Bindon, 1982; Davis et al., 1988) and the 
callipyge gene affecting meat production in sheep (Cockett  
et al., 1993), the double muscling gene affecting meat 
production in cattle (Hanset and Michaux, 1985a,b), the 
halothane sensitivity and the RN gene affecting meat 
quality (Le Roy  et al., 1990), the estrogen receptor locus 
affecting litter size in pigs (Rothschild  et al., 1996), and 
the naked neck gene affecting heat tolerance and dwarf 
gene affecting body size in poultry (Merat, 1990) are the 
notable examples. The efficiency of classical selection 
programs can be improved by the use of major gene 
information. For this reason, it is of great interests to detect 
such genes and genotyping individuals. With the advances 
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of molecular genetics and statistical methods in the last 
years, detection of major genes or QTL has been more 
possible. However, detection of major genes without 
molecular genetic applications remains important due to 
difficulties and high costs of molecular application. 
Furthermore, in livestock populations phenotypic 
observations are often abundantly available at a low cost 
and it is worthwhile to use them to realize a statistical 
analysis for searching major gene effects.     

If a major gene, whose effect is large enough, segregates 
there will be a detectable departure from normality (Le 
Roy and Elsen, 1992; Cemal, 1996; Falconer and Mackay, 
1996). Therefore, tests of normality can be used for 
determination of major genes as a first indicator. Simple 
indicators of major genes have been suggested elsewhere 
(Le Roy and Elsen, 1992). But, more detailed properties 
of normality tests for the detection of major genes were 
not studied until now. From this point of view the present 
paper aimed to evaluate power of a number of normality 
tests for the detection of major genes. 

Materials and Methods 

Experimental Design 

To determine the power of statistical tests for the 
identification of major genes, polygenic and mixed 
(polygenes + a major gene) inheritance models were 
compared. The polygenic data were simulated according 
to a balanced half-sib family structure: one data set 
consists of 50 sire families with 20 dams per sire and one 
progeny per dam. One phenotypic observation was 
generated for each progeny. Sires and dams are assumed 
to be unrelated. The model to describe the data based on 
polygenic inheritance can be represented as:  

ijiij esµy ++=  

where yij is the observation of jth progeny of ith sire, µ is 
the overall population mean of the polygenic and 
environmental components (set to zero), si is the random 
effect of ith sire (i.e. polygenic component) and eij is the 
residual random effect for each progeny.   

For progenies the true breeding values were obtained from 
a normal distribution with mean zero and variance 

222 ) (¼ Pa σ=σ h  where phenotypic variance ( 2
Pσ ) was 

set equal to 1. Their residual values were generated from a 
normal distribution with mean zero and variance 

222 ) ¼-(1 Pe σ=σ h . Afterwards, the phenotypic value of 

each progeny was obtained as the sum of the true breeding 
value (~N(0, 2

aσ ))  and the residual value (~N(0, 2
eσ )) 

where N represents the normal distribution. By this way, 4 
separate data sets each contain 100 replicates were 
simulated for different values of polygenic heritability (h2= 
0.2, 0.4, 0.6 and 0.8).    

A single major gene with two alleles (A and a) was 
considered. There are three genotypes, AA, Aa, and aa, 
taking genetic value as a, d, and –a, respectively, where a 
is the additive and d is the dominant genetic effect. The 
effect of a major gene in phenotypic standard deviation 
( Pσ ) unit was considered as the difference between the 
means of two homozygote genotypes (2a= µ AA– µ aa). The 
dominance of the major gene was interpreted by d= µAa –
(µAA+ µ aa)/2. The parameter set up used for all tests was as 
the following: polygenic heritability ( 222 /4 Pa σσ=h ) 

took values of 0.2, 0.4, 0.6, or 0.8; type of dominance took 
values of d=0 (additive or codominant), or d=a (complete 
dominance); frequency of the major gene p(A) took values 
of 0.2, 0.4, 0.6, or 0.8; and magnitude of major gene effect 
as difference of means of  two homozygotes in Pσ  unit 
took values of 0.5, 1, 2, or 3. In this way 128 different 
cases of major gene segregation based on all possible 
combinations from 4 levels of polygenic heritability, 2 
modes of inheritance, 4 levels of gene frequency and 4 
levels of major gene effect were evaluated with various 
tests of normality.   

For parents, the genotypes of the major gene were 
calculated from given allele frequency. Then the genotype 
of progenies assigned from their parent’s genotypes. Major 
gene effects were added to polygenic data of progenies 
according to their genotypes using uniform random 
numbers. Consequently, polygenic effects and major gene 
effect was combined in the following statistical model to 
obtain mixed (polygenes + a major gene) data: 

ijik
k
ij esµy ++=  

where k
ijy  is the observation of jth progeny of ith sire 

with major genotype k (AA, Aa and aa), µk is the mean 
value of the performances of genotype k progeny, si is 
the random effect of ith sire (i.e. polygenic component) 
and eij is the residual random effect.   

It is assumed that H0 and H1 are the hypotheses of 
polygenic and mixed (polygenes + a major gene) 
inheritance, respectively. Under H0 we consider a trait is 
normally distributed as a result of polygenic inheritance. 

For each of the test statistics power represents 
probability of rejecting the null hypothesis when the 
alternative hypothesis is true. The power of tests at the 
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5% error level was estimated for each situation studied by 
taking the number of test statistic values that exceeded the 
corresponding H0 quantile. The power of all tests was 
estimated from 100 replications. The robustness of the test 
statistics was not examined here.  

A macro was written in SAS Macro Language for the 
simulation of data sets and statistical analyses and all 
simulations and analyses were performed by SAS software 
(SAS, 1999a,b). 

Statistical tests and analyses 

When a major gene segregates the distribution of 
phenotypes for each of the major-locus genotypes will 
be normal. But the resulting phenotypic distribution, a 
mixture of normals, can exhibit non-normality (Falconer 
and Mackay, 1996; Lynch and Walsh, 1997). A variety of 
tests for normality have been developed. In this study, 
seven of which were evaluated for the detection of 
major gene segregation. These tests are skewness and 
kurtosis coefficients, Bowman-Shenton, Shapiro-Wilk, 
Kolmogorov-Smirnov, Anderson-Darling and Cramer-
von Mises normality tests (Shapiro and Wilk, 1965; 
Bowman and Shenton, 1975; Snedecor and Cochran, 1989; 
Lynch and Walsh, 1997). Details of evaluated tests are 
given as follows:    

Test of skewness coefficient (Skw). Observations that are 
normally distributed should have a skewness near zero. 
Its deviation from zero is due to departure from 
normality. The sample estimate of skewness parameter 
( 3γ ) is computed as (Yıldız et al., 1998): 

3

3

3

n)(
σ

−
=γ ∑ µyij  

where yij is the observation of jth progeny of ith sire, µ is 
the overall mean, n is the sample size and σ is the 
standard deviation of the sample.  

The difference ( 3γ∆ ) between the estimates of skewness 

for normally distributed polygenic data and the data 
including a major gene effect was statistically tested for the 
detection of a major gene effect. For large sample sizes 
(n>150), skewness coefficient is approximately normally 
distributed with mean 0 and standard deviation 

n6)(sd 3 =γ  (Düzguneş et al., 1983; Snedecor and 

Cochran, 1989). In this case, estimated test statistics 
)(sdz 33e γγ∆=  were compared with two tailed 

2zα score for the rejection of the null hypothesis (H0: 

03 =γ∆ ) that explain polygenic inheritance. 

Test of kurtosis coefficient (Kur). Kurtosis is another 
criterion of a distribution’s departure from normality. 
Observations that are normally distributed should have a 
kurtosis near zero and significance deviation from this 
value indicates the non-normality of data. The sample 

estimate of this coefficient is denoted by 4γ and 
computed as (Yıldız et al., 1998): 

3
n)(

4

4

4 −
σ

µ−
=γ ∑ ijy

 

where yij is the observation of jth progeny of ith sire, µ is 
the overall mean, n is the sample size and σ is the 
standard deviation of the sample.  

The difference ( 4γ∆ ) between the estimates of kurtosis 
for normally distributed polygenic data and the data 
including a major gene effect were statistically tested 
for the detection of a major gene effect. If the sample 
size is greater than 1000, kurtosis coefficient is 
approximately normally distributed with mean 0 and 
standard deviation, n24)(sd 4 =γ  (Düzguneş et al., 

1983; Snedecor and Cochran, 1989). 

In this case, estimated test statistics )(sdz 44e γγ∆=  were 

compared with two tailed 2zα score for the rejection of the 

null hypothesis (H0: 03 =γ∆ ) that explain polygenic 

inheritance. 

Bowman-Shenton test (B-S). Deviation from normality 
indicates significant skewness and/or kurtosis, both of 
which have expected value zero under the assumption of 
normality. Bowman and Shenton (Bowman and Shenton, 
1975) proposed a joint test of normality. This statistic is 
defined as: 

24
n

6
n 2

4
2
3 γγ ⋅

+
⋅

=BS  

where n is the sample size, γ3 and γ4 are the standardized 
sample skewness and kurtosis, respectively. For larger 
sample sizes, BS is distributed as a χ2 with two degrees 
of freedom. Thus, the hypothesis that a distribution is 
normal is rejected at the 5% level if BS>5.99.   

Shapiro-Wilk test (S-W). The Shapiro-Wilk W statistic 
is computed only when the number of observations (n) 
is less then or equal to 2000. The W statistic is the ratio 
of the best estimator of variance to the usual corrected 
sum of squares estimator of variance (Shapiro and Wilk, 
1965). The W statistic for normality defined by: 
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where n is the number of observations, ai is the 
tabulated coefficients, yi is the observation of ith 
individual and y  is the mean of the observations.  

Small values of W lead to the rejection of the null (H0) 
hypothesis of normality. The method for computing the 
p-value (the probability of obtaining a W statistic less 
than or equal to observed value) depends on n. For 

2000n12 ≤≤ , simulation results are used to get the 
approximate normalizing transformation (Royston, 
1992):    

( )( ) σ−−= /W1logZn µ  

where Zn is a standard normal variate and the values of 
σ and µ are functions of n obtained from simulation 
results.  

Large values of Zn indicate departure from normality 
(Shapiro and Wilk, 1965). 

EDF tests for normality. The Kolmogorov-Smirnov, 
Anderson-Darling and Cramer-von Mises tests for 
normality are based on the empirical distribution 
function, EDF (Stephens, 1974). These tests are often 
referred to as EDF tests and are based on various 
measures of the discrepancy between the empirical 
distribution function Fn(x) and the hypothesized 
cumulative distribution function F(x). Under the null 
hypothesis, F(x) is the normal distribution. The 
empirical distribution function is defined as: 
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The computational formulas for the EDF statistics use 
the probability integral transformation U = F(x). If F(x) 
is the distribution function of X, the random variable U 
is uniformly distributed between 0 and 1. Given n 
observations X(1),…,X(n) , the values U(i) = F(x(i)) are 
computed. These values are used to compute EDF test 
statistics as follows (Stephens, 1974): 

(a) Kolmogorov-Smirnov test (K-S).The Kolmogorov-
Smirnov statistic D belongs to the supremum class of 
EDF statistics. The statistic is defined as:  

)()(sup xFxFD nx −=  

This statistic is computed as the maximum of +D  and 
−D . 
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(b) Anderson-Darling test (A-D). The Anderson-Darling 
A2 statistic and the Cramer-von Mises statistic belong to 
the quadratic class of EDF statistics. This class of 
statistics is based on the squared difference (Fn(x)- 
F(x))2. The statistic is computed as: 

( ) ( )( )[ ]∑
=
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n
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(c) Cramer-von Mises test (CvM). The Cramer-von 
Mises statistic is computed as:  
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Results 

Simulation results on the power of normality tests for 
detection of major genes were given under separate 
headings according to mode of major gene inheritance 
(additive and dominant). 

Power of the tests for detection of additive major 
genes 

The power (%) of normality tests for the detection of 
additive major genes with 0.5, 1.0, 2.0 and 3.0 Pσ  of 
gene effect are given in Table 1. These results showed 
that the power of all tests increased with the increase of 
gene effect from 0.5 to 3 Pσ . But the level of polygenic 
heritability does not have an obvious effect on the 
power of tests. 

The performances of all tests were quite low (≤4%) for 
the detection of additive major genes with 0.5 Pσ  of gene 
effect. Among the evaluated tests, the power of tests of 
skewness and kurtosis coefficients were about 0%. The 
power of the tests was not affected by the different 
frequencies of major genes. 

The power of tests increased (≤11%) with the increase 
of gene effect to 1 Pσ   and were not affected by 
different frequencies of major genes. The Kolmogorov- 



 

 

 

 

Table 1. The power (%) of various normality tests for the detection of additive major genes with different magnitude of gene effects (0.5 to 3.0 σP) 

 
Magnitude of Major Gene Effect 
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0.2 0 0 1 2 0 1 2 0 0 2 1 4 5 4 37 5 28 22 14 16 17 99 12 93 97 83 91 98
0.4 0 0 2 0 1 0 0 0 0 2 2 11 5 4 8 7 10 13 9 12 9 25 27 40 44 22 29 33
0.6 0 0 0 0 0 0 2 0 0 2 3 3 3 5 6 5 4 3 7 6 5 33 29 37 36 30 35 39

0.20 

0.8 0 0 4 2 2 2 2 0 0 1 1 1 2 2 39 3 25 30 22 21 27 98 10 93 96 82 92 95
0.2 0 0 0 0 1 2 2 0 0 3 3 4 5 6 33 4 24 30 19 25 25 97 10 97 98 84 90 94
0.4 0 0 2 2 4 1 2 0 0 1 4 6 3 3 7 8 4 7 10 9 10 26 29 41 47 21 29 39
0.6 0 0 1 2 4 3 1 0 0 2 1 3 1 1 13 6 8 12 9 10 10 32 33 43 46 31 31 33

0.40 

0.8 0 0 2 1 2 1 2 0 0 1 2 2 3 4 31 4 25 29 21 17 21 99 13 95 96 81 90 94
0.2 0 0 1 1 1 1 1 0 0 3 2 7 2 2 36 5 25 29 25 23 30 95 9 96 96 77 90 94
0.4 0 0 1 2 2 2 1 0 0 2 3 4 5 3 4 6 11 10 17 13 11 23 27 48 50 27 41 43
0.6 0 0 3 0 0 2 1 0 0 2 2 2 2 2 5 4 5 9 11 6 7 22 30 47 54 26 34 39

0.60 

0.8 0 0 0 0 0 1 1 0 0 2 1 2 1 1 32 6 26 25 21 25 24 95 8 96 96 75 93 95
0.2 0 0 0 0 4 0 0 0 0 1 0 1 3 3 38 2 26 33 16 27 30 99 10 94 95 71 87 88
0.4 0 0 0 1 2 2 1 1 1 2 2 5 6 5 11 6 9 11 8 9 10 31 24 42 45 31 34 41
0.6 0 0 0 1 2 0 0 0 0 2 2 4 4 3 5 3 4 8 7 10 10 36 28 52 59 21 33 40

0.80 

0.8 0 0 1 1 2 3 4 1 0 0 3 3 4 3 35 2 20 21 18 17 22 97 12 94 93 76 86 90

Abbreviations: h2: heritability, σP : phenotypic standard deviation, Skw: Skewness, Kur: Kurtosis, B-S: Bowman-Shenton, S-W: Shapiro-Wilk, K-S: Kolmogorov-Smirnov, CvM: Cramer-von Mises, A-
D: Anderson-Darling 

Pow
er of Som

e Statistical Tests for the D
etection of M

ajor G
enes in Q

uantitative Traits: II. Tests of N
orm

ality 
51

H
ayvansal  Ü

retim
 46(2), 2005



Cemal and Karaca 

Hayvansal  Üretim 46(2), 2005 

52 

Smirnov, Cramer-von Mises and Anderson-Darling tests 
are more effective than other normality tests at this level 
of gene effect.  

All tests’ power was significantly increased (≤39%) 
when effect of major gene increased to 2 Pσ . The 
power of test of skewness coefficients was dramatically 
increased. All normality tests except test of kurtosis 
coefficients were more powerful for extreme gene 
frequencies (p=0.2 or 0.8) than moderate (p=0.4 or 0.6).  

When the additive major gene have a gene effect of 
3 Pσ , power of all normality tests except test of kurtosis 
coefficients were exceeded 50%. The power of all 
normality tests except test of kurtosis coefficient were 
higher for extreme gene frequencies (p=0.2 or 0.8) than 
intermediate (p=0.4 or 0.6) as in the case of segregation 
of major genes with an effect of 2 Pσ . In contrary, the 
test of kurtosis coefficients was powerful in the 
segregation of major genes with intermediate frequencies. 
The power of test of skewness coefficients, Bowman-
Shenton, Shapiro-Wilk, Cramer-von Mises and 
Anderson-Darling normality tests are fairly high (over the 
90%) in extreme gene frequencies. 

Power of the tests for detection of completely 
dominant major genes 

The power (%) of normality tests for the detection of 
dominant genes with 0.5, 1, 2 and 3 Pσ  of major gene 
effects are presented in Table 2. As in the case of 
additive major gene segregation, power of the all 
studied tests for detection of dominant major genes were 
not significantly affected by level of polygenic 
heritability. The power of all tests increased with the 
increase of gene effect from 0.5 to 3 Pσ . The 
performances of all tests were very low for the detection 
of major genes with 0.5 and 1 Pσ  of gene effect. The 
power of tests, especially for dominant genes, was 
increased suddenly for a gene effect of 2 or 3 Pσ . 

The power of all tests was fairly low for the detection of 
major genes with 0.5 Pσ  of gene effect. Only the 
Kolmogorov-Smirnov test was reached to a power of 
7% in one situation. But, the power of all of other tests 
was smaller than or equal to 4%. The power of the tests 
were not changed with the increase of frequency of 
major genes. Among the evaluated tests, the power of 
tests of skewness and kurtosis coefficients were exactly 
0%.   

With the augmentation of major gene effect from 0.5 to 
1 Pσ  the power of all tests partially increased (≤12%). 
Tests were more powerful in low or moderate frequencies. 
The Bowman-Shenton, Shapiro-Wilk, Kolmogorov-
Smirnov, Cramer-von Mises and Anderson-Darling are 
more powerful normality tests for a major gene effect of 
1 Pσ .  

A sharp increase in the power of tests was observed 
when the magnitude of segregating dominant major 
gene effect increased from 1 to 2 Pσ . In most of the 
situations, in particularly at major gene frequencies of 
0.2 and 0.6, power of tests was about 100%. Tests 
appear less powerful when the frequency of major gene 
is 0.8.  

In most cases of the existence of dominant major genes 
with an effect of 3 Pσ , the power of the tests reached to 
approximately 100%. The influences of major gene 
frequency on power of the normality tests were 
disappeared with the increase of magnitude of major gene 
effect to 3 Pσ . 

Mean power of the tests 

To clarify the results, power of the tests at the 4 level of 
gene frequency and 4 level of polygenic heritability were 
joined in one mean to obtain average power of the each 
test. Mean power of the tests for the detection of additive 
and dominant major genes with different level of gene 
effects (0.5 to 3 σ) are given in Figure 1. 

In the case of segregation of additive genes, all of the 
tests except kurtosis test gave a mean power above 50% 
for a gene effect of 3 Pσ . With a gene effect of ≤2 Pσ , 
none of tests had an average power greater than about 
22%. Among the normality tests studied, the best power 
for the detection of additive genes was obtained from 
Shapiro-Wilk, Bowman-Shenton and Anderson-Darling 
tests, respectively.  

In the existence of dominant genes, all test statistics 
based on normality had a mean power greater than 50% 
for a gene effect of 2 Pσ  and power reached 

approximately 100% for a gene effect of 3 Pσ . The 
Bowman-Shenton, Shapiro-Wilk and Anderson-Darling 
are the three more powerful tests among normality tests 
in the existence of dominant genes. Power of tests were 
rather high for detection of dominant genes than 
additive ones when the magnitude of major gene are 
high (2 or 3 Pσ ). 



 

 

 

 

 

Table 2. The power (%) of various normality tests for the detection of dominant major genes with different magnitude of gene effects (0.5 to 3.0 σP) 

Magnitude of Major Gene Effect 
0.5 σP 1.0 σP  2.0 σP  3.0 σP  
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0.2 0 0 2 1 2 3 3 0 3 7 7 7 10 9 78 65 97 98 97 98 99 99 100 100 100 100 100 100
0.4 0 0 0 0 4 1 0 3 1 4 3 8 6 7 75 65 94 98 95 99 99 100 100 100 100 100 100 100
0.6 0 0 1 1 2 2 3 6 1 11 8 3 5 5 100 23 100 100 98 100 100 100 80 100 100 100 100 100

0.20 

0.8 0 0 3 0 0 0 0 0 0 3 4 2 3 2 87 56 81 74 28 35 53 100 100 100 100 100 100 100
0.2 0 0 1 3 4 4 2 0 0 4 10 6 8 10 71 72 100 100 99 100 100 99 100 100 100 100 100 100
0.4 0 0 3 2 7 4 2 3 0 7 9 11 8 8 77 66 96 98 94 98 98 100 100 100 100 100 100 100
0.6 0 0 2 2 0 1 1 5 0 8 8 6 5 8 100 18 99 99 96 98 100 100 84 100 100 100 100 100

0.40 

0.8 0 0 0 0 0 0 0 0 0 3 5 1 3 3 88 56 82 77 30 46 59 100 100 100 100 97 100 99
0.2 0 0 1 1 2 1 0 2 2 9 11 9 5 6 73 77 98 100 98 100 100 100 100 100 100 100 100 100
0.4 0 0 2 2 2 2 2 1 4 3 3 4 5 4 79 63 99 99 93 98 98 100 100 100 100 100 100 100
0.6 0 0 2 2 3 1 1 11 0 10 8 7 9 8 100 32 100 100 97 99 99 100 86 100 100 100 100 100

0.60 

0.8 0 0 0 1 1 0 0 0 0 4 1 0 0 0 87 62 80 73 38 50 54 100 100 100 100 99 100 100
0.2 0 0 0 1 4 1 1 6 2 5 7 10 12 12 74 59 98 99 81 96 98 100 100 100 100 100 100 100
0.4 0 0 0 0 1 2 1 2 4 4 5 8 6 9 76 62 93 96 88 96 98 100 100 100 100 100 100 100
0.6 0 0 1 0 2 1 1 4 1 5 6 6 1 3 100 18 100 100 99 100 100 100 80 100 100 100 100 100

0.80 

0.8 0 0 0 0 0 0 0 0 1 3 1 1 1 2 84 60 83 78 32 41 58 100 100 100 100 99 100 100

Abbreviations: h2: heritability, σP : phenotypic standard deviation, Skw: Skewness, Kur: Kurtosis, B-S: Bowman-Shenton, S-W: Shapiro-Wilk, K-S: 
Kolmogorov-Smirnov, CvM: Cramer-von Mises, A-D: Anderson-Darling 
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Abbreviations: Pσ : phenotypic standard deviation, Skw: Skewness, Kur: Kurtosis, B-S: Bowman-Shenton, S-W: Shapiro-Wilk, K-S: 
Kolmogorov-Smirnov, CvM: Cramer-von Mises, A-D: Anderson-Darling 

 

Figure 1. Mean power (%) of the normality tests for the detection of additive and dominant major genes with different 
level of gene effects (0.5 to 3 Pσ ). 

Discussion 

The dominant major genes were determined more easily 
than additive ones in all scenarios of major gene 
segregation. Seemingly, dominant genes are determined 
easily than codominant ones in other studies using same or 
different tests (Le Roy, 1989; Knott and Haley, 1991; Janss 
and Van Der Werf, 1992; Le Roy and Elsen, 1992; Elsen 
and Le Roy, 1995).  

When an additive major gene is segregating, all tests 
except kurtosis are more powerful for extreme gene 
frequencies (0.2 or 0.8) than moderate (0.4 or 0.6). But 
this phenomenon is not valid in the case of dominant 
genes.  

Up to date, only the Shapiro-Wilk and Kolmogorov-
Smirnov normality tests applied to actual data of RN 
gene in pigs (Le Roy, 1989), rate of milk flow gene in 
goats (Ricordeau et al., 1989) and double muscling gene 
in Belgian-Blue cattle (Hanset and Michaux, 1985a,b) and 
in all three situations segregation of major genes was 
confirmed by this tests. 

The power of a different class of statistical tests 
including within-family variance homogeneity tests was 

investigated with same data sets by Cemal and Karaca 
(2005). The power of normality tests was quite higher 
than within-family variance homogeneity tests 
evaluated in mentioned study, especially for higher gene 
effects. In nearly all situations studied, the normality 
tests were found more powerful than within-family 
variance homogeneity tests.  

An increased attention has been given to the detection 
of major loci or QTL in the last years. Simple statistical 
methods that compared in this paper could be used as a 
first indicator of major gene segregation in animal 
populations. Segregation of additive major genes with 3 
or more and of dominant major genes with 2 or more 

Pσ  of gene effect may be easily determined by these 
simple tests. Checking data with more than one test of 
normality may be more meaningful due to different 
power of tests to various situations of major gene 
segregation. Concerning the power, the use of Bowman-
Shenton, Shapiro-Wilk and Anderson-Darling normality 
tests are primarily recommended. However, if 
environmental variation is sufficiently high relative to 
the effects of any individual gene or if major alleles are 
at low frequency, the effects of segregating major genes 
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can be entirely obscured. Therefore, the effects of macro 
environmental components need to be removed from 
phenotypic data to make these tests more powerful. In 
addition to the normality tests, within-family variance 
homogeneity test may be used for checking phenotypic 
data of animals to detect major genes. When positive 
results obtained for any major genes based on these 
simple tests, these results would have to be confirmed 
and detailed by more complicated methods such as 
segregation analysis of phenotypic data or molecular 
genetic applications. 
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