

RESEARCH ARTICLE

New generalizations of modular spaces

Tayebe Lal Shateri^D

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, Iran

Abstract

In the present paper, we introduce the concept of F-modular, which is a generalization of the modular notion. Moreover, we introduce a *Kp*-modular and *K*-modular, and then compare these concepts together. Finally, we give a characterization of F-modulars.

Mathematics Subject Classification (2010). 46A80

Keywords. modular space, F-modular space, *K*-modular space

1. Introduction

A modular on a space $\mathfrak X$ is a mapping $\rho : \mathfrak X \to [0,\infty]$ satisfying the following properties:

(i) $\rho(x) = 0$ if and only if $x = 0$,

(ii) $\rho(\alpha x) = \rho(x)$ for every scaler α with $|\alpha| = 1$,

(iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for every $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$.

A modular ρ defines a corresponding modular space, i.e., the vector space \mathcal{X}_{ρ} given by

 $\mathcal{X}_{\rho} = \{x \in \mathcal{X} : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0\}.$

The theory of modular spaces was founded by Nakano [15] and was intensively developed by Luxemburg [10], Koshi and Shimogaki [8] and Yamamuro [18] and their collaborators. In the present time the theory of modulars and modular spaces is extensively applied, in particular, in the study of various Orlicz spaces $[16]$ and interpolation theory $[9, 12]$, which in their turn have broad applications $[13]$. Shat[eri](#page-7-0) $[17]$ introduced the notion of a *C ∗* -valued mod[ular](#page-7-1), and investigated some [fi](#page-7-2)xed point theroe[ms](#page-7-3) in such spaces.

Recently, many interesting extentions of the metric space appeared. The notion of a *b*metric space introduced by Czerwik [2]. Fagin, et [al.](#page-7-4) [3] introduced *s*-relaxed*^p* [m](#page-7-5)[etri](#page-7-6)c spaces. Gähler [4] defined the notion of a 2-[me](#page-7-7)tric on th[e pr](#page-7-8)oduct set $\mathcal{X} \times \mathcal{X} \times \mathcal{X}$. The reader can see more generalizations of the notion of a metric space in $[1, 5, 7, 12, 14]$. Jleli and Samet $[6]$ introduced the F-metric concept. They defined a natural topology in such spaces, and studied their topological [pro](#page-7-9)perties.

In this paper, [by](#page-7-10) using some ideas of $[6]$ we introduce the $\mathcal{F}\text{-modular concept}$ $\mathcal{F}\text{-modular concept}$ $\mathcal{F}\text{-modular concept}$ $\mathcal{F}\text{-modular concept}$ $\mathcal{F}\text{-modular concept}$, [whi](#page-7-14)ch is a generalizati[on](#page-7-15) of the modular space notion. We prove that any modular is an F-modular, but the converse is not true in general, which shows that our concept is more general than the standard modular concept.

Email address: t.shateri@hsu.ac.ir

Received: 24.02.2019; Accepted: 08.08.2019

Moreover, we introduce a K_p -modular and K -modular, and then compare these concepts together. Finally, we introduce the notion of F-modulars boundedness, which is used to provide a characterization of F-modular spaces.

2. F**-modulars**

We start by introducing the following set which plays an important role in our topic. Let F be the set of all functions $f : (0, +\infty) \to \mathbb{R}$ which satisfy in the following conditions

 (\mathcal{F}_1) *f* is non-decreasing,

(F₂) For every sequence $\{t_n\}$ in $(0, +\infty)$, $\lim_{n \to +\infty} t_n = 0$ if and only if $\lim_{n \to +\infty} f(t_n) = -\infty$.

Now we define a new concept of a modular space.

Definition 2.1. Let X be a linear space, and let $\delta : \mathcal{X} \to [0, +\infty)$ be a given mapping. Suppose there exists $(f, \gamma) \in \mathcal{F} \times [0, +\infty)$ such that

 (δ_1) $\delta(x) = 0$ if and only if $x = 0$,

 (δ_2) $\delta(\alpha x) = \delta(x)$ for every scaler α with $|\alpha| = 1$,

 (δ_3) For each $x, y \in \mathcal{X}$, for each $2 \leq n \in \mathbb{N}$, and for every $\{u_i\}_{i=1}^n$ in X with $u_1 = x$ and $u_n = y$, if $\delta(\alpha x + \beta y) > 0$ for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$,

then

$$
f(\delta(\alpha x + \beta y)) \le f\left(\sum_{i=1}^n \delta(u_i)\right) + \gamma.
$$

Then δ is called an F-modular on X, and the pair (\mathfrak{X}, δ) is said to be an F-modular space.

Note that if ρ is a modular on X, then it is an F-modular with $f(t) = \ln t$ and $\gamma = 0$. Clearly (δ_1) and (δ_2) satisfied. On the other hand, for each $x, y \in \mathcal{X}$, for every $2 \le n \in \mathbb{N}$, and for every $\{u_i\}_{i=1}^n$ in X with $u_1 = x$ and $u_n = y$, we have

$$
\ln(\rho(\alpha x + \beta y)) \le \ln(\rho(x) + \rho(y)) \le \ln\left(\sum_{i=1}^n \rho(u_i)\right),
$$

for α , $\beta > 0$ in which $\alpha + \beta = 1$.

In the following example we give an F-modular space which is not a modular space.

Example 2.2. Let $\mathfrak{X} = [1, \infty)$, define the mapping $\delta : \mathfrak{X} \to [0, +\infty)$ as follows

$$
\delta(x) = \begin{cases} x^2 & x \in [1, 2), \\ x & x \ge 2, \end{cases}
$$

for all $x \in \mathcal{X}$. Then δ is not a modular. Indeed, δ does not satisfy *(iii)*, because for $x = 1$, $y = 2, \alpha = \frac{1}{5}$ $\frac{1}{5}$ and $\beta = \frac{4}{5}$ $\frac{4}{5}$, we get

$$
\delta(\alpha x + \beta y) = \delta(\frac{1}{5} + \frac{8}{5}) = \delta(\frac{9}{5}) = \frac{81}{25} > \delta(x) + \delta(y) = 3.
$$

Now, we show that δ is an F-modular. Fix $x, y \in \mathcal{X}$, and let $\{u_i\}_{i=1}^n$ in \mathcal{X} with $u_1 = x$ and *u*_{*n*} = *y*. Put *I* = {*i* = 1*, . . . , n*; *u_i* ∈ [1*,* 2*)*} and *J* = {1*,* 2*, . . .}* − *I,* then we have

$$
\sum_{i=1}^{n} \delta(u_i) = \sum_{i \in I} \delta(u_i) + \sum_{j \in J} \delta(u_j) = \sum_{i \in I} u_i^2 + \sum_{j \in J} u_j.
$$

Now we have two cases. Case 1: If $\alpha x + \beta y \notin [1, 2)$, then

$$
\delta(\alpha x + \beta y) = \alpha x + \beta y
$$

\n
$$
\leq x + y \leq \sum_{i=1}^{n} u_i = \sum_{i \in I} u_i + \sum_{j \in J} u_j
$$

\n
$$
\leq \sum_{i \in I} u_i^2 + \sum_{j \in J} u_j
$$

\n
$$
= \sum_{i=1}^{n} \delta(u_i).
$$

Case 2: If $\alpha x + \beta y \in [1, 2)$, then we have

$$
\delta(\alpha x + \beta y) = (\alpha x + \beta y)^2
$$

\n
$$
\leq 2(\alpha x + \beta y)
$$

\n
$$
\leq 2(x + y)
$$

\n
$$
\leq 2\left(\sum_{i \in I} u_i + \sum_{j \in J} u_j\right)
$$

\n
$$
\leq 2\left(\sum_{i \in I} u_i^2 + \sum_{j \in J} u_j\right)
$$

\n
$$
= 2\sum_{i=1}^n \delta(u_i).
$$

The above cases show that δ satisfies (δ_3) with $f(t) = \ln t, t > 0$ and $\gamma = \ln 2$. Therefore *δ* is an F-modular.

Now, we define a K_p -modular on a space $\mathfrak X$, also we provide an example of an $\mathfrak F$ -modular space that cannot be an K_p -modular space, which confirms that the class of \mathcal{F} -modular spaces is more large than the class of K_p -modular spaces.

Definition 2.3. Let Δ : \mathcal{X} → [0*,* +∞) be a mapping satisfies (δ_1) , (δ_2) , and (Δ_3) There exists *K* ≥ 1 such that for every *x*, *y* ∈ *X*, for every 2 ≤ *n* ∈ N, for every ${u_i}_{i=1}^n$ in X with $u_1 = x$ and $u_n = y$, we have

$$
\Delta(\alpha x + \beta y) \le K\Bigl(\sum_{i=1}^n \Delta(u_i)\Bigr),
$$

for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. Then Δ is called a K_p -modular, and (\mathfrak{X}, Δ) is said to be a *Kp*-modular space.

It is clear that Δ satisfies (δ_3) with $f(t) = \ln t, t > 0$ and $\gamma = \ln K$, and hence Δ is an F-modular. Notice that the mapping δ in Example 2.2 satisfies in (Δ_3) with $K = 2$. The following example shows that the class of F-modulars is more large than the class of *K^p* modulars.

Example 2.4. Let $\mathcal{X} = \mathbb{Z}$ $\mathcal{X} = \mathbb{Z}$ $\mathcal{X} = \mathbb{Z}$. Define the mapping $\delta : \mathcal{X} \to [0, +\infty)$ by

$$
\delta(x) = \begin{cases} \frac{1}{e^{|x|}} & x \neq 0, \\ 0 & x = 0, \end{cases} \tag{2.1}
$$

for all $x \in \mathfrak{X}$. Then δ is a *f*-modular. It is clear that δ satisfies (δ_1) and (δ_2) . In order to check (δ_3) , let

$$
f(t) = -\frac{1}{t}, \quad (t > 0).
$$

It can be easily seen that $f \in \mathcal{F}$. Fix $x, y \in \mathcal{X}$ and $\alpha, \beta > 0$ in which $\alpha + \beta = 1$ with $\delta(\alpha x + \beta y) > 0$. For every $n \in \mathbb{N}$, and for every $\{u_i\}$ in X with $u_1 = x$ and $u_2 = y$, we have

$$
1 + f\left(\sum_{i=1}^{n} \delta(u_i)\right) - f(\delta(x) + \delta(y))
$$

=
$$
1 - \frac{1}{\sum_{i=1}^{n} \frac{1}{e^{|u_i|}}} + \frac{1}{\frac{1}{e^{|\alpha x + \beta y|}}}
$$

=
$$
1 - \frac{1}{\sum_{i=1}^{n} \frac{1}{e^{|u_i|}}} + e^{|\alpha x + \beta y|}
$$

>
$$
1 + 1 + e^{|\alpha x + \beta y|}
$$

$$
\geq 0.
$$

Note that the first inequality holds because $\sum_{i=1}^{n} \frac{1}{e^{|u|}}$ $\frac{1}{e^{|u_i|}} > 0 > -1$ and so $-\frac{1}{\sum_{i=1}^n \frac{1}{e^{|u_i|}}}$ $e^{|u_i|}$ *>* 1. Therefore we get

$$
f(\delta(x) + \delta(y)) \le f\left(\sum_{i=1}^n \delta(u_i)\right) + 1.
$$

Consequently δ is an F-modular.

Next, we shall prove δ is not a K_p -modular. Suppose that δ satifies (Δ_3) with a certain *K* \geq 1. Consider $u_1 = x = 4n, u_2 = y = 0$ and $\alpha = \beta = \frac{1}{2}$ $\frac{1}{2}$. Then we have

$$
\delta(\alpha x + \beta y) = \delta(2n) \le K(\delta(x) + \delta(y)) = K\delta(4n),
$$

this implies that

$$
e^{2n} \leq K.
$$

Passing to the limit as $n \to +\infty$, we obtain a contradiction. Therefore, δ can not be a *Kp*-modular.

In following, we introduce another concept of a modular space which is more large than the class of $\mathcal{F}\text{-modular spaces}$ and $K_p\text{-modular spaces}.$

Definition 2.5. Let X be a linear space, and let $\rho : \mathcal{X} \to [0, +\infty)$ be a mapping. Let there exists $K \geq 1$ such that

 (ρ_1) $\rho(x) = 0$ if and only if $x = 0$, (ρ_2) $\rho(\alpha x) = \rho(x)$ for every scalar α with $|\alpha| = 1$, (ρ_3) $\rho(\alpha x + \beta y) \le K(\rho(x) + \rho(y)),$ for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. Then ρ is called a *K*-modular.

Notice that, each modular is a *K*-modular with $K = 1$. Also every K_p -modular is a *K*-modular. In following we give an example that shows the converse is not true in general.

Example 2.6. Let $\mathfrak{X} = [0,1]$, and let $\delta : \mathfrak{X} \to [0,+\infty)$ be the mapping defined by

$$
\delta(x) = \begin{cases} x^2 & x \in [0, 1), \\ 0 & x = 1. \end{cases}
$$

It can be easily seen that δ is a *K*-modular with $K = 2$. Next, we prove that δ is not an F-modular. Suppose that there exists (f, γ) such that δ satisfies (δ_3) . Let $n \in \mathbb{N}$, and put

$$
x = u_1 = 0, y = u_n = 1, u_i = \frac{1}{n}, \quad i = 2, \dots, n-1.
$$

Then for $\alpha = \beta = \frac{1}{2}$ $\frac{1}{2}$, (δ_3) implies that

$$
f(\delta(\frac{x}{2}+\frac{y}{2})) \leq f(\delta(u_1)+\delta(u_2)+\cdots+\delta(u_{n-1})+\delta(u_n))+\gamma.
$$

Hence

$$
f(\frac{1}{2})=\frac{1}{4}\leq f\Big(\frac{n-2}{n^2}\Big)+\gamma.
$$

By (\mathcal{F}_2) , we have

$$
\lim_{n \to +\infty} f\left(\frac{n-2}{n^2}\right) + \gamma = -\infty,
$$

which is a contradiction. Consequently δ is not an $\mathcal{F}\text{-modular}$. Moreover δ is not a K_p -modular. Infact if δ satisfies (Δ_3) , and let

$$
x = u_1 = 0, y = u_n = 1, u_i = \frac{1}{n}, \quad i = 2, \dots, n-1,
$$

then for $\alpha = \beta = \frac{1}{2}$ $\frac{1}{2}$, by (Δ_3) we conclude that

$$
\delta(\frac{x}{2}+\frac{y}{2})\leq \delta(u_1)+\delta(u_2)+\cdots+\delta(u_{n-1})+\delta(u_n)+\gamma.
$$

Therefore

$$
\frac{1}{2} = \frac{1}{4} \le \frac{n-2}{n^2}.
$$

By (\mathcal{F}_2) , we have

$$
\lim_{n \to +\infty} \frac{n-2}{n^2} = 0,
$$

which is a contradiction.

Remark 2.7. One can easily see that the mapping δ defined by (2.1) in Example 2.4, is not also a *K*-modular on X.

3. F**-modular boundedness**

In this section, we introduce the concept of F-modular boundedness, which is used to provide a characterization of F-modular spaces.

Definition 3.1. Let X be a linear space, and let $\delta : \mathcal{X} \to [0, +\infty)$ be a mapping satisfying (*δ*₁) and (*δ*₂). We call the pair (\mathfrak{X}, δ) is *f*-modular bounded with respect to $(f, \gamma) \in$ $\mathcal{F} \times [0, +\infty)$, if there exists a modular ρ on X such that for every $x, y \in \mathcal{X}$, and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$, $\delta(\alpha x + \beta y) > 0$ implies that

$$
f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)) \text{ and } f(\delta(\alpha x + \beta y)) \le f(\rho(\alpha x + \beta y)) + \gamma. \tag{3.1}
$$

We can prove the following result.

Theorem 3.2. Let X be a space and let $\delta : \mathcal{X} \to [0, +\infty)$ be a mapping satisfying (δ_1) *and* (δ_2) *. Let* $(f, \gamma) \in \mathcal{F} \times [0, +\infty)$ *such that f is continuous from the right. Then the followings are equivalent:*

- (i) (\mathfrak{X}, δ) *is an* $\mathfrak{F}\text{-modular on }\mathfrak{X}$ *with* (f, γ) *given above.*
- (ii) (\mathfrak{X}, δ) *is an* $\mathfrak{F}\text{-modular bounded with respect to }(f, \gamma)$ *.*

Proof. Suppose that (\mathfrak{X}, δ) is an F-modular on X with respect to (f, γ) . We define the mapping $\rho : \mathfrak{X} \to [0, +\infty)$ by

$$
\rho(\alpha x + \beta y) = \inf \Biggl\{ \sum_{i=1}^{n} \delta(u_i) : n \in \mathbb{N}, n \ge 2, (u_i)_{i=1}^{n} \subset \mathcal{X}, u_1 = x, u_n = y \Biggr\},\
$$

for all $x, y \in \mathcal{X}$ and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. We show that ρ is a modular on X. Note that

$$
\rho(x) = \inf \Biggl\{ \sum_{i=1}^n \delta(u_i) : n \in \mathbb{N}, n \ge 2, (u_i)_{i=1}^n \subset \mathfrak{X}, u_1 = u_n = x \Biggr\},\
$$

so if $x = 0$, then $\rho(x) = 0$. Since $\delta(\alpha x) = \delta(x)$, for each α such that $|\alpha| = 1$, it follows from the definition of *ρ* that

$$
\rho(\alpha x) = \rho(x), \quad x \in \mathfrak{X}.
$$

Now, let $x \in \mathcal{X}$ be such that $\rho(x) = 0$. Suppose that $x \neq 0$. Given $\varepsilon > 0$, then there exists $n \in \mathbb{N}, n \geq 2$, and $(u_i)_{i=1}^n \subset \mathcal{X}$ with $u_1 = u_n = x$ such that

$$
\sum_{i=1}^n \delta(u_i) < \varepsilon.
$$

By (\mathcal{F}_1) , we obtain

$$
f\left(\sum_{i=1}^{n} \delta(u_i)\right) \le f(\varepsilon). \tag{3.2}
$$

More over, putting $y = x$ in (δ_3) deduce that

$$
f(\delta(x)) \le f\left(\sum_{i=1}^{n} \delta(u_i)\right) + \gamma.
$$
 (3.3)

Using (3.2) and (3.3) , we get

$$
f(\delta(x)) \le f(\varepsilon) + \gamma.
$$

By (\mathcal{F}_2) , we obtain

$$
\lim_{\varepsilon \to 0^+} (f(\varepsilon) + \gamma) = -\infty,
$$

which is a contradiction. Now, let $x, y \in \mathcal{X}$ and let $\alpha, \beta > 0$ be such that $\alpha + \beta = 1$. Suppose $\varepsilon > 0$ is arbitrary. Then by definition of ρ , there exist $\{u_i\}_{i=1}^n$ and $\{v_j\}_{j=1}^m$ in X such that $u_1 = u_n = x$, $v_1 = v_m = y$, and

$$
\sum_{i=1}^{n} \delta(u_i) < \rho(x) + \varepsilon, \quad \sum_{j=1}^{m} \delta(v_j) < \rho(y) + \varepsilon.
$$

Put $w_1 = u_1 = x$, and $w_i = u_i$ for every $2 \le i \le n$, $w_i = v_{n+m-i-1}$ for every $n+1 \le i \le n$ $n + m - 1$, and $w_{n+m} = u_m = y$. Then we obtain

$$
\rho(\alpha x + \beta y) \le \sum_{i=1}^{n+m} \delta(w_i)
$$

=
$$
\sum_{i=1}^{n} \delta(u_i) + \sum_{j=1}^{m} \delta(v_j)
$$

<
$$
< \rho(x) + \rho(y) + 2\varepsilon.
$$

Passing to the limit as $\varepsilon \to 0^+$, we get

$$
\rho(\alpha x + \beta y) \le \rho(x) + \rho(y).
$$

Now, we shall prove that δ satisfies (3.1). For this, let $x, y \in \mathcal{X}$, and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$, $\delta(\alpha x + \beta y) > 0$. It is clear that

$$
\rho(\alpha x + \beta y) \le \delta(x) + \delta(y),
$$

and (\mathcal{F}_1) implies that

$$
f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)).
$$
\n(3.4)

Let $\varepsilon > 0$. Then, there exist $n \in \mathbb{N}$, and $\{u_i\}_{i=1}^n \subset \mathcal{X}$ with $u_1 = x$ and $u_n = y$ such that

$$
\sum_{i=1}^{n} \delta(u_i) < \rho(\alpha x + \beta y) + \varepsilon.
$$

Hence

$$
f\left(\sum_{i=1}^n \delta(u_i)\right) \le f(\rho(\alpha x + \beta y) + \varepsilon).
$$

By (δ_3) , we obtain

$$
f(\delta(\alpha x + \beta y) \le f(\rho(\alpha x + \beta y) + \varepsilon) + \gamma.
$$

Passing to the limit as $\varepsilon \to 0^+$, and using the right continuity of *f*, we get

$$
f(\delta(\alpha x + \beta y) \le f(\rho(\alpha x + \beta y)) + \gamma. \tag{3.5}
$$

We deduce from (3.4) and (3.5) that

$$
f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)) \le f(\rho(\alpha x + \beta y)) + \gamma.
$$

Therefore (\mathfrak{X}, δ) is *[F](#page-5-0)*-modul[ar b](#page-6-0)ounded with respect to (f, γ) .

Now, let (\mathfrak{X}, δ) is F-modular bounded with respect to (f, γ) , that is, there exists a modular *ρ* on *X* such that (3.1) satisfied. Let $x, y \in \mathcal{X}$, and let $\alpha, \beta > 0$ be such that $\alpha + \beta = 1$, and $\delta(\alpha x + \beta y) > 0$. Suppose $n \in \mathbb{N}$, and $\{u_i\}_{i=1}^n$ with $u_1 = x, u_n = y$. Since ρ is a modular, we have

$$
\rho(\alpha x + \beta y) \le \rho(x) + \rho(y) \le \sum_{i=1}^{n} \rho(u_i).
$$
\n(3.6)

Using (\mathcal{F}_1) and the fact that if $\delta(x) + \delta(y) > 0$, and

$$
f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)),
$$

we deduce that

$$
\rho(\alpha x + \beta y) \le \delta(x) + \delta(y). \tag{3.7}
$$

By (3.6) and (3.7) , we get

 $f(\rho(\alpha x + \beta y)) \leq f(\delta(x) + \delta(y))$ and $f(\delta(\alpha x + \beta y)) \leq f(\rho(\alpha x + \beta y)) + \gamma$.

By (\mathcal{F}_1) (\mathcal{F}_1) (\mathcal{F}_1) we de[duc](#page-6-2)e that

$$
f(\rho(\alpha x + \beta y)) + \gamma \le f\left(\sum_{i=1}^n \delta(u_i)\right) + \gamma.
$$

On the other hand

$$
f(\delta(\alpha x + \beta y)) \le f(\rho(\alpha x + \beta y)) + \gamma,
$$

we conclude that

$$
f(\delta(\alpha x + \beta y)) \le f\left(\sum_{i=1}^n \delta(u_i)\right) + \gamma.
$$

Therefore, δ is an F-modular on \mathfrak{X} .

Theorem 3.2 gives a characterization of F-modulars as follows.

Corollary 3.3. *An* F*-modular on a space* X *is an* F*-modular bounded mapping.*

Remark 3.[4.](#page-4-0) Note that in the proof of Theorem 3.2, the right continuity assumption of *f* is used only to prove that $(i) \Rightarrow (ii)$. However, $(ii) \Rightarrow (i)$ holds for any $f \in \mathcal{F}$.

References

- [1] A. Branciari, *A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces*, Publ. Math. Debrecen **57**, 31-37, 2000.
- [2] S. Czerwik, *Contraction mappings in b-metric spaces*, Acta Math. Univ. Ostrav. **1** (1), 511, 1993.
- [3] R. Fagin, R. Kumar and D. Sivakumar, *Comparing top k lists*, SIAM J. Discrete Math. **17** (1), 134-160, 2003.
- [4] V.S. G*a*¨hler, *2-metrische Ra*¨*ume und ihre topologische struktur*, Math. Nachr. **26**, 115-118, 1963/1964.
- [5] M. Jleli and B. Samet, *A generalized metric space and related fixed point theorems*, Fixed Point Theory Appl. **2015**, 14 pages, 2015.
- [6] M. Jleli and B. Samet, *On a new generalization of metric spaces*, Fixed Point Theory Appl. **20** (3), 20 pages, 2018.
- [7] R. Kopperman and H. Pajoohesh, *Generalizations of metrics and partial metrics*, Hacet. J. Math. Stat. **46** (1), 9-14, 2017.
- [8] S. Koshi and T. Shimogaki, *On F–norms of quasi–modular spaces*, J. Fac. Sci. Hokkaido Univ. Ser. I. **15** (3), 202-218, 1961.
- [9] M.A. Krasnoselskii and Y.B. Rutickii, *Convex functions and Orlicz spaces (in Russian)*, Fizmatgiz, Moskva, 1958; Translated by L.F. Boron, Noordhoff, Groningen, 1961.
- [10] W.A. Luxemburg, *Banach function spaces*, Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, 1959.
- [11] L. Maligranda, *Orlicz Spaces and Interpolation*, in: Seminars in Math. **5**, Univ. of Campinas, Brazil, 1989.
- [12] S.G. Matthews, *Partial metric topology*, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. **728**, 183-197, 1994.
- [13] J. Musielak, *Orlicz Spaces and Modular Spaces*, in: Lecture Notes in Math. **1034**, Springer-Verlag, Berlin, 1983.
- [14] Z. Mustafa and B. Sims, *A new approach to generalized metric spaces*, J. Nonlinear Convex Anal. **7** (2), 289-297, 2006.
- [15] H. Nakano, *Modulared Semi-Ordered Linear Spaces*, in: Tokyo Math. Book Ser. **1**, Maruzen Co., Tokyo, 1950.
- [16] W. Orlicz, *Collected Papers*, Vols. **I, II**, PWN, Warszawa, 1988.
- [17] T.L. Shateri, C^* -algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. **19** (2), 1551-1560, 2017.
- [18] S. Yamamuro, *On conjugate spaces of Nakano spaces*, Trans. Amer. Math. Soc. **90**, 291-311, 1959.