

RESEARCH ARTICLE

New generalizations of modular spaces

Tayebe Lal Shateri

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, Iran

Abstract

In the present paper, we introduce the concept of \mathcal{F} -modular, which is a generalization of the modular notion. Moreover, we introduce a K_p -modular and K-modular, and then compare these concepts together. Finally, we give a characterization of \mathcal{F} -modulars.

Mathematics Subject Classification (2010). 46A80

Keywords. modular space, F-modular space, K-modular space

1. Introduction

A modular on a space \mathcal{X} is a mapping $\rho : \mathcal{X} \to [0, \infty]$ satisfying the following properties: (i) $\rho(x) = 0$ if and only if x = 0,

(ii) $\rho(\alpha x) = \rho(x)$ for every scaler α with $|\alpha| = 1$,

(iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for every $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$.

A modular ρ defines a corresponding modular space, i.e., the vector space \mathfrak{X}_{ρ} given by

$$\mathfrak{X}_{\rho} = \{ x \in \mathfrak{X} : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0 \}.$$

The theory of modular spaces was founded by Nakano [15] and was intensively developed by Luxemburg [10], Koshi and Shimogaki [8] and Yamamuro [18] and their collaborators. In the present time the theory of modulars and modular spaces is extensively applied, in particular, in the study of various Orlicz spaces [16] and interpolation theory [9, 12], which in their turn have broad applications [13]. Shateri [17] introduced the notion of a C^* -valued modular, and investigated some fixed point theroems in such spaces.

Recently, many interesting extentions of the metric space appeared. The notion of a *b*-metric space introduced by Czerwik [2]. Fagin, et al. [3] introduced *s*-relaxed_p metric spaces. Gähler [4] defined the notion of a 2-metric on the product set $\mathcal{X} \times \mathcal{X} \times \mathcal{X}$. The reader can see more generalizations of the notion of a metric space in [1,5,7,12,14]. Jleli and Samet [6] introduced the \mathcal{F} -metric concept. They defined a natural topology in such spaces, and studied their topological properties.

In this paper, by using some ideas of [6] we introduce the \mathcal{F} -modular concept, which is a generalization of the modular space notion. We prove that any modular is an \mathcal{F} -modular, but the converse is not true in general, which shows that our concept is more general than the standard modular concept.

Email address: t.shateri@hsu.ac.ir

Received: 24.02.2019; Accepted: 08.08.2019

Moreover, we introduce a K_p -modular and K-modular, and then compare these concepts together. Finally, we introduce the notion of \mathcal{F} -modulars boundedness, which is used to provide a characterization of \mathcal{F} -modular spaces.

2. F-modulars

We start by introducing the following set which plays an important role in our topic. Let \mathcal{F} be the set of all functions $f: (0, +\infty) \to \mathbb{R}$ which satisfy in the following conditions

 $(\mathcal{F}_1) f$ is non-decreasing,

 (\mathcal{F}_2) For every sequence $\{t_n\}$ in $(0, +\infty)$, $\lim_{n \to +\infty} t_n = 0$ if and only if $\lim_{n \to +\infty} f(t_n) = -\infty$.

Now we define a new concept of a modular space.

Definition 2.1. Let \mathfrak{X} be a linear space, and let $\delta : \mathfrak{X} \to [0, +\infty)$ be a given mapping. Suppose there exists $(f, \gamma) \in \mathfrak{F} \times [0, +\infty)$ such that

 $(\delta_1) \ \delta(x) = 0$ if and only if x = 0,

 $(\delta_2) \ \delta(\alpha x) = \delta(x)$ for every scaler α with $|\alpha| = 1$,

 (δ_3) For each $x, y \in \mathfrak{X}$, for each $2 \leq n \in \mathbb{N}$, and for every $\{u_i\}_{i=1}^n$ in \mathfrak{X} with $u_1 = x$ and $u_n = y$, if $\delta(\alpha x + \beta y) > 0$ for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$,

then

$$f(\delta(\alpha x + \beta y)) \le f\left(\sum_{i=1}^n \delta(u_i)\right) + \gamma.$$

Then δ is called an \mathcal{F} -modular on \mathfrak{X} , and the pair (\mathfrak{X}, δ) is said to be an \mathcal{F} -modular space.

Note that if ρ is a modular on \mathfrak{X} , then it is an \mathfrak{F} -modular with f(t) = lnt and $\gamma = 0$. Clearly (δ_1) and (δ_2) satisfied. On the other hand, for each $x, y \in \mathfrak{X}$, for every $2 \leq n \in \mathbb{N}$, and for every $\{u_i\}_{i=1}^n$ in \mathfrak{X} with $u_1 = x$ and $u_n = y$, we have

$$\ln(\rho(\alpha x + \beta y)) \le \ln(\rho(x) + \rho(y)) \le \ln\left(\sum_{i=1}^{n} \rho(u_i)\right),$$

for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$.

In the following example we give an \mathcal{F} -modular space which is not a modular space.

Example 2.2. Let $\mathfrak{X} = [1, \infty)$, define the mapping $\delta : \mathfrak{X} \to [0, +\infty)$ as follows

$$\delta(x) = \begin{cases} x^2 & x \in [1,2) \\ x & x \ge 2, \end{cases}$$

for all $x \in \mathfrak{X}$. Then δ is not a modular. Indeed, δ does not satisfy (*iii*), because for x = 1, y = 2, $\alpha = \frac{1}{5}$ and $\beta = \frac{4}{5}$, we get

$$\delta(\alpha x + \beta y) = \delta(\frac{1}{5} + \frac{8}{5}) = \delta(\frac{9}{5}) = \frac{81}{25} > \delta(x) + \delta(y) = 3.$$

Now, we show that δ is an \mathcal{F} -modular. Fix $x, y \in \mathfrak{X}$, and let $\{u_i\}_{i=1}^n$ in \mathfrak{X} with $u_1 = x$ and $u_n = y$. Put $I = \{i = 1, \ldots, n; u_i \in [1, 2)\}$ and $J = \{1, 2, \ldots\} - I$, then we have

$$\sum_{i=1}^{n} \delta(u_i) = \sum_{i \in I} \delta(u_i) + \sum_{j \in J} \delta(u_j) = \sum_{i \in I} u_i^2 + \sum_{j \in J} u_j.$$

Now we have two cases. Case 1: If $\alpha x + \beta y \notin [1, 2)$, then

$$\delta(\alpha x + \beta y) = \alpha x + \beta y$$

$$\leq x + y \leq \sum_{i=1}^{n} u_i = \sum_{i \in I} u_i + \sum_{j \in J} u_j$$

$$\leq \sum_{i \in I} u_i^2 + \sum_{j \in J} u_j$$

$$= \sum_{i=1}^{n} \delta(u_i).$$

Case 2: If $\alpha x + \beta y \in [1, 2)$, then we have

$$\delta(\alpha x + \beta y) = (\alpha x + \beta y)^2$$

$$\leq 2(\alpha x + \beta y)$$

$$\leq 2(x + y)$$

$$\leq 2\left(\sum_{i \in I} u_i + \sum_{j \in J} u_j\right)$$

$$\leq 2\left(\sum_{i \in I} u_i^2 + \sum_{j \in J} u_j\right)$$

$$= 2\sum_{i=1}^n \delta(u_i).$$

The above cases show that δ satisfies (δ_3) with $f(t) = \ln t$, t > 0 and $\gamma = \ln 2$. Therefore δ is an \mathcal{F} -modular.

Now, we define a K_p -modular on a space \mathcal{X} , also we provide an example of an \mathcal{F} -modular space that cannot be an K_p -modular space, which confirms that the class of \mathcal{F} -modular spaces is more large than the class of K_p -modular spaces.

Definition 2.3. Let $\Delta : \mathfrak{X} \to [0, +\infty)$ be a mapping satisfies $(\delta_1), (\delta_2)$, and (Δ_3) There exists $K \geq 1$ such that for every $x, y \in \mathfrak{X}$, for every $2 \leq n \in \mathbb{N}$, for every $\{u_i\}_{i=1}^n$ in \mathfrak{X} with $u_1 = x$ and $u_n = y$, we have

$$\Delta(\alpha x + \beta y) \le K\Big(\sum_{i=1}^n \Delta(u_i)\Big),$$

for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. Then Δ is called a K_p -modular, and (\mathfrak{X}, Δ) is said to be a K_p -modular space.

It is clear that Δ satisfies (δ_3) with $f(t) = \ln t$, t > 0 and $\gamma = \ln K$, and hence Δ is an \mathcal{F} -modular. Notice that the mapping δ in Example 2.2 satisfies in (Δ_3) with K = 2. The following example shows that the class of \mathcal{F} -modulars is more large than the class of K_p modulars.

Example 2.4. Let $\mathfrak{X} = \mathbb{Z}$. Define the mapping $\delta : \mathfrak{X} \to [0, +\infty)$ by

$$\delta(x) = \begin{cases} \frac{1}{e^{|x|}} & x \neq 0, \\ 0 & x = 0, \end{cases}$$
(2.1)

for all $x \in \mathfrak{X}$. Then δ is a \mathcal{F} -modular. It is clear that δ satisfies (δ_1) and (δ_2) . In order to check (δ_3) , let

$$f(t) = -\frac{1}{t}, \quad (t > 0)$$

It can be easily seen that $f \in \mathcal{F}$. Fix $x, y \in \mathcal{X}$ and $\alpha, \beta > 0$ in which $\alpha + \beta = 1$ with $\delta(\alpha x + \beta y) > 0$. For every $n \in \mathbb{N}$, and for every $\{u_i\}$ in \mathcal{X} with $u_1 = x$ and $u_2 = y$, we have

$$1 + f\left(\sum_{i=1}^{n} \delta(u_{i})\right) - f(\delta(x) + \delta(y))$$

= $1 - \frac{1}{\sum_{i=1}^{n} \frac{1}{e^{|u_{i}|}}} + \frac{1}{\frac{1}{e^{|\alpha x + \beta y|}}}$
= $1 - \frac{1}{\sum_{i=1}^{n} \frac{1}{\frac{1}{e^{|u_{i}|}}}} + e^{|\alpha x + \beta y|}$
> $1 + 1 + e^{|\alpha x + \beta y|}$
> 0

Note that the first inequality holds because $\sum_{i=1}^{n} \frac{1}{e^{|u_i|}} > 0 > -1$ and so $-\frac{1}{\sum_{i=1}^{n} \frac{1}{e^{|u_i|}}} > 1$. Therefore we get

$$f(\delta(x) + \delta(y)) \le f\left(\sum_{i=1}^n \delta(u_i)\right) + 1.$$

Consequently δ is an \mathcal{F} -modular.

Next, we shall prove δ is not a K_p -modular. Suppose that δ satisfies (Δ_3) with a certain $K \ge 1$. Consider $u_1 = x = 4n, u_2 = y = 0$ and $\alpha = \beta = \frac{1}{2}$. Then we have

$$\delta(\alpha x + \beta y) = \delta(2n) \le K(\delta(x) + \delta(y)) = K\delta(4n),$$

this implies that

$$e^{2n} \le K$$

Passing to the limit as $n \to +\infty$, we obtain a contradiction. Therefore, δ can not be a K_p -modular.

In following, we introduce another concept of a modular space which is more large than the class of \mathcal{F} -modular spaces and K_p -modular spaces.

Definition 2.5. Let \mathfrak{X} be a linear space, and let $\rho : \mathfrak{X} \to [0, +\infty)$ be a mapping. Let there exists $K \geq 1$ such that

 $(\rho_1) \ \rho(x) = 0$ if and only if x = 0, $(\rho_2) \ \rho(\alpha x) = \rho(x)$ for every scalar α with $|\alpha| = 1$, $(\rho_3) \ \rho(\alpha x + \beta y) \le K(\rho(x) + \rho(y))$, for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. Then ρ is called a K-modular.

Notice that, each modular is a K-modular with K = 1. Also every K_p -modular is a K-modular. In following we give an example that shows the converse is not true in general.

Example 2.6. Let $\mathfrak{X} = [0,1]$, and let $\delta : \mathfrak{X} \to [0,+\infty)$ be the mapping defined by

$$\delta(x) = \begin{cases} x^2 & x \in [0, 1), \\ 0 & x = 1. \end{cases}$$

It can be easily seen that δ is a K-modular with K = 2. Next, we prove that δ is not an \mathcal{F} -modular. Suppose that there exists (f, γ) such that δ satisfies (δ_3) . Let $n \in \mathbb{N}$, and put

$$x = u_1 = 0, y = u_n = 1, u_i = \frac{1}{n}, \quad i = 2, \dots, n-1.$$

Then for $\alpha = \beta = \frac{1}{2}$, (δ_3) implies that

$$f(\delta(\frac{x}{2}+\frac{y}{2})) \le f(\delta(u_1)+\delta(u_2)+\dots+\delta(u_{n-1})+\delta(u_n))+\gamma$$

Hence

$$f(\frac{1}{2}) = \frac{1}{4} \le f\left(\frac{n-2}{n^2}\right) + \gamma$$

By (\mathcal{F}_2) , we have

$$\lim_{n \to +\infty} f\left(\frac{n-2}{n^2}\right) + \gamma = -\infty,$$

which is a contradiction. Consequently δ is not an \mathcal{F} -modular. Moreover δ is not a K_p -modular. Infact if δ satisfies (Δ_3), and let

$$x = u_1 = 0, y = u_n = 1, u_i = \frac{1}{n}, \quad i = 2, \dots, n-1,$$

then for $\alpha = \beta = \frac{1}{2}$, by (Δ_3) we conclude that

$$\delta(\frac{x}{2} + \frac{y}{2}) \le \delta(u_1) + \delta(u_2) + \dots + \delta(u_{n-1}) + \delta(u_n) + \gamma.$$

Therefore

$$\frac{1}{2} = \frac{1}{4} \le \frac{n-2}{n^2}$$

By (\mathcal{F}_2) , we have

$$\lim_{n \to +\infty} \frac{n-2}{n^2} = 0$$

which is a contradiction.

Remark 2.7. One can easily see that the mapping δ defined by (2.1) in Example 2.4, is not also a *K*-modular on \mathfrak{X} .

3. *F*-modular boundedness

In this section, we introduce the concept of \mathcal{F} -modular boundedness, which is used to provide a characterization of \mathcal{F} -modular spaces.

Definition 3.1. Let \mathfrak{X} be a linear space, and let $\delta : \mathfrak{X} \to [0, +\infty)$ be a mapping satisfying (δ_1) and (δ_2) . We call the pair (\mathfrak{X}, δ) is \mathfrak{F} -modular bounded with respect to $(f, \gamma) \in \mathfrak{F} \times [0, +\infty)$, if there exists a modular ρ on \mathfrak{X} such that for every $x, y \in \mathfrak{X}$, and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$, $\delta(\alpha x + \beta y) > 0$ implies that

$$f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)) \text{ and } f(\delta(\alpha x + \beta y)) \le f(\rho(\alpha x + \beta y)) + \gamma.$$
(3.1)

We can prove the following result.

Theorem 3.2. Let \mathfrak{X} be a space and let $\delta : \mathfrak{X} \to [0, +\infty)$ be a mapping satisfying (δ_1) and (δ_2) . Let $(f, \gamma) \in \mathfrak{F} \times [0, +\infty)$ such that f is continuous from the right. Then the followings are equivalent:

- (i) (\mathfrak{X}, δ) is an \mathfrak{F} -modular on \mathfrak{X} with (f, γ) given above.
- (ii) (\mathfrak{X}, δ) is an \mathfrak{F} -modular bounded with respect to (f, γ) .

Proof. Suppose that (\mathfrak{X}, δ) is an \mathfrak{F} -modular on \mathfrak{X} with respect to (f, γ) . We define the mapping $\rho : \mathfrak{X} \to [0, +\infty)$ by

$$\rho(\alpha x + \beta y) = \inf \left\{ \sum_{i=1}^n \delta(u_i) : n \in \mathbb{N}, n \ge 2, (u_i)_{i=1}^n \subset \mathcal{X}, u_1 = x, u_n = y \right\},\$$

for all $x, y \in \mathfrak{X}$ and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$. We show that ρ is a modular on \mathfrak{X} . Note that

$$\rho(x) = \inf \Big\{ \sum_{i=1}^{n} \delta(u_i) : n \in \mathbb{N}, n \ge 2, (u_i)_{i=1}^{n} \subset \mathcal{X}, u_1 = u_n = x \Big\},\$$

1080

so if x = 0, then $\rho(x) = 0$. Since $\delta(\alpha x) = \delta(x)$, for each α such that $|\alpha| = 1$, it follows from the definition of ρ that

$$\rho(\alpha x) = \rho(x), \quad x \in \mathfrak{X}.$$

Now, let $x \in \mathfrak{X}$ be such that $\rho(x) = 0$. Suppose that $x \neq 0$. Given $\varepsilon > 0$, then there exists $n \in \mathbb{N}, n \geq 2$, and $(u_i)_{i=1}^n \subset \mathfrak{X}$ with $u_1 = u_n = x$ such that

$$\sum_{i=1}^n \delta(u_i) < \varepsilon.$$

By (\mathcal{F}_1) , we obtain

$$f\left(\sum_{i=1}^{n} \delta(u_i)\right) \le f(\varepsilon).$$
 (3.2)

More over, putting y = x in (δ_3) deduce that

$$f(\delta(x)) \le f\left(\sum_{i=1}^{n} \delta(u_i)\right) + \gamma.$$
(3.3)

Using (3.2) and (3.3), we get

$$f(\delta(x)) \le f(\varepsilon) + \gamma.$$

By (\mathcal{F}_2) , we obtain

$$\lim_{\varepsilon \to 0^+} (f(\varepsilon) + \gamma) = -\infty,$$

which is a contradiction. Now, let $x, y \in \mathcal{X}$ and let $\alpha, \beta > 0$ be such that $\alpha + \beta = 1$. Suppose $\varepsilon > 0$ is arbitrary. Then by definition of ρ , there exist $\{u_i\}_{i=1}^n$ and $\{v_j\}_{j=1}^m$ in \mathcal{X} such that $u_1 = u_n = x$, $v_1 = v_m = y$, and

$$\sum_{i=1}^{n} \delta(u_i) < \rho(x) + \varepsilon, \quad \sum_{j=1}^{m} \delta(v_j) < \rho(y) + \varepsilon.$$

Put $w_1 = u_1 = x$, and $w_i = u_i$ for every $2 \le i \le n$, $w_i = v_{n+m-i-1}$ for every $n+1 \le i \le n+m-1$, and $w_{n+m} = u_m = y$. Then we obtain

$$\rho(\alpha x + \beta y) \le \sum_{i=1}^{n+m} \delta(w_i)$$
$$= \sum_{i=1}^n \delta(u_i) + \sum_{j=1}^m \delta(v_j)$$
$$< \rho(x) + \rho(y) + 2\varepsilon.$$

Passing to the limit as $\varepsilon \to 0^+$, we get

$$\rho(\alpha x + \beta y) \le \rho(x) + \rho(y).$$

Now, we shall prove that δ satisfies (3.1). For this, let $x, y \in \mathfrak{X}$, and for $\alpha, \beta > 0$ in which $\alpha + \beta = 1$, $\delta(\alpha x + \beta y) > 0$. It is clear that

$$\rho(\alpha x + \beta y) \le \delta(x) + \delta(y),$$

and (\mathcal{F}_1) implies that

$$f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)). \tag{3.4}$$

Let $\varepsilon > 0$. Then, there exist $n \in \mathbb{N}$, and $\{u_i\}_{i=1}^n \subset \mathfrak{X}$ with $u_1 = x$ and $u_n = y$ such that

$$\sum_{i=1}^{n} \delta(u_i) < \rho(\alpha x + \beta y) + \varepsilon.$$

Hence

$$f\left(\sum_{i=1}^{n} \delta(u_i)\right) \le f(\rho(\alpha x + \beta y) + \varepsilon).$$

By (δ_3) , we obtain

$$f(\delta(\alpha x + \beta y) \le f(\rho(\alpha x + \beta y) + \varepsilon) + \gamma.$$

Passing to the limit as $\varepsilon \to 0^+$, and using the right continuity of f, we get

$$f(\delta(\alpha x + \beta y) \le f(\rho(\alpha x + \beta y)) + \gamma.$$
(3.5)

We deduce from (3.4) and (3.5) that

$$f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)) \le f(\rho(\alpha x + \beta y)) + \gamma.$$

Therefore (\mathfrak{X}, δ) is \mathfrak{F} -modular bounded with respect to (f, γ) .

Now, let (\mathfrak{X}, δ) is \mathcal{F} -modular bounded with respect to (f, γ) , that is, there exists a modular ρ on \mathfrak{X} such that (3.1) satisfied. Let $x, y \in \mathfrak{X}$, and let $\alpha, \beta > 0$ be such that $\alpha + \beta = 1$, and $\delta(\alpha x + \beta y) > 0$. Suppose $n \in \mathbb{N}$, and $\{u_i\}_{i=1}^n$ with $u_1 = x, u_n = y$. Since ρ is a modular, we have

$$\rho(\alpha x + \beta y) \le \rho(x) + \rho(y) \le \sum_{i=1}^{n} \rho(u_i).$$
(3.6)

Using (\mathcal{F}_1) and the fact that if $\delta(x) + \delta(y) > 0$, and

$$f(\rho(\alpha x + \beta y)) \le f(\delta(x) + \delta(y)),$$

we deduce that

$$\rho(\alpha x + \beta y) \le \delta(x) + \delta(y). \tag{3.7}$$

By (3.6) and (3.7), we get

 $f(\rho(\alpha x+\beta y))\leq f(\delta(x)+\delta(y)) \ \text{ and } \ f(\delta(\alpha x+\beta y))\leq f(\rho(\alpha x+\beta y))+\gamma.$

By (\mathcal{F}_1) we deduce that

$$f(\rho(\alpha x + \beta y)) + \gamma \le f\left(\sum_{i=1}^n \delta(u_i)\right) + \gamma.$$

On the other hand

$$f(\delta(\alpha x + \beta y)) \le f(\rho(\alpha x + \beta y)) + \gamma,$$

we conclude that

$$f(\delta(\alpha x + \beta y)) \le f\left(\sum_{i=1}^{n} \delta(u_i)\right) + \gamma$$

Therefore, δ is an \mathcal{F} -modular on \mathfrak{X} .

Theorem 3.2 gives a characterization of F-modulars as follows.

Corollary 3.3. An \mathcal{F} -modular on a space \mathcal{X} is an \mathcal{F} -modular bounded mapping.

Remark 3.4. Note that in the proof of Theorem 3.2, the right continuity assumption of f is used only to prove that $(i) \Rightarrow (ii)$. However, $(ii) \Rightarrow (i)$ holds for any $f \in \mathcal{F}$.

1082

References

- A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57, 31-37, 2000.
- [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1), 511, 1993.
- [3] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math. 17 (1), 134-160, 2003.
- [4] V.S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26, 115-118, 1963/1964.
- [5] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, 14 pages, 2015.
- [6] M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl. 20 (3), 20 pages, 2018.
- [7] R. Kopperman and H. Pajoohesh, Generalizations of metrics and partial metrics, Hacet. J. Math. Stat. 46 (1), 9-14, 2017.
- [8] S. Koshi and T. Shimogaki, On F-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I. 15 (3), 202-218, 1961.
- [9] M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces (in Russian), Fizmatgiz, Moskva, 1958; Translated by L.F. Boron, Noordhoff, Groningen, 1961.
- [10] W.A. Luxemburg, Banach function spaces, Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, 1959.
- [11] L. Maligranda, Orlicz Spaces and Interpolation, in: Seminars in Math. 5, Univ. of Campinas, Brazil, 1989.
- [12] S.G. Matthews, *Partial metric topology*, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. **728**, 183-197, 1994.
- [13] J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
- [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2), 289-297, 2006.
- [15] H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser. 1, Maruzen Co., Tokyo, 1950.
- [16] W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.
- [17] T.L. Shateri, C^{*}-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. 19 (2), 1551-1560, 2017.
- [18] S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90, 291-311, 1959.