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Abstract
In this paper, we extend the notion of the Bogomolov multipliers and the CP-extensions
to Lie algebras. Then, we compute the Bogomolov multipliers for Abelian, Heisenberg and
nilpotent Lie algebras of class at most 6. Finally, we compute the Bogomolov multipliers
of complex simple and semisimple Lie algebras.
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1. Introduction
During the study of continuous transformation groups in the end of 19th century, So-

phus Lie found Lie algebras as a new algebraic structure. This new structure played an
important role in 19th and 20th centuries mathematical physics. (See [20, 28], for more
information). Lie theory is studying objects like Lie algebras, Lie groups, Root systems,
Weyl groups, Linear algebraic groups, etc. and some researches show its emphasis on
modern mathematics. (See [5, 20] for more information). Furthermore, it is shown that
one can associate a Lie algebra to a continuous or Lie group. For example, Lazard in-
troduced a correspondence between some groups and some Lie algebras. (See [19], for
more information). So theories of groups and Lie algebras are structurally similar and
many concepts related to groups are defined analogously to Lie algebras. In this paper
we want to define the Bogomolov multipliers for Lie algebras. This concept is known for
groups and it is a group-theoretical invariant introduced as an obstruction to a problem
in algebraic geometry which is called the rationality problem. This problem can be stated
in the following way. Let V be a faithful representation of a group G over a field K. Then
G acts naturally on the field of rational functions K(V ). Now the rationality problem
or Noether’s problem) can be stated as “is the field of G-invariant functions K(V )G is
rational (purely transcendental) over K?” A question related to the above mentioned is
whether there exist independent variables x1, ..., xr such that K(V )G(x1, ..., xr) becomes a
pure transcendental extension of K? Saltman in [25] give some examples of groups of order
p9 for which the answer to the Noether’s problem was negative, even when taking K = C.
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He used the notion of the unramified cohomology group H2
nr(C(V )G,Q/Z). Bogomolov in

[4] proved that it is canonically isomorphic to

B0(G) =
∩

ker{resA
G : H2(G,Q/Z) → H2(A,Q/Z)},

where A is an abelian subgroup of G. The group B0(G) is a subgroup of the Schur
multiplier M(G) = H2(G,Q/Z) and Kunyavskii in [18] named it the Bogomolov multiplier
of G. Thus non triviallity of the Bogomolov multiplier leads to counter-examples to
Noether’s problem. But it’s not always easy to calculate Bogomolov multipliers of groups.
Moravec in [22] introduced an equivalent definition of the Bogomolov multiplier. In this
sense, he used a notion of the non abelian exterior square G∧G of a group G to obtain a
new description of the Bogomolov multiplier. He showed that if G is a finite group, then
B0(G) is non-canonically isomorphic to Hom(B̃0(G),Q/Z), where the group B̃0(G) can be
described as a section of the non abelian exterior square of the group G. Also, he proved
that B̃0(G) ∼= M(G)/M0(G), such that the Schur multiplier M(G) or the same H2(G,Q/Z)
interpreted as the kernel of the commutator homomorphism G ∧ G → [G,G] given by
x ∧ y → [x, y], and M0(G) is the subgroup of M(G) defined as M0(G) =< x ∧ y | [x, y] =
0, x, y ∈ G >. Thus in the class of finite groups, B̃0(G) is non-canonically isomorphic to
B0(G). With this definition and similar to the Schur multiplier, the Bogomolov multiplier
can be explained as a measure of the extent to which relations among commutators in
a group fail to be consequences of universal relation. Furthermore, Moravec’s method
relates the Bogomolov multiplier to the concept of commuting probability of a group and
shows that the Bogomolov multiplier plays an important role in commutativity preserving
central extensions of groups, that are famous cases in K-theory. Now, It is interesting that
the analogous theory of commutativity preserving exterior product can be developed to
the field of Lie theory. In this paper, we introduce a non abelian commutativity preserving
exterior product, and the Bogomolov multiplier of Lie algebras. Then we investigate their
properties. Moreover we compute the Bogomolov multiplier for Heisenberg Lie algebras,
nilpotent Lie algebras of dimension at most 6 and complex simple and semisimple Lie
algebras.

2. Some notations and preliminaries
Let L be a finite dimensional Lie algebra. The following standard notations will be used

throughout the paper.
• [., .] the Lie bracket.
• L2 = [L,L] the commutator subalgebra of L.
• H(m) the Heisenberg Lie algebra of dimension 2m+ 1.
• A(n) the abelian Lie algebra of dimension n.

• M(L) ∼=
R ∩ F 2

[R,F ]
the Schur multiplier of L, such that L ∼=

F

R
.

2.1. Exterior product [8]
Let L be a Lie algebra and M and N be ideals of L. The exterior product M ∧N is a

Lie algebra generated by all symbols m ∧ n, subject to the following relations
(i) λ(m ∧ n) = λm ∧ n = m ∧ λn,
(ii) (m+m′) ∧ n = m ∧ n+m′ ∧ n,
(iii) m ∧ (n+ n′) = m ∧ n+m ∧ n′,
(iv) [m,m′] ∧ n = m ∧ [m′, n] −m′ ∧ [m,n],
(v) m ∧ [n, n′] = [n′,m] ∧ n− [n,m] ∧ n′,
(vi) [(m ∧ n), (m′ ∧ n′)] = −[n,m] ∧ [m′, n′],
(vii) If m = n, then m ∧ n = 0,
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for all λ ∈ F , m,m′ ∈ M and n, n′ ∈ N .

2.2. Exterior pairing [8]
Let L be a Lie algebra. A function ϕ : M × N → L is called an exterior pairing, if we

have
(i) h(λm, n) = h(m,λn) = λh(m,n),
(ii) h(m+m′, n) = h(m,n) + h(m′, n),
(iii) h(m,n+ n′) = h(m,n) + h(m,n′),
(iv) h([m,m′], n) = h(m, [m′, n]) + h(m′, [n,m]),
(v) h(m, [n, n′]) = h([n′,m], n) + h([m,n], n′),
(vi) [h(m,n), h(m′, n′)] = h([m,n], [m′, n′]),
(vii) If m = n, then h(m,n) = 0,

for all λ ∈ F , m,m′ ∈ M and n, n′ ∈ N .

Note that the function M × N → M ∧ N given by (m,n) → m ∧ n is the universal
exterior pairing.

3. The commutativity preserving non abelian exterior product of Lie
algebras

In this section, we intend to extend the results of [4,6,13,14,16,18,22] to the theory of
Lie algebras.

Definition 3.1. Let K be a Lie algebra and M and N be ideals of K. A bilinear function
h : M ×N → K, is called a Lie-B̃0-pairing, if we have

(i) h(λm, n) = h(m,λn) = λh(m,n),
(ii) h(m+m′, n) = h(m,n) + h(m′, n),
(iii) h(m,n+ n′) = h(m,n) + h(m,n′),
(iv) h([m,m′], n) = h(m, [m′, n]) − h(m′, [m,n]),
(v) h(m, [n, n′]) = h([n′,m], n) − h([n,m], n′),
(vi) h([n,m], [m′, n′]) = −[h(m,n), h(m′, n′)],
(vii) If [m,n′] = 0, then h(m,n′) = 0,

for all λ ∈ F , m,m′ ∈ M and n, n′ ∈ N .

Definition 3.2. A Lie algebra Homomorphism is a linear map H ∈ Hom(L,M) between
Lie algebras L and M , such that it is compatible with the Lie bracket, that is

H : L → M , H([x, y]) = [H(x),H(y)].

For example any vector space can be made into a Lie algebra with the trivial bracket.

Definition 3.3. A Lie-B̃0-pairing h : M × N → L is called universal, if for any Lie-B̃0-
pairing h′ : M × N → L′, there is a unique Lie homomorphism θ : L → L′ such that
θh = h′.

The following definition extends the concept of CP exterior product in [22] to the theory
of Lie algebras.

Definition 3.4. Let L be a Lie algebra and M and N be ideals of L. The CP exterior
product M fN is the Lie algebra generated by all symbols mfn subject to the following
relations

(i) λ(mf n) = λmf n = mf λn,
(ii) (m+m′) f n = mf n+m′ f n,
(iii) mf (n+ n′) = mf n+mf n′,
(iv) [m,m′] f n = mf [m′, n] −m′ f [m,n],
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(v) mf [n, n′] = [n′,m] f n− [n,m] f n′,
(vi) [(mf n), (m′ f n′)] = −[n,m] f [m′, n′],
(vii) If [m,n] = 0, then mf n = 0,

for all λ ∈ F , m,m′ ∈ M and n, n′ ∈ N .

In the case M = N = L, we call Lf L the curly exterior product of L.

Proposition 3.5. The function h : M × N → M f N given by (m,n) 7−→ m f n, is a
universal Lie-B̃0-pairing.

Proof. By Definitions 3.1, 3.3 and 3.4, the proof is straightforward. �
Theorem 3.6. Let L be a Lie algebra and M and N be ideals of L. Then we have

M fN ∼=
M ∧N

M0(M,N)
,

where M0(M,N) =< m ∧ n | m ∈ M, n ∈ N, [m,n] = 0 >.

Proof. By using Definition 2.2, the function h : M × N → M f N given by (m,n) 7−→
(m f n) is an exterior pairing. So it induces a homomorphism h̃ : M ∧ N → M f N ,
given by (m ∧ n) 7−→ m f n, for all m ∈ M and n ∈ N . Clearly M0(M,N) ⊆ ker h̃,
so we have the homomorphism h∗ : (M ∧N)/M0(M,N) → M f N given by (m ∧ n) +
M0(M,N) 7−→ (mf n). On the other hand, the map l∗ : M fN → (M ∧N)/M0(M,N)
given by (mf n) 7−→ (m ∧ n) + M0(M,N) is induced by the Lie-B̃0-pairing l : M ×N →
(M ∧N)/M0(M,N) given by (m,n) 7−→ (m∧ n) + M0(M,N). Now it is easy to see that
h∗l∗ = l∗h∗ = 1. Thus l∗ is an isomorphism. �

It is known that κ : M ×N → [M,N ] given by (m,n) 7−→ [m,n] is an exterior pairing.
So for all m ∈ M and n ∈ N , it induces a homomorphism κ̃ : M ∧N → [M,N ], such that
κ̃(m∧n) = [m,n]. Moreover, the kernel of κ̃ is denoted by M(M,N). It can easily seen that
M0(M,N) ≤ M(M,N), thus there is a homomorphism κ∗ : M ∧N/M0(M,N) → [M,N ]
given by m ∧ n + M0(M,N) 7−→ [m,n], with kerκ∗ ∼= M(M,N)/M0(M,N). Similar
to groups, we denote M(M,N)/M0(M,N) by B̃0(M,N), and we call it the Bogomolov
multiplier of the pair of Lie algebras (M,N). Therefore, we have an exact sequence

0 → B̃0(M,N) → M fN → [M,N ] → 0.
In the case M = N = L, M0(L,L) =< l ∧ l′ | l, l′ ∈ L , [l, l′] = 0 > and we denote it by
M0(L).

It is known that the kernel of κ̃ : L ∧ L → L2 given by l ∧ l′ 7−→ [l, l′] is the Schur
multiplier of L. On the other hand M0(L) ≤ M(L) = ker κ̃. So there is a homomorphism
κ∗ : L∧L/M0(L) → L2 given by l∧ l′ +M0(L) 7−→ [l, l′] and kerκ∗ ∼= M(L)/M0(L). Sim-
ilar to groups, we denote M(L)/M0(L) by B̃0(L), and we call it the Bogomolov multiplier
of the Lie algebra L. So we have an exact sequence

0 → B̃0(L) → Lf L → L2 → 0.

Proposition 3.7. Let L be a Lie algebra and M , N and K be ideals of L, such that
K ⊆ M ∩N . Then there is an isomorphism

M/K fN/K ∼= (M fN)/T,
where T =< mf n | m ∈ M,n ∈ N, [m,n] ∈ K >.

Proof. The function ϕ : M ×N → M/K fN/K given by (m,n) → (m+K)f (n+K) is
a well-defined Lie-B̃0-pairing. Thus there is a homomorphism ϕ∗ : MfN → M/KfN/K
with m f n 7−→ (m + K) f (n + K). Clearly T ⊆ kerϕ∗, so we have the homomorphism
ψ : (M fN)/T → M/K fN/K given by m f (n + T ) 7−→ (m + K) f (n + K). On the
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other hand, the map φ∗ : M/K fN/K → (M fN)/T given by (m+K) f (n+K) 7−→
(m f n) + T is induced by the Lie-B̃0-pairing φ : M/K × N/K → (M fN)/T given by
(m + K,n + K) 7−→ (m f n) + T . One can check that, φ∗ψ = ψφ∗ = 1. Thus, φ∗ is an
isomorphism, and the proof is complete. �

Now, we give the behaviour of the CP exterior product respect to a direct sum of Lie
algebras.
Proposition 3.8. Let L1 and L2 be ideals of a Lie algebra L. Then

(L1 ⊕ L2) f (L1 ⊕ L2) ∼= L1 f L1 ⊕ L2 f L2.

Proof. The result obtained by using a similar way to that of [8]. �

4. Hopf-type formula for the Bogomolov multiplier of Lie algebras
Let L be a Lie algebra with a free presentation L ∼= F/R. By the well-known Hopf

formula [8], we have an isomorphism M(L) ∼= (R∩F 2)/[R,F ]. Here we intend to give the
similar formula for B̃0(L).

In the following K(F ) denotes {[x, y] | x, y ∈ F}.
Proposition 4.1. Let L be a Lie algebra with the free presentation L ∼= F/R, then

B̃0(L) ∼=
R ∩ F 2

< K(F ) ∩R >
.

Proof. From [8], L ∧ L ∼= F 2/[R,F ] and L2 ∼= F 2/(R ∩ F 2). Moreover ker κ̃ = M(L) ∼=
(R∩F 2)/[R,F ] and M0(L) can be considered as the subalgebra of F/[R,F ] generated by
all commutators in F/[R,F ] that belong to M(L). Thus we have the following isomorphism
for M0(L),

M0(L) ∼=< K( F

[R,F ]
) ∩ R

[R,F ]
>= < K(F ) ∩R > +[R,F ]

[R,F ]
= < K(F ) ∩R >

[R,F ]
.

Therefore B̃0(L) = M(L)/M0(L) ∼= R ∩ F 2/< K(F ) ∩R > as required. �
Proposition 4.2. Let L be a Lie algebra and M be an ideal of L. Then the sequence

B̃0(L) → B̃0( L
M

) → M

< K(L) ∩M >
→ L

L2 → L/M

(L/M)2 → 0,

is exact.

Proof. Suppose 0 −→ R −→ F
π−→ L −→ 0 be a free presentation of L and let

T = ker(F → L/M). We have M ∼= T/R. The inclusion maps R ∩ F 2 f−→ T ∩ F 2,

T ∩ F 2 g−→ T, T
h−→ F and F

k−→ F induce the sequence of homomorphisms
R ∩ F 2

< K(F ) ∩R >

f∗
−→ T ∩ F 2

< K(F ) ∩ T >

g∗
−→ T

< K(F ) ∩ T > +R
h∗
−→ F

R+ F 2
k∗
−→

F

T + F 2 → 0. Note that T

< K(F ) ∩ T > +R
∼=

M

< K(L) ∩M >
, F

R+ F 2
∼=

L

L2 and

F

T + F 2
∼=

L/M

(L/M)2 . Now by using Proposition 4.1, we have

B̃0(L) ∼=
R ∩ F 2

< K(F ) ∩R >
and B̃0( L

M
) ∼=

T ∩ F 2

< K(F ) ∩ T >
. Moreover,

imf∗ = ker g∗ = R ∩ F 2

< K(F ) ∩ T >
, img∗ = kerh∗ = T ∩ F 2

< K(F ) ∩ T > +R
,

imh∗ = ker k∗ = T

R+ F 2 , and K∗ is an epimorphism. Therefore, the above sequence is
exact. �
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Proposition 4.3. Let L be a Lie algebra with a free presentation L ∼= F/R, and M be an
ideal of L, such that T = ker(F → L/M). Then the sequence

0 → R ∩ < K(F ) ∩ T >

< K(F ) ∩R >
→ B̃0(L) → B̃0( L

M
) → M ∩ L2

< K(L) ∩M >
→ 0,

is exact.

Proof. Suppose 0 −→ R −→ F
π−→ L −→ 0 be a free presentation of L and let T = ker(F →

L/M). We have M ∼= T/R. The inclusion maps

R ∩ < K(F ) ∩ T >
f−→ R ∩ F 2, R ∩ F 2 g−→ T ∩ F 2

and the map T ∩ F 2 h−→ (T ∩ F 2) +R induce the sequence of homomorphisms

0 → R ∩ < K(F ) ∩ T >

< K(F ) ∩R >

f∗
−→ R ∩ F 2

< K(F ) ∩R >

g∗
−→ T ∩ F 2

< K(F ) ∩ T >
h∗
−→

(T ∩ F 2) +R

< K(F ) ∩ T > +R
→ 0. It is straightforward to verify that

< K(L) ∩M >= < K(F ) ∩ T > +R
R

and M ∩ L2 = T

R
∩ F 2 +R

R
= (T ∩ F 2) +R

R
.

Therefore we have
M ∩ L2

< K(L) ∩M >
= ((T ∩R2) +R)/R

(< K(F ) ∩ T > +R)/R
∼=

(T ∩ F 2) +R

< K(F ) ∩ T > +R
.

Now by using Proposition 4.1, we have

B̃0(L) ∼=
R ∩ F 2

< K(F ) ∩R >
, B̃0( L

M
) ∼=

T ∩ F 2

< K(F ) ∩ T >
, and

imf∗ = ker g∗ = R ∩ < K(F ) ∩ T >

< K(F ) ∩R >
, img∗ = kerh∗ = R ∩ F 2

< K(F ) ∩ T >
.

Moreover h∗ is an epimorphism. Thus, the above sequence is exact. �

For groups, the Schur multiplier is a universal object of central extensions. Recently,
parallel to the classical theory of central extensions, Jezernik and Moravec in [13, 14]
developed a version of extension that preserve commutativity. They showed that the
Bogomolov multiplier is also the universal object parametrizing such extensions for a
given group. Now we want to introduce a similar notion for Lie algebras.

Definition 4.4. Let L, M and C be Lie algebras. An exact sequence of Lie algebras
0 −→ M

χ−→ C
π−→ L −→ 0 is called a commutativity preserving extension (CP extension) of

M by L, if commuting pairs of elements of L have commuting lifts in C. A special type
of CP extension with the central kernel is named a central CP extension.

Proposition 4.5. Let e : 0 −→ M
χ−→ C

π−→ L −→ 0 be a central extension. Then e is a CP
extension if and only if χ(M) ∩K(C) = 0.

Proof. Suppose that e is a CP central extension. Let [c1, c2] ∈ χ(M) ∩ K(C), then
there is a commuting lift (c′

1, c
′
2) ∈ C × C of the commuting pair (π(c1), π(c2)), such that

π(c′
1) = π(c1) and π(c′

2) = π(c2). So for some a, b ∈ χ(M), we have c′
1 = c1+a , c′

2 = c2+b.
Therefore 0 = [c′

1, c
′
2] = [c1 + a, c2 + b] = [c1, c2]. Hence χ(M) ∩ K(C) = 0. Conversely

suppose that χ(M) ∩ K(C) = 0. Choose x, y ∈ L with [x, y] = 0, we have x = π(c1) and
y = π(c2) for some c1, c2 ∈ C. Therefore π([c1, c2]) = 0. Hence [c1, c2] ∈ χ(M)∩K(C) = 0,
so [c1, c2] = 0. Thus the central extension e is a CP extension. �

Definition 4.6. An abelian ideal M of a Lie algebra L is called a CP Lie subalgebra of
L if the extension 0 → M → L → L

M
→ 0 is a CP extension.
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Moreover, by using Proposition 4.5 an abelian ideal M of a Lie algebra L is a CP Lie
subalgebra of L if M ∩K(L) = 0.

Now we obtain an explicit formula for the Bogomolov multiplier of a direct product of
two Lie algebras. The following lemma gives a free presentation for L1 ⊕ L2, in terms of
the given free presentation for L1 and L2. It will be used in the rest.

Lemma 4.7. ([24, Lemma 2.1]) Let L1 and L2 be Lie algebras with free presentations
F1/R1 and F2/R2, respectively. Let F = F1 ∗ F2 be the free product of F1 and F2. Then
0 → R → F → L1⊕L2 → 0 is a free presentation for L1⊕L2, where R = R1+R2+[F2, F1].

Proposition 4.8. Let L1 and L2 be Lie algebras. Then
B̃0(L1 ⊕ L2) ∼= B̃0(L1) ⊕ B̃0(L2).

Proof. By using Lemma 4.7, we have

B̃0(L1 ⊕ L2) = (R1 +R2 + [F2, F1]) ∩ (F1 ∗ F2)2

< K(F1 ∗ F2) ∩ (R1 +R2 + [F2, F1]) >
.

Let F = F1 ∗ F2, then the epimorphism F → F1 × F2 induces the following epimorphism

α : R ∩ F 2

< K(F ) ∩R >
→ R1 ∩ F1

2

< K(F1) ∩R1 >
⊕ R2 ∩ F2

2

< K(F2) ∩R2 >

x+ < K(F ) ∩R > 7−→ (x1+ < K(F1) ∩R1 > , x2+ < K(F2) ∩R2 >)
where x = x1 + x2, x1 ∈ R1 ∩ F1

2 and x2 ∈ R2 ∩ F2
2.

On the other hand

β : R1 ∩ F1
2

< K(F1) ∩R1 >
⊕ R2 ∩ F2

2

< K(F2) ∩R2 >
→ R ∩ F 2

< K(F ) ∩R >

given by
(x1+ < K(F1) ∩R1 > , x2+ < K(F2) ∩R2 >) 7−→ x+ < K(F ) ∩R >

is a well-defined homomorphism. It is easy to check that β is a right inverse to α, so α is an
epimorphism. Now, we show that α is a monomorphism. Let x+ < K(F ) ∩R > ∈ kerα,
such that, x = t1 + t2. So we have t1 ∈< K(F1) ∩ R1 > and t2 ∈< K(F2) ∩ R2 >. Since
t1, t2 ∈< R ∩K(F ) >, then x ∈< K(F ) ∩R >. Thus α is a monomorphism. �

5. Computing the Bogomolov multiplier of Heisenberg Lie algebras
We use the symbol H(m) for the Heisenberg Lie algebra of dimension 2m + 1. The

Heisenberg Lie algebra L is a Lie algebra such that L2 = Z(L) and dimL2 = 1. Such Lie
algebras are odd dimensional with basis v1, . . . , v2m, v and the only non zero multiplica-
tions between basis elements are [v2i−1, v2i] = −[v2i, v2i−1] = v for i = 1, 2, . . . ,m.

Theorem 5.1. With the above notations and assumptions B̃0(H(1)) = 0.

Proof. Since H(1) ∧ H(1) =< v1 ∧ v2, v1 ∧ v, v2 ∧ v >, an element w ∈ M(H(1)) ≤
H(1)∧H(1) can be written as w = α1(v1 ∧v2)+α2(v1 ∧v)+α3(v2 ∧v), for α1, α2, α3 ∈ F .
Now, considering κ̃ : H(1) ∧ H(1) → H(1)2 with ker κ̃ = M(H(1)), we have κ̃(w) = 0,
and hence α1[v1, v2] + α2[v1, v] + α3[v2, v] = 0. On the other hand, [v1, v] = [v2, v] = 0,
[α1v1, v2] = α1[v1, v2] = α1v = 0. Hence v1 ∧ v, v2 ∧ v, α1(v1 ∧ v2) ∈ M0(H(1)). Thus
w ∈ M0(H(1)), and so M(H(1)) ⊆ M0(H(1)). Therefore B̃0(H(1)) = 0. �
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Theorem 5.2. B̃0(H(m)) = 0, for all m ≥ 2.

Proof. We know that

H(m) =< v1, v2, . . . v2m, v | [v2i−1, v2i] = −[v2i, v2i−1] = v, i = 1 . . .m > .

We can see that

H(m) ∧H(m) =< v1 ∧ v2, v1 ∧ v3, . . . , v1 ∧ v2m, v2 ∧ v3, v2 ∧ v4, . . . , v2 ∧ v2m, . . .
v2m−1 ∧ v2m, v1 ∧ v, . . . , v2m ∧ v >.

Also for all i, 1 ≤ i ≤ m, vi ∧ v = vi ∧ [v2i−1, v2i] = [v2i, vi] ∧ v2i−1 − [v2i−1, vi] ∧ v2i = 0.
Thus H(m)∧H(m) =< v1∧v2, v1∧v3, . . . , v1∧v2m, v2∧v3, . . . , v2∧v2m, . . . , v2m−1∧v2m >.
Now, for all w ∈ M(H(m)) ≤ H(m) ∧H(m), there exist α1, . . . α2m2−2m, β1, . . . , βm ∈ F ,
such that w = α1(v1 ∧ v3) + α2(v1 ∧ v4) + . . . + α2m2−2m(v2m−2 ∧ v2m) + β1(v1 ∧ v2)
+β2(v3 ∧ v4) + . . . + βm(v2m−1 ∧ v2m). Let κ̃ : H(m) ∧ H(m) → H(m)2 be given by
x∧y → [x, y]. Since κ̃(w) = 0, we have α1[v1, v3]+α2[v1, v4]+ . . .+α2m2−2m[v2m−2, v2m]+
β1[v1, v2] + β2[v3, v4] + . . . + βm[v2m−1, v2m] = 0. So, (β1 + β2 + . . . + βm)v = 0. Hence,
w = α1(v1 ∧v3)+α2(v1 ∧v4)+ . . .+α2m2−2m(v2m−2 ∧v2m) +β1(v1 ∧v2 −v3 ∧v4)+β2(v3 ∧
v4 − v5 ∧ v6) + . . . + βm−1(v2m−3 ∧ v2m−2 − v2m−1 ∧ v2m). On the other hand, [v1, v3] =
[v1, v4] = . . . = [v2m−2, v2m] = 0. Thus v1 ∧ v3, v1 ∧ v4, . . . v2m−2 ∧ v2m ∈ M0(H(m)).
We can see that [v1 + v4, v2 + v3] = 0. So, (v1 + v4) ∧ (v2 + v3) ∈ M0(H(m)). Hence,
v1 ∧ v2 + v1 ∧ v3 + v4 ∧ v2 + v4 ∧ v3 ∈ M0(H(m)). Thus (v1 ∧ v2) − (v3 ∧ v4) ∈ M0(H(m)).
By a same way, we have

((v3 ∧ v4) − (v5 ∧ v6)), . . . , ((v2m−3 ∧ v2m−2) − (v2m−1 ∧ v2m)) ∈ M0(H(m)).

Therefore w ∈ M0(H(m)) and so M(H(m)) ⊆ M0(H(m)). Hence B̃0(H(m)) = 0 as
required. �

Theorem 5.3. Let L be an n-dimensional Lie algebra with dimL2 = 1. Then B̃0(L) = 0.

Proof. By Lemma 3.3 in [23], L ∼= H(m)⊕A(n−2m−1) for some m. Now using Theorem
5.2 and Proposition 4.8, we have

B̃0(L) ∼= B̃0(H(m) ⊕A(n− 2m− 1)) ∼= B̃0(H(m)) ⊕ B̃0(A(n− 2m− 1)).

Since B̃0(H(m)) = B̃0(A(n− 2m− 1)) = 0, the result follows. �

6. Computing the Bogomolov multiplier of nilpotent Lie algebras of di-
mension at most 6

This section is devoted to obtain the Bogomolov multiplier for the nilpotent Lie algebras
of dimension at most 6. We need the classification of these Lie algebras in [7, 9]. The
following results are obtained by using notations and terminology used in [1, 6, 14,15].

Theorem 6.1. Let L be a nilpotent Lie algebra of dimension at most 2. Then B̃0(L) = 0.

Proof. Since L is abelian, its Bogomolov multiplier is trivial. �

From [9], there are two nilpotent Lie algebras of dimension 3, the abelian one, which
we denote by L3,1 and L3,2 ∼= H(1) with basis v, v1, v2 and the only non-zero Lie bracket
[v1, v2] = v.

Theorem 6.2. Let L be a nilpotent Lie algebra of dimension 3. Then B̃0(L) = 0.

Proof. L3,1 is abelian so B̃0(L3,1) = 0. Now since L3,2 ∼= H(1), the result is obtained by
using Theorem 5.1. �
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From [9], there are three nilpotent Lie algebras of dimension 4, which are isomorphic to
L4,1, L4,2, L4,3 and L4,k

∼= L3,k ⊕I, k = 1, 2 (where I is a 1-dimensional abelian ideal). L4,3
has the basis x1, x2, x3, x4, with the only non-zero brackets [x1, x2] = x3, [x1, x3] = x4.

Theorem 6.3. Let L be a nilpotent Lie algebra of dimension 4. Then B̃0(L) = 0.

Proof. Using Proposition 4.8 and Theorem 6.2, we have
B̃0(L4,k) ∼= B̃0(L3,k) ⊕ B̃0(I) = 0, for k = 1, 2.

Now let L ∼= L4,3 =< x1, x2, x3, x4 | [x1, x2] = x3, [x1, x3] = x4 >, we have
x2 ∧ x4 = x3 ∧ x4 = 0. So, L4,3 ∧ L4,3 =< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x2 ∧ x3 >.
Hence, for all w ∈ M(L4,3) ≤ L4,3 ∧ L4,3, there exist α1, α2, α3, α4 ∈ F , such that
w = α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x2 ∧ x3). Now, considering
κ̃ : L4,3 ∧ L4,3 → L2

4,3 given by x ∧ y → [x, y]. Since κ̃(w) = 0, we have α1[x1, x2] +
α2[x1, x3] +α3[x1, x4] +α4[x2, x3] = 0. So α1x3 +α2x4 = 0. On the other hand, [x1, x4] =
[x2, x3] = [x2, x4] = [x3, x4] = 0 , [α1x1, x2] = α1[x1, x2] = α1x3 = 0 and [α2x1, x3] =
α2[x1, x3] = α2x4 = 0. Hence (x1 ∧ x4), (x2 ∧ x3), α1(x1 ∧ x2), α2(x1 ∧ x3) ∈ M0(L4,3). So
M(L4,3) ⊆ M0(L4,3). Thus B̃0(L4,3) = 0. �

From [9], the 5-dimensional Lie algebras are L5,k
∼= L4,k ⊕ I, for k = 1, 2, 3. Where I is

a 1-dimensional abelian ideal and
• L5,4 ∼=< x1, ..., x5 | [x1, x2] = [x3, x4] = x5 >,
• L5,5 ∼=< x1, ..., x5 | [x1, x2] = x3, [x1, x3] = [x2, x4] = x5 >,
• L5,6 ∼=< x1, ..., x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5 >,
• L5,7 ∼=< x1, ..., x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5 >,
• L5,8 ∼=< x1, ..., x5 | [x1, x2] = x4, [x1, x3] = x5 >,
• L5,9 ∼=< x1, ..., x5 | [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5 > .

Theorem 6.4. Let L be a nilpotent Lie algebra of dimension 5. Then B̃0(L) 6= 0 if and
only if L ∼= L5,6.

Proof. Using Theorem 6.3 and Proposition 4.8, B̃0(L5,1) = B̃0(L5,2) = B̃0(L5,3) = 0.
Let L ∼= L5,4, one can see that

L5,4 ∧ L5,4 =< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x2 ∧ x3, x2 ∧ x4, x3 ∧ x4 > .

Hence for all w ∈ M(L5,4) ≤ L5,4 ∧ L5,4, there exist α1, α2, . . . , α6 ∈ F , such that w =
α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x2 ∧ x3) + α5(x2 ∧ x4) + α6(x3 ∧ x4).
Since κ̃(w) = 0, we have α1[x1, x2] + α2[x1, x3] + α3[x1, x4] + α4[x2, x3] + α5[x2, x4] +
α6[x3, x4] = 0. Thus (α1+α6)x5 = 0 and α1+α6 = 0. Hence w = α1((x1∧x2)−(x3∧x4))+
α2(x1 ∧x3)+α3(x1 ∧x4)+α4(x2 ∧x3)+α5(x2 ∧x4). We can see that [x1 +x4, x2 +x3] = 0,
so (x1 + x4) ∧ (x2 + x3) ∈ M0(L5,4). Hence (x1 ∧ x2) + (x1 ∧ x3) + (x4 ∧ x2) + (x4 ∧ x3) ∈
M0(L5,4), so (x1 ∧ x2) − (x3 ∧ x4) ∈ M0(L5,4). Also we know (x1 ∧ x3), (x1 ∧ x4), (x2 ∧ x3)
and (x2 ∧ x4) ∈ M0(L5,4). Therefore w ∈ M0(L5,4) and M(L5,4) ⊆ M0(L5,4). Thus
B̃0(L5,4) = 0.

Let L ∼= L5,5, it can be shown that
L5,5 ∧ L5,5 =< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x2 ∧ x3, x2 ∧ x4, x3 ∧ x4 > .

Hence for all w ∈ M(L5,5) ≤ L5,5 ∧ L5,5, there exist α1, α2, . . . , α6 ∈ F , such that w =
α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x2 ∧ x3) + α5(x2 ∧ x4) + α6(x3 ∧ x4).
Since κ̃(w) = 0, we have α1[x1, x2] + α2[x1, x3] + α3[x1, x4] + α4[x2, x3] + α5[x2, x4] +
α6[x3, x4] = 0. Thus α1x3 + (α2 + α5)x5 = 0, and α1 = α2 + α5 = 0. Hence w =
α1(x1 ∧ x2) + α2((x1 ∧ x3) − (x2 ∧ x4)) + α3(x1 ∧ x4) + α4(x2 ∧ x3). On the other hand
[x1, x4] = [x2, x3] = [α1x1, x2] = α1[x1, x2] = α1x3 = 0. So (x1∧x4), (x2∧x3), α1(x1∧x2) ∈
M0(L5,5). We can see that [x1+x2+x3, x1+x2+x4] = 0, so (x1+x2+x3)∧(x1+x2+x4) ∈
M0(L5,5). Hence (x1 ∧ x4) + (x2 ∧ x4) + (x3 ∧ x1) + (x3 ∧ x2) + (x3 ∧ x4) ∈ M0(L5,5) and
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(x1 ∧ x3) − (x2 ∧ x4) ∈ M0(L5,5). Therefore M(L5,5) ⊆ M0(L5,5), and hence B̃0(L5,5) = 0.
Similarly, B̃0(L5,7) = B̃0(L5,8) = B̃0(L5,9) = 0.

Let L ∼= L5,6, we obtain that

L5,6 ∧ L5,6 =< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x1 ∧ x5, x2 ∧ x3, x2 ∧ x5 > .

Hence for all w ∈ M(L5,6) ≤ L5,6 ∧ L5,6 there exist α1, α2, . . . , α6 ∈ F , such that w =
α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x1 ∧ x5) + α5(x2 ∧ x3) + α6(x2 ∧ x5).
Since κ̃(w) = 0, we have α1[x1, x2] + α2[x1, x3] + α3[x1, x4] + α4[x1, x5] + α5[x2, x3] +
α6[x2, x5] = 0. Thus α1x3 + α2x4 + (α3 + α5)x5 = 0. Therefore α1x3 = α2x4 = (α3 +
α5)x5 = 0. On the other hand, [α1x1, x2] = α1[x1, x2] = α1x3 = 0 and [α2x1, x3] =
α2[x1, x3] = α2x4 = 0. So α1(x1 ∧ x2), α2(x1 ∧ x3), (x1 ∧ x5), (x2 ∧ x5) ∈ M0(L5,6). Thus
w = α3(x1 ∧x4 −x2 ∧x3)+w̃, where w̃ ∈ M0(L5,6). Let B be a generating set for M0(L5,6),
then M(L5,6) =< B, x1∧x4−x2∧x3 >. Hence dim B̃0(L5,6) = 1. So B̃0(L5,6) ∼= A(1). �

From [9], the 6-dimensional Lie algebras are L6,k
∼= L5,k ⊕ I, for k = 1, . . . , 9 where I is a

1-dimensional abelian ideal and
• L6,10 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x6, [x4, x5] = x6 >,
• L6,11 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = [x2, x5]

= x6 >,
• L6,12 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x5] = x6 >,
• L6,13 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x5] = [x3, x4]

= x6 >,
• L6,14 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5,

[x2, x5] = x6, [x3, x4] = −x6 >,
• L6,15 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5,

[x1, x5] = [x2, x4] = x6 >,
• L6,16 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x5] = x6,

[x3, x4] = −x6 >,
• L6,17 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = [x2, x3]

= x6 >,
• L6,18 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6 >,
• L6,19(ϵ) ∼=< x1, ..., x6 | [x1, x2] = x4, [x1, x3] = x5, [x2, x4] = x6, [x3, x5] = ϵx6 >,
• L6,20 ∼=< x1, ..., x6 | [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = [x2, x4] = x6 >,
• L6,21(ϵ) ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, [x1, x4] = x6,

[x2, x5] = ϵx6 >,
• L6,22(ϵ) ∼=< x1, ..., x6 | [x1, x2] = x5, [x1, x3] = x6, [x2, x4] = ϵx6, [x3, x4] = x5 >,
• L6,23 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x4] = x6 >,
• L6,24(ϵ) ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x4] = ϵx6,

[x2, x3] = x6 >,
• L6,25 ∼=< x1, ..., x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6 >,
• L6,26 ∼=< x1, ..., x6 | [x1, x2] = x4, [x1, x3] = x5, [x2, x3] = x6 > .

Theorem 6.5. Let L be a nilpotent Lie algebra of dimension 6. Then B̃0(L) 6= 0 if and
only if L is isomorphic to one of the Lie algebras L6,6, L6,13, L6,14, L6,15, L6,22(ϵ) where
ϵ ≥ 1, L6,23 and L6,24(ϵ) where ϵ 6= 1.

Proof. Using Proposition 4.8 and Theorem 6.4, B̃0(L6,1) = B̃0(L6,2) = B̃0(L6,3) =
B̃0(L6,4) = B̃0(L6,5) = B̃0(L6,7) = B̃0(L6,8) = B̃0(L6,9) = 0 and B̃0(L6,6) 6= 0. Also simi-
lar to the calculations in Theorems 6.3 and 6.4, we have B̃0(L6,13), B̃0(L6,14), B̃0(L6,15),
B̃0(L6,23) 6= 0 and B̃0(L6,22(ϵ))(ϵ = 0), B̃0(L6,24(ϵ))(ϵ = 1), B̃0(L6,10), B̃0(L6,12),
B̃0(L6,16), B̃0(L6,17), B̃0(L6,18), B̃0(L6,20), B̃0(L6,25), B̃0(L6,26) = 0.
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Let L ∼= L6,11, one can compute that

L6,11∧L6,11 =< x1∧x2, x1∧x3, x1∧x4, x1∧x5, x2∧x3, x2∧x4, x2∧x5, x3∧x4, x3∧x5, x4∧x5 > .

Hence for all w ∈ M(L6,11) ≤ L6,11 ∧ L6,11, there exist α1, α2, . . . , α10 ∈ F , such that
w = α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x1 ∧ x5) + α5(x2 ∧ x3) + α6(x2 ∧
x4) + α7(x2 ∧ x5) + α8(x3 ∧ x4) + α9(x3 ∧ x5) + α10(x4 ∧ x5). Since κ̃(w) = 0, we
have α1[x1, x2] + α2[x1, x3] + α3[x1, x4] + α4[x1, x5] + α5[x2, x3] + α6[x2, x4] + α7[x2, x5] +
α8[x3, x4] + α9[x3, x5] + α10[x4, x5] = 0. Thus α1x3 + α2x4 + (α3 + α5 + α7)x6 = 0, and
α1 = α2 = α3 +α5 +α7 = 0. Hence α7 = −α3 −α5, so w = α3(x1 ∧x4 −x2 ∧x5)+α4(x1 ∧
x5)+α5(x2∧x3−x2∧x5)+α6(x2∧x4)+α8(x3∧x4)+α9(x3∧x5)+α10(x4∧x5). On the other
hand [x1, x5] = [x2, x4] = [x3, x4] = [x3, x5] = [x4, x5] = 0. So (x1 ∧ x5), (x2 ∧ x4), (x3 ∧
x4), (x3 ∧ x5) and (x4 ∧ x5) ∈ M0(L6,11). We can see that [x1 + x2 + x5, x1 + x2 + x4] = 0,
so (x1 +x2 +x5)∧ (x1 +x2 +x4) ∈ M0(L6,11). Hence (x1 ∧x4 −x2 ∧x5) ∈ M0(L6,11). Also
[x2 +x5, x2 +x3] = 0, so (x2 ∧x3 −x2 ∧x5) ∈ M0(L6,11). Therefore M(L6,11) ⊆ M0(L6,11),
and B̃0(L6,11) = 0.

Let L ∼= L6,19(ϵ) where ϵ ≥ 0, we can write

L6,19(ϵ) ∧L6,19(ϵ) =< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x1 ∧ x5, x2 ∧ x3, x2 ∧ x4, x3 ∧ x4, x3 ∧ x5 > .

For all w ∈ M(L6,19(ϵ)) ≤ L6,19(ϵ) ∧ L6,19(ϵ), there exist α1, α2, . . . , α8 ∈ F , such that
w = α1(x1 ∧x2)+α2(x1 ∧x3)+α3(x1 ∧x4)+α4(x1 ∧x5)+α5(x2 ∧x3)+α6(x2 ∧x4)+α7(x3 ∧
x4)+α8(x3 ∧x5). Since κ̃(w) = 0, we have α1[x1, x2]+α2[x1, x3]+α3[x1, x4]+α4[x1, x5]+
α5[x2, x3] +α6[x2, x4] +α7[x3, x4] +α8[x3, x5] = 0. Thus α1x4 +α2x5 + (α6 + ϵα8)x6 = 0,
and α1 = α2 = α6 + ϵα8 = 0. Hence w = α3(x1 ∧ x4) + α4(x1 ∧ x5) + α5(x2 ∧
x3) + α7(x3 ∧ x4) + α8((x3 ∧ x5) − ϵ(x2 ∧ x4)). Also, [x1, x4] = [x1, x5] = [x2, x3] =
[x3, x4] = 0. So (x1 ∧ x4), (x1 ∧ x5), (x2 ∧ x3), (x3 ∧ x4) ∈ M0(L6,19(ϵ)). We can see that
[x3 + ϵx2 +x4, x3 + ϵx2 +x5] = 0, so (x3 + ϵx2 +x4)∧ (x3 + ϵx2 +x5) ∈ M0(L6,19(ϵ)). Hence
(x3 ∧ x5) + ϵ(x2 ∧ x5) + (x4 ∧ x3) + ϵ(x4 ∧ x2) + (x4 ∧ x5) ∈ M0(L6,19(ϵ)). Thus (x3 ∧ x5) −
ϵ(x2 ∧ x4) ∈ M0(L6,19(ϵ)). Therefore M(L6,19(ϵ)) ⊆ M0(L6,19(ϵ)), and B̃0(L6,19(ϵ)) = 0,
where ϵ ≥ 0. Similarly B̃0(L6,21(ϵ)) = 0, where ϵ ≥ 0.

For L ∼= L6,22(ϵ) where ϵ ≥ 1, we have
L6,22(ϵ) ∧L6,22(ϵ) =< x1 ∧x2, x1 ∧x3, x1 ∧x4, x1 ∧x6, x2 ∧x3, x2 ∧x4, x3 ∧x4, x3 ∧x5, x3 ∧
x6, x4 ∧ x6 >.
Now for all w ∈ M(L6,22(ϵ)) ≤ L6,22(ϵ) ∧ L6,22(ϵ), there exist α1, α2, . . . , α10 ∈ F , such
that w = α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x1 ∧ x6) + α5(x2 ∧ x3) + α6(x2 ∧
x4) + α7(x3 ∧ x4) + α8(x3 ∧ x5) + α9(x3 ∧ x6) + α10(x4 ∧ x6). Since κ̃(w) = 0, we
have α1[x1, x2] + α2[x1, x3] + α3[x1, x4] + α4[x1, x6] + α5[x2, x3] + α6[x2, x4] + α7[x3, x4] +
α8[x3, x5]+α9[x3, x6]+α10[x4, x6] = 0. Thus (α1 +α7)x5 +(α2 + ϵα6)x6 = 0, so α7 = −α1
and α2 = −ϵα6. Hence w = α1(x1 ∧ x2 − x3 ∧ x4) + α3(x1 ∧ x4) + α4(x1 ∧ x6) +
α5(x2 ∧ x3) + α6(x2 ∧ x4 − ϵ(x1 ∧ x3)) + α8(x3 ∧ x5) + α9(x3 ∧ x6) + α10(x4 ∧ x6). On
the other hand [x1, x4] = [x1, x6] = [x2, x3] = [x3, x5] = [x3, x6] = [x4, x6] = 0. So
(x1 ∧ x4), (x1 ∧ x6), (x2 ∧ x3), (x3 ∧ x5), (x3 ∧ x6) and (x4 ∧ x6) ∈ M0(L6,22(ϵ)). Thus w =
α1(x1 ∧x2 −x3 ∧x4)+α6(x2 ∧x4 −ϵ(x1 ∧x3))+w̃, where w̃ ∈ M0(L6,22(ϵ)). Let B be a gen-
erating set for M0(L6,22(ϵ)), then M(L6,22(ϵ)) =< B, x1∧x2−x3∧x4, x2∧x4−ϵ(x1∧x3) >.
Hence dim B̃0(L6,22(ϵ)) ≥ 2. So B̃0(L6,22(ϵ)) 6= 0.

Let L ∼= L6,24(ϵ) where ϵ 6= 1, we can compute
L6,24(ϵ) ∧L6,24(ϵ) =< x1 ∧x2, x1 ∧x3, x1 ∧x4, x2 ∧x3, x2 ∧x4, x2 ∧x5, x2 ∧x6, x3 ∧x4, x4 ∧
x5, x4 ∧ x6 >.
So, for all w ∈ M(L6,24(ϵ)) ≤ L6,24(ϵ) ∧ L6,24(ϵ), there exist α1, α2, . . . , α10 ∈ F , such
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that w = α1(x1 ∧ x2) + α2(x1 ∧ x3) + α3(x1 ∧ x4) + α4(x2 ∧ x3) + α5(x2 ∧ x4) + α6(x2 ∧
x5) + α7(x2 ∧ x6) + α8(x3 ∧ x4) + α9(x4 ∧ x5) + α10(x4 ∧ x6). Since κ̃(w) = 0, we have
α1[x1, x2]+α2[x1, x3]+α3[x1, x4]+α4[x2, x3]+α5[x2, x4]+α6[x2, x5]+α7[x2, x6]+α8[x3, x4]+
α9[x4, x5]+α10[x4, x6] = 0. Thus α1x3+(α2+α5)x5+(α4+ϵα3)x6 = 0, so α1 = 0, α5 = −α2
and α4 = −ϵα3. Hence w = α2(x1 ∧ x3 − x2 ∧ x4) + α3(x1 ∧ x4 − ϵ(x2 ∧ x3)) + α6(x2 ∧
x5) + α7(x2 ∧ x6) + α8(x3 ∧ x4) + α9(x4 ∧ x5) + α10(x4 ∧ x6). Also we have, [x2, x5] =
[x2, x6] = [x3, x4] = [x4, x5] = [x4, x6] = 0. So (x2 ∧ x5), (x2 ∧ x6), (x3 ∧ x4), (x4 ∧ x5) and
(x4 ∧ x6) ∈ M0(L6,24(ϵ)). Thus w = α2(x1 ∧ x3 − x2 ∧ x4) + α3(x1 ∧ x4 − ϵ(x2 ∧ x3)) + w̃,
where w̃ ∈ M0(L6,24(ϵ)). Let B be a generating set for M0(L6,24(ϵ)), then M(L6,24(ϵ)) =<
B, x1∧x3−x2∧x4, x1∧x4−ϵ(x2∧x3) >. Hence dim B̃0(L6,24(ϵ)) ≥ 2. So B̃0(L6,24(ϵ)) 6= 0.

If ϵ = 1, we have α1x3 + (α2 + α5)x5 + (α4 + α3)x6 = 0, so α1 = 0, α5 = −α2 and
α4 = −α3. Hence w = α2(x1 ∧x3 −x2 ∧x4) +α3(x1 ∧x4 −x2 ∧x3) +α6(x2 ∧x5) +α7(x2 ∧
x6) +α8(x3 ∧ x4) +α9(x4 ∧ x5) +α10(x4 ∧ x6). On the other hand [x1 + x2 + x4, x1 + x2 +
x3], [x1 +x2 +x3, x1 +x2 +x4] = 0. So (x1 ∧x3 −x2 ∧x4), (x1 ∧x4 −x2 ∧x3) ∈ M0(L6,24(ϵ)).
Therefore M(L6,24(ϵ)) ⊆ M0(L6,24(ϵ)), and B̃0(L6,24(ϵ)) = 0, where ϵ = 1. �
One of the important results on the Schur multiplier of Lie algebras was presented by
Moneyhun in [21]. He showed that for a Lie algebra L of dimension n, dimM(L) =
n(n − 1)/2 − t(L), for some t(L) ≥ 0. His results suggest the interesting question, ‘’can
we classify Lie algebras of dimension n by t(L)?” The answer to this question can be
found for t(L) = 1, . . . , 8 in [3,11,12,21]. On the other hand, from [23], we have an upper
bound for the dimension of the Schur multiplier of a non abelian nilpotent Lie algebra
as dimM(L) = n(n − 1)(n − 2)/2 + 1 − s(L), for some s(L) ≥ 0. Hence by the same
motivation, we have the analogous question for classification of L according to the values
of s(L). It seems that classifying nilpotent Lie algebras by s(L) helps to the classification
of Lie algebras in term of t(L). (See for instance [23]). Now, according to this classification,
we will investigate the Bogomolov multiplier for some Lie algebras.

Theorem 6.6. Let L be an n-dimensional nilpotent Lie algebra with s(L) = 1. Then,
B̃0(L) = 0.

Proof. Since s(L) = 1, by Theorem 3.9 in [23], L ∼= L5,4. So B̃0(L) = 0. �

Theorem 6.7. Let L be a n-dimension nilpotent Lie algebra and t(L) ≤ 6. Then, B̃0(L) =
0.

Proof. By Theorem 3.10 in [23] and Proposition 4.8, B̃0(L) = 0. �
Theorem 6.8. Let L be an n-dimensional nilpotent Lie algebra with s(L) = 2 and
dimL2 = 2. Then B̃0(L) = 0.

Proof. By Theorem 4.3 in [23], L ∼= L4,3 or L ∼= L5,4 ⊕A(1). Thus B̃0(L) = 0. �

7. The Bogomolov multipliers of complex simple and semisimple Lie al-
gebras

A simple group is a group with no non-trivial proper normal subgroup. The classification
of finite simple groups is a major milestone in the history of mathematics. On the other
hand with the help of the Jordan-Holder Theorem, a finite group can be written as a
certain combination of simple groups. Also, in contrast to the classification of finite
simple groups, the classification of simple Lie groups is simplified by using the manifold
structure. In particular every Lie group has an dependent Lie algebra and in this regard,
some authors have also gained some results. For example, Bosshardt showed that a Lie
group is simple if and only if its Lie algebra is simple. (see [5,20,26] for more information).
Theories of groups and Lie algebras are structurally similar, and many concepts related to
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groups, there are analogously defined concepts for Lie algebras. Eventually, this subject
reduces the problem of finding simple Lie groups to classifying simple Lie algebras. In
this section we obtain the Bogomolov multipliers of complex semisimple Lie algebras and
complex simple Lie algebras.
Definition 7.1 ([10]). A Lie algebra L is called semisimple if the only commutative ideal
of L is 0.

For example a 0-dimension Lie algebra, the special linear Lie algebra, the odd-dimension
special orthogonal Lie algebra, the symplectic Lie algebra and the even-dimension special
orthogonal Lie algebra for (n > 1) are semisimple.
Definition 7.2 ([10]). A Lie algebra L is simple if it has no ideals other than 0 and L,
and it is not abelian.
Theorem 7.3 ([27]). A Lie algebra L is semisimple if and only if L = ⊕iLi, for simple
Lie algebras Li.

We can therefore view a semisimple Lie algebra L as a direct sum of simple Lie algebras
Li, which have only 0 and Li for their ideals. In particular, every simple Lie algebra is
also semisimple.

Batten in [2] (Example 2 of Chapter 2), showed that any semisimple Lie algebra over
a field of characteristic 0 has a trivial Schur multiplier. Also we know the Bogomolov
multiplier is subalgebra of the Schur multiplier, so these semisimple Lie algebras have
trivial Bogomolov multipliers. Therefore all simple Lie algebras over a field of characteristic
0 have trivial Bogomolov multipliers.

In this section, considering the classification of simple complex Lie algebras Cartan
[5], we will show that the Bogomolov multipliers of an arbitrary complex semisimple Lie
algebra is trivial. Using our computational method as used in Theorems 5.1, 5.2, 6.3, 6.4
and 6.5. Note that this result is a special case of results of Batten [2] (the Example 2 of
Chapter 2), but it is worthy to state it here because we prove it by using computations
on the Bogomolov multiplier regardless of its relation with the Schur multiplier.

In the following, Eij denotes the matrix with 1 at the intersection of the i-th row
and the j-th column and 0 everywhere else. The Lie bracket of Eij and Ekl is given by
[Eij , Ekl] = EijEkl − EklEij = δjkEil − δilEkj .
Theorem 7.4. Every following semisimple Lie algebra over C, has trivial Bogomolov
multiplier.

(i) Sl(n+ 1,C),
(ii) So(2n+ 1,C),
(iii) Sp(n,C),
(iv) So(2n,C) , n ≥ 2.

Proof. Let L be a special linear Lie algebra Sl(n+ 1,C). From [17], Sl(n+ 1,C) has the
basis Dii+1, Eij such that Dij = Eii − Ejj . So for j 6= i = 1 . . . n, we have
Sl(n + 1,C) =< Dii+1, Eij | [Dii+1, Di+1i+2] = Dii+2, [Dii+1, Eij ] = 2Eij ; j = i +
1 , [Dii+1, Eij ] = Eij ; j 6= i+ 1 > mod M0(Sl(n+ 1,C)). We can see that
Sl(n+ 1,C) ∧ Sl(n+ 1,C) =< Dii+1 ∧Di+1i+2, Dii+1 ∧ Eij > mod M0(Sl(n+ 1,C)).

Now for all w ∈ M(Sl(n + 1,C)) ≤ Sl(n + 1,C) ∧ Sl(n + 1,C), there exist αi, βij ∈ C,
i, j = 1...n+ 1 and w̃ ∈ M0(Sl(n+ 1,C)), such that

w =
n∑

i=1
αi(Dii+1 ∧Di+1i+2) +

n∑
i,j=1

βij(Dii+1 ∧ Eij) + w̃.

Since κ̃(w) = 0, we have
∑n

i=1αi[Dii+1, Di+1i+2] +
∑n

i,j=1βij [Dii+1, Eij ] = 0. Now if j =
i+ 1, then

∑n
i=1αiDii+2 +

∑n
i=12βiEii+1 =

∑n
i=1αi(Eii −Ei+2i+2) + 2

∑n
i=1βiEii+1 = 0. So
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for all i = 1...n, αi = βi = 0. If j 6= i+1, then
∑n

i=1αiDii+2 +
∑n

i,j=1,i<jβi,jEij = 0. So for
all i, j, αi = βij = 0. Hence w ∈ M0(Sl(n+1,C)) and M(Sl(n+1,C)) ⊆ M0(Sl(n+1,C)).
Therefore B̃0(Sl(n+ 1,C)) = 0.

Let L be one of the odd-dimension orthogonal Lie algebra So(2n + 1,C). From [17],
So(2n + 1,C) has the basis Hi, Ki

±, Lij
±, Mij

± such that Dij = Eij − Eji (1 ≤ i 6=
j ≤ 2n + 1), Hi :=

√
−1D2i−12i (i = 1, ..., n), Ki

± := D2i−12n+1 ±
√

−1D2i2n+1 (i =
1, ..., n), Lij

± := (D2i−12j−1 − D2i2j) ±
√

−1(D2i−12j + D2i2j−1) (1 ≤ i < j ≤ n),
Mij

± := (D2i−12j − D2i2j−1) ±
√

−1(D2i−12j−1 + D2i2j) (1 ≤ i < j ≤ n). Also we
have [Hi,Ki

±] =
√

−1D2n+12i ± D2i−12n+1, [Hi, Lij
±] = −

√
−1D2i−12j ± D2i−12j−1,

[Hi,Mij
±] = −

√
−1D2i−12j−1 ± D2i−12j , [Ki

±, Lij
±] = [Ki

±,Mij
±] = [Lij

±,Mij
±] = 0.

So in mod M0(So(2n+ 1,C)), can be see that

So(2n+ 1,C) =< Hi,Ki
±, Lij

±,Mij
± | [Hi,Ki

±], [Hi, Lij
±], [Hi,Mij

±] >

and in mod M0(So(2n+ 1,C)), So(2n+ 1,C) ∧ So(2n+ 1,C) =

< Hi ∧Ki
±,Hi ∧ Lij

±,Hi ∧Mij
± >=< D2i−12i ∧D2i2n+1, D2i−12i ∧D2i2j > .

Now for all w ∈ M(So(2n+ 1,C)) ≤ So(2n+ 1,C) ∧ So(2n+ 1,C), there exist α1, α2 ∈ C
and w̃ ∈ M0(So(2n+1,C)), such that w = α1(D2i−12i ∧D2i2n+1)+α2(D2i−12i ∧D2i2j)+w̃.
Since κ̃(w) = 0, we have α1[D2i−12i, D2i2n+1]+α2[D2i−12i, D2i2j ] = α1D2i−12n+1+α2D2i−12j

= α1(E2i−12n+1 − E2n+12i−1) + α2(E2i−12j − E2j2i−1) = 0. Thus α1 = α2 = 0. Hence
M(So(2n+ 1,C)) ⊆ M0(So(2n+ 1,C)), so B̃0(So(2n+ 1,C)) = 0.

Let L be an even-dimension orthogonal Lie algebra So(2n,C). From [17], So(2n,C)
has the basis Hi, Lij

±, Mij
±, such that Dij = Eij − Eji (1 ≤ i 6= j ≤ 2n + 1),

Hi :=
√

−1D2i−12i (i = 1, ..., n), Lij
± := (D2i−12j−1−D2i2j)±

√
−1(D2i−12j+D2i2j−1) (1 ≤

i < j ≤ n), Mij
± := (D2i−12j −D2i2j−1) ±

√
−1(D2i−12j−1 +D2i2j) (1 ≤ i < j ≤ n). Also

we have [Hi, L
±
ij ] = −

√
−1D2i−12j ± D2i−12j−1, [Hi,M

±
ij ] = −

√
−1D2i−12j−1 ± D2i−12j ,

[L±
ij ,M

±
ij ] = 0. Thus

So(2n,C) =< Hi, Lij
±,Mij

± | [Hi, Lij ], [Hi,Mij ] > mod M0(So(2n,C)).

We can write

So(2n,C) ∧ So(2n,C) =< Hi ∧ Lij
±,Hi ∧Mij

± > mod M0(So(2n,C)).

Now for all w ∈ M(So(2n,C)) ≤ So(2n,C) ∧ So(2n,C), there exist α1, α2 ∈ C and
w̃ ∈ M0(So(2n,C)), such that w = α1(Hi ∧ Lij

±) + α2(Hi ∧Mij
±) + w̃. Since κ̃(w) = 0,

we have α1[Hi, Lij
±] + α2[Hi,Mij

±] = α1(−
√

−1D2i−12j±D2i−12j−1)+
α2(−

√
−1D2i−12j−1±D2i−12j) = 0. Thus α1 = α2 = 0. Hence

M(So(2n,C)) ⊆ M0(So(2n,C)), so B̃0(So(2n,C)) = 0.

Let L be a symplectic Lie algebra Sp(n,C). From [17], Sp(n,C) has the basis Hi, Xij ,
Yij , Zij , Ui, Vi, such that Hi = Eii − En+in+i (1 ≤ i ≤ n), Xij := Eij − En+jn+i (1 ≤
i 6= j ≤ n), Yij := Ein+j + Ejn+i (1 ≤ i < j ≤ n), Zij := En+ij + En+ji (1 ≤ i <
j ≤ n), Ui := Ein+i (1 ≤ i ≤ n), and Vi := En+ii (1 ≤ i ≤ n). Since [Xij , Yij ] =
2Ein+i, [Xij , Zij ] = −2En+jj , [Xij , Vi] = −En+ij −En+ji, [Yij , Zij ] = Eii+Ejj , [Yij , Vi] =
−En+in+j+Eji, [Zij , Ui] = −Eij+En+jn+i, [Ui, Vi] = Eii, [Xij , Ui] = [Yij , Ui] = [Zij , Vi] =
0, [Hi, Xij ] = −En+jn+i, [Hi, Yij ] = Ein+j −Ejn+i, [Hi, Zij ] = −En+ij −En+ji, [Hi, Ui] =
2Ein+i and [Hi, Vi] = −2En+ii, we have
Sp(n,C) =< Hi, Xij , Yij , Zij , Ui, Vi | [Xij , Yij ], [Xij , Zij ], [Xij , Vi], [Yij , Zij ], [Yij , Vi], [Zij , Ui]
, [Ui, Vi], [Hi, Xij ], [Hi, Yij ], [Hi, Zij ], [Hi, Ui], [Hi, Vi] > mod M0(Sp(n,C)).
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We can write
Sp(n,C) ∧ Sp(n,C) =< Xij ∧ Yij , Xij ∧ Zij , Xij ∧ Vi, Yij ∧ Zij , Yij ∧ Vi, Zij ∧ Ui,

Ui ∧ Vi,Hi ∧Xij ,Hi ∧ Yij ,Hi ∧ Zij ,Hi ∧ Ui,Hi ∧ Vi > mod M0(Sp(n,C)).
By using a similar method, the result follows. �

Since So(2,C) is commutative, its Bogomolov multiplier is trivial. Therefore, we have

Corollary 7.5. Following complex Lie algebras, have trivial Bogomolov multipliers.
(i) Sl(n+ 1,C),
(ii) So(2n+ 1,C),
(iii) Sp(n,C),
(iv) So(2n,C).

Complex simple Lie algebras have been completely classified by Cartan [5]. They are
classified into four infinite classes with five exceptional Lie algebras.

Theorem 7.6 ([10]). Every simple Lie algebra over C is isomorphic to precisely one of
the following Lie algebras

(i) Sl(n+ 1,C) , n ≥ 1,
(ii) So(2n+ 1,C) , n ≥ 2,
(iii) Sp(n,C) , n ≥ 3,
(iv) So(2n,C) , n ≥ 4,
(v) The exceptional Lie algebras G2 , F4 , E6 , E7 and E8.

Knapp in [17] showed that the five exceptional Lie algebras G2, F4, E6, E7, E8 have
dimensions 14, 52, 78, 133 and 248, respectively.

Theorem 7.7. Every complex simple Lie algebra has a trivial Bogomolov multiplier.

Proof. By using Theorems 7.4 and 7.6, all complex simple Lie algebras in (i), (ii), (iii)
and (iv) have trivial Bogomolov multipliers. Also we know any simple Lie algebra is
semisimple. Thus the Example 2 of Chapter 2 in [2] showed that the exceptional Lie
algebras G2 , F4 , E6 , E7 and E8 have trivial Bogomolov multipliers. �
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