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Highlights 

• This paper focused on premium calculations of the right truncated marginals (𝐿𝑡𝑟 , 𝑃𝑡𝑟) and composite (𝐿𝑃𝑡𝑟) lifetime models. 

• Premiums were calculated for whole life and term life insurances in the single and joint life statuses. 

• Models giving the highest and lowest premium coefficients were determined. 

• It was seen from the results that there are significantly differences in the premiums. 

Article Info 

 

Abstract 

The modeling of lifetime is important to compute actuarial quantities such as the premium on 

insurance and annuity products. De Moivre, Gompertz, and Makeham are laws of mortality 

frequently used in lifetime modeling. Composite distributions have also been used to model 

lifetime, recently. However, there are not many actuarial applications of these models in the 

literature. Therefore, the main aim of the study is to perform a case study that gives a comparison 

of marginal and composite models on premiums. For this purpose, firstly, it is aimed to achieve 

a new mortality function for a lifetime using composite distribution. The second aim is to 

analytically compute premiums for whole life and term life insurance products. Here, it is 

assumed that lifetime distribution is modeled with lognormal, Type 2 Pareto (Pareto) and 

composite lognormal-Pareto. Firstly, the right truncated distributions of the models were obtained 

under the consideration that the last age of death was 100. Afterwards, the survival and mortality 

functions were inferenced using Mathematica 10.2 for the right truncated models. Finally, 

premium coefficients were analytically presented for whole life and term life insurances in single 

and joint life statuses. The results show that there are significantly differences in these premium 

coefficients. It has been observed that the premium coefficients for the term life insurance were 

higher than the premium coefficients for whole life insurance. In addition, the premium 

coefficients of the insurances issued for the joint life were smaller than the premium coefficients 

for the single life. 
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1. INTRODUCTION 

 

It is important to model future lifetimes in order to perform actuarial calculations on annuity and insurance 

products including single life and joint life states. There are well-known laws of mortality, such as De 

Moivre, Gompertz, and Makeham, in the literature on lifetime. However, with these laws, an entire age 

range can be modeled. In reality, however life data can be better modeled with different probability 

functions for certain age ranges that can be classified as young, middle and old. On the other hand, Pareto 

distribution is used in the modeling of major damages. However, while lognormal or Weibull distributions 

are preferred in modeling small high-frequency damages (right tail) and large low-frequency damages (left 

tail), these distributions may not be able to model the right and left tail data well at the same time [1]. 

Composite distribution models created with different probability distributions have been developed to 

overcome such situations [1-4]. There are also other studies that show that composite distributions fit better 

in lifetime data [5,6]. Klugman et al. [1] and Cooray and Ananda [2] used Danish fire insurance data to 

show that composite models fit better than standard univariate distributions. In their work, they used the 

lognormal and Pareto probability functions. Scollnik [3] developed the composite lognormal-Pareto model 

by weighting the coefficients of each piecewise function and used the generalized Pareto distribution in his 

work. Teodorescu and Vernic [7] studied the exponential-Pareto composite model to predict the future 
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claims that will be helpful in evaluating premium calculations. By combining the Type 2 Pareto (Pareto) 

and Burr distributions with lognormal, Nadarajah and Bakar [8] developed lognormal-Pareto and 

lognormal-Burr composite models. They also showed composite lognormal - Pareto model fit better to the 

same Danish fire insurance data.  

 

Dominicy and Sinner [4] included descriptive examples showing that various composite models are better 

suited to data in their study. They carried out the goodness of fit with internet and Danish fire insurance 

data for composite models developed by weighting Pareto, Lomax, Generalized Lomax, Generalized 

Extreme Distributions with Lognormal and Weibull models. They have shown that the lognormal-Pareto 

fits better.  

 

The data sets used in the studies [5, 6] are “multivariate survival data” and “survival models in which the 

dependence between the two survival times is through stochastically related unobserved components. 

However, these data sets are also different from “lifetime” data which are used in the actuarial premium 

calculations. Although it is stated here that composite models fit better in the data sets used in the studies, 

the aim of this study is not to show that composite models fit the lifetime data better. Researchers can try 

to demonstrate that these existing composite models or new models better fit insurance data.  

 

The aims of this study are to model a new mortality function for “lifetime” data with lognormal-Pareto 2 

composite distribution and to make a case study evaluating premium calculations for whole life and term 

life insurance products using this new composite mortality function. Also, at the end of the study, it is aimed 

to compare the composite model with other models in terms of premium coefficients for whole life and the 

term life insurances. Thus, the models giving the highest and lowest premium coefficients according to the 

insurance products can be determined for the selected ages. 

 

Dickson et al. [9] and Menge and Glover [10] also provided methods for calculating the quantities that are 

important in actuary, such as the probability of life and death, life expectancy, premium for whole life 

insurance and term life insurance under the single and the joint life states in detail. There are studies that is 

made theoretical premium calculations using known mortality laws such as De Moivre, Gompertz and 

Makeham [11-17]. Recently, lognormal and Pareto distributions have been used by Büyükyazıcı and 

Karagül [18] to calculate the reinsurance premium in the insurance area. However, no previous actuarial 

applications including premium calculations made using composite models are found in the literature 

review.  

 

Therefore, in this study, only the lognormal-Pareto (LP) composite model created with lognormal (L) and 

Type 2 Pareto (P) marginal probability distributions are used in order to show that there may be significant 

differences, especially for ages after a certain age. For this purpose, a new mortality law is obtained by 

modeling lifetimes, which are examined at conditions before and after a certain age by using a composite 

probability distribution. The net single and annual premiums are calculated according to this new mortality 

law.  

 

Here, it is assumed that the last death age is 100 and (0,100) age range is considered as two age groups as 

(0, 60) and (60, 100).  The correct determination of insurance and annuity premiums while it is important 

for the age range of (0, 60), it is also important for the age range of (60,100) because most deaths occur 

within this age range. It is known that COVID 19, which is a pandemic epidemic today, has a fatal effect 

especially on individuals over 65 years of age [19, 20]. Therefore, in the future, this may require updating 

the death benefits and premium calculations for these age ranges. On the other hand, there are studies that 

the elderly population is predicted to increase. [21-23]. In this case, even now there are insurance companies 

selling life insurance for the individuals at over the age of 60, this number can be expected to increase in 

the future. Therefore, it can be said that the age groups selected in this study are significant.  

 

In this sense, the study tries to show changes in premiums for these age groups according to lognormal, 

Pareto and lognormal-Pareto models. Firstly, the right-truncated probability distributions of lognormal and 

type 2 Pareto distributions are obtained. Secondly, using these truncated distributions for the age range (0, 

100), the lognormal - Pareto composite probability function are created. Then, survival and mortality 
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functions based on these probability models, which are shortly shown with the notations 𝐿𝑡𝑟, 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟 
respectively, are obtained. These actuarial quantities are examined for the single life and the joint life states 

consisting of two individuals with independent lifetimes, and the results were presented with tables and 

graphs according to some parameter values. In addition, according to these states and models, the present 

values (net single premiums) for life insurances and life annuities are calculated and annual premium values 

are compared.  

 

From the results of this study, it is seen that premiums increase as the age progresses.  It can be said that 

the premium coefficients for the term life insurance are higher than the premium coefficients for whole life 

insurance. Another result is that the premium coefficients for the insurances issued for the joint life are 

smaller than the premium coefficients for the single life. On the other hand, it is also made the comparison 

of results in terms of the models. Computational results show that, there is a difference in the premiums for 

the single life and the joint life states. If two individuals in spouse status want to purchase an insurance 

product separately (the single life status), the sum of the premiums to be paid will be higher than the 

premium determined in the joint life status.  

 

The paper is organized as follows: in section 2, marginal probability functions and the composite model are 

introduced.  In the same section, the survival- mortality functions and premium formulas are also given for 

the single life and the joint life consisting of two individuals with the independent future lifetimes. In section 

3, the right-truncated marginal functions and the composite distribution are created using lognormal, Pareto 

and lognormal-Pareto models. In addition, the survival and the mortality functions are obtained. For these 

models right-truncated, the net single and the net annual premium calculations are inferenced in section 4 

and presented with tables and graphs for some selected parameter values. Finally, the results are given in 

same section and evaluated in the discussion and conclusion section of the study. 

 

2. METHODOLOGY 

 

2.1. Marginal Probability Functions and Composite Model 

 

𝑋 random variable has lognormal distribution with 𝑙𝑜𝑔𝑋 = 𝑌  transformation with 𝑌 being a random 

variable with a normal distribution. The probability density function and distribution function of the 

lognormal distribution are defined as follows, respectively: 

 

𝑓(𝑥, 𝜇, 𝜎2) =
1

𝑥√2𝜋𝜎
ⅇ
−
(𝑙𝑜𝑔𝑥−𝜇)2

2𝜎2 , 𝑥 > 0 (1) 

 

𝐹(𝑥, 𝜇, 𝜎2) = 𝜙 (
𝑙𝑜𝑔𝑥 − 𝜇

𝜎
) , 𝑥 > 0 . 

(2) 

 
Here 𝜇 ∈ 𝐼𝑅, is the location parameter, 𝜎 > 0 is the scale parameter. 𝜙(𝑥) shows the cumulative 

distribution function of the standard normal distribution. 

 

Probability density function and distribution function of Type 2 Pareto (𝜇 = 0), also known as Lomax 

distribution ( k > 0,  α > 0):  

 

𝑓(𝑥) =
𝛼

𝑘
(1 +

𝑥

𝑘
)
−(𝛼+1)

, 𝑥 > 0 
(3) 

 

𝐹(𝑥) = 1 − (1 +
𝑥

𝑘
)
−𝛼

 , 𝑥 > 0 . 
(4) 

 
The probability function and distribution function of the composite model defined by two probability 

density functions  𝑓1(𝑥) and 𝑓2(𝑥), by Klugman et al. [1] are defined as follows: 
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𝑓(𝑥) = {
𝑐𝑓1

∗(𝑥), 0 < 𝑥 ≤ 𝜃

(1 − 𝑐)𝑓2
∗(𝑥),    𝜃 < 𝑥 < ∞

 
(5) 

 

𝐹(𝑥) = {
𝑐𝑓1

∗(𝑥), 0 < 𝑥 ≤ 𝜃
(1 − 𝑐)𝑓2

∗(𝑥),    𝜃 < 𝑥 < ∞  .
 (6) 

  

Here, 𝑓1
∗(𝑥) =

𝑓1(𝑥)

∫ 𝑓1(𝑥)𝑑𝑥
𝜃

0

 and 𝑓2
∗(𝑥) =

𝑓2(𝑥)

∫ 𝑓2(𝑥)𝑑𝑥
𝑥

𝜃

, show probability functions of truncated limit ranges,      

0 < 𝑐 < 1 shows weightings and 𝜃 shows the limits of the distribution. Here 𝑓(𝑥) function has to provide 

𝑓(𝜃−) = 𝑓(𝜃+), continuity and 𝑓′(𝜃−) = 𝑓′(𝜃+), differentiation conditions. So here the following 

equations related to the 𝑐 constant could be written according to the continuity and differentiation 

conditions, respectively:  

 

𝑐 =
𝑓2(𝜃)𝐹1(𝜃)

𝑓2(𝜃)𝐹1(𝜃) + 𝑓1(𝜃)(1 − 𝐹2(𝜃))
 

(7) 

 

and 

 

𝑐 =
𝑓2
′(𝜃)𝐹1(𝜃)

𝑓2
′(𝜃)𝐹1(𝜃) + 𝑓1

′(𝜃)(1 − 𝐹2(𝜃))
  . 

(8) 

 

Here, the requirement below is obtained by equalization of the Equations (7) and (8) 

 
𝑓1(𝜃)

𝑓2(𝜃)
=
𝑓1
′(𝜃)

𝑓2
′(𝜃)

    . 
(9) 

 

2.2. The Survival and Mortality Functions for the Single and the Joint Life Statuses 

 

The single life status: 

 

The future lifetime of a newborn baby is denoted by the random variable 𝑇. The random variable 𝑇 is also 

called the survival time.  𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) is the distribution function of 𝑇. That is, 𝐹(𝑡) is the probability 

that T is less than or equal to 𝑡. The survival function, 𝑆(𝑡) and the hazard function, ℎ(𝑡) are defined by 

𝑆(𝑡) = 1 − 𝐹(𝑡) and ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡), respectively.  

 

The future lifetime beyond the age of 𝑥 given the individual has survived to age is denoted by 𝑇𝑥 and it is 

defined as 𝑇𝑥 = 𝑇 − 𝑥|𝑇 ≥ 𝑥. The distribution function and survival function of  𝑇𝑥 are expressed as 

follows, respectively: 

 

𝐹𝑋(𝑡) = 𝑃(𝑇 < 𝑥 + 𝑡|𝑇 ≥ 𝑥) (10) 

 

𝑆𝑋(𝑡) = 𝑃(𝑇 ≥ 𝑥 + 𝑡|𝑇 ≥ 𝑥) (11) 

 

The probability density function and the mortality function of  𝑇𝑥 are given by, respectively,                   

𝑓𝑋(𝑡) = −
𝑑

𝑑𝑡
𝑆𝑋(𝑡) and 𝜇(𝑥 + 𝑡) =

𝑓𝑋(𝑡)

𝑆𝑋(𝑡)
. Here, the actuarial notations 𝑞𝑡

 
𝑥 and 𝑝𝑡

 
𝑥 are used instead of 

𝐹𝑋(𝑡) and  𝑆𝑋(𝑡), respectively. 𝑞𝑡
 
𝑥 is the probability that a person aged 𝑥 will die before the age of 𝑥 +  𝑡. 

𝑝𝑡
 
𝑥  is the probability that a person aged 𝑥 will survive to the age of 𝑥 +  𝑡. There are the following relations 

between mortality and survival functions [24, 25]. 

 

𝑓𝑋(𝑡) = 𝑝𝑥𝜇(𝑥 + 𝑡)𝑡
  

(12) 

 

 

𝑝𝑥 = ⅇ
−∫ 𝜇(𝑥+𝑠)ⅆ𝑠

𝑡

0 , 0 ≤ 𝑥 < 𝑤, 0 ≤ 𝑡 < 𝑤 − 𝑥𝑡
  

(13) 
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The joint life status: 

 

For the joint life status consisting of two lives aged 𝑥 and 𝑦 with independent future lifetimes, these 

notations and formulas related to the survival and death probabilities are defined below according to joint 

life (first death) and last survivor states. It is assumed here that the future life times of these individuals are 

independent [9,10]. 

 

The first death state: The probability that both lives aged 𝑥 and 𝑦 survive 𝑡 years is denoted by 𝑝𝑥𝑦𝑡
  and 

defined as 

 

𝑝𝑥𝑦𝑡
 = 𝑝𝑥 𝑝𝑦 .𝑡

 
𝑡
  (14) 

 

The mortality function for the joint lives is defined by 

 

𝜇𝑥+𝑡:𝑦+𝑡 = 𝜇𝑥+𝑡 + 𝜇𝑦+𝑡  . (15) 

 

The last survivor state: The probability of the last survivor living at least t years out of two people at 𝑥 and 

𝑦 years of age is indicated by 𝑝𝑥𝑦̅̅̅̅𝑡
  and defined as 

 

𝑝𝑡
 
𝑥𝑦̅̅ ̅̅
 = 𝑝𝑥 + 𝑝𝑦 − 𝑝𝑥  𝑝𝑦𝑡

 
𝑡
 

𝑡
 

𝑡
  . (16) 

 

The mortality function for the last survivor state is defined by 

 

𝜇𝑡
 
𝑥𝑦̅̅ ̅̅
 =

𝑞𝑦 𝑝𝑥  𝜇𝑥+𝑡 + 𝑞𝑥  𝑝𝑦 𝜇𝑦+𝑡𝑡
 

𝑡
 

 𝑡
 

𝑡
 

𝑞𝑦 𝑝𝑥 + 𝑞𝑥 𝑝𝑦 𝑡
 + 𝑝𝑥  𝑝𝑦  𝑡

 
𝑡
 

𝑡
 

𝑡
 

𝑡
   . 

(17) 

 

2.3. The Net Single and the Net Annual Premium Calculations  

 

The single life status: Formulas that give the present values (or the net single premium) of the whole 

(temporary) life annuity 𝑎𝑥(𝑎𝑥:𝑛⌉)  and whole (term) life insurance 𝐴𝑥(𝐴𝑥:𝑛⌉) with a death benefit of 1 unit 

issued for an 𝑥-years-old person and the net annual premium 𝑃𝑥(𝑃𝑥:𝑛⌉) calculations are provided in Table 

1 for the single life status [9, 10]. 

 

Table 1. Formulas that gives the net single and annual premiums for the single life status 

 
The single premiums  

(present values) 

The net annual 

premiums 

Whole life 

 

𝑎𝑥 = ∫ 𝑒−𝛿𝑡 𝑝𝑥𝑡
 𝑑𝑡

∞

0

 

𝐴𝑥 = 1 − 𝛿𝑎𝑥 

𝑃𝑥 =
𝐴𝑥
𝑎𝑥

 

 

Temporary (Term) life 

 

𝑎𝑥:𝑛⌉ = ∫ 𝑒
−𝛿𝑡 𝑝𝑡

 
𝑥
 𝑑𝑡

𝑛

0

 

𝐴𝑥:𝑛⌉ = 1 − 𝛿𝑎𝑥:𝑛⌉ 

𝑃𝑥:𝑛⌉ =
𝐴𝑥:𝑛⌉

𝑎𝑥:𝑛⌉
 

 

The joint life status: The notations and formulas related to the present values (or the net single premium) 

of whole (temporary) life annuity 𝑎𝑥𝑦(𝑎𝑥𝑦:𝑛⌉) and whole (term) life insurance 𝐴𝑥𝑦 (𝐴𝑥𝑦:𝑛⌉) with a death 

benefit of 1 unit issued for the joint life status consisting of two lives aged x and y with independent future 

lifetimes are defined according to the joint life (first death) and the last survivor states in Table 2 [9,10]. 

Also, the annual premium calculations 𝑃𝑥𝑦 (𝑃𝑥𝑦:𝑛⌉) are given.  
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Table 2. Formulas that gives the net single and net annual premiums for the joint life status 

 First death state Last survivor state 

Whole life 

 

𝑎𝑥𝑦 = ∫ 𝑒−𝛿𝑡 𝑝𝑡
 
𝑥𝑦
 𝑑𝑡

∞

0

 

𝐴𝑥𝑦 = 1 − 𝛿𝑎𝑥𝑦 

𝑃𝑥𝑦 =
𝐴𝑥𝑦

𝑎𝑥𝑦
 

𝑎𝑥𝑦̅̅̅̅ = ∫ 𝑒−𝛿𝑡 𝑝𝑥𝑦̅̅̅̅𝑡
 𝑑𝑡

∞

0

 

𝐴𝑥𝑦̅̅̅̅ = 1 − 𝛿𝑎𝑥𝑦̅̅̅̅ = 𝐴𝑥 + 𝐴𝑦 − 𝐴𝑥𝑦 

𝑃𝑥𝑦̅̅̅̅ =
𝐴𝑥𝑦̅̅̅̅

𝑎𝑥𝑦̅̅̅̅
 

Temporary 

(Term) life 

 

𝑎𝑥𝑦:𝑛⌉ = ∫𝑒
−𝛿𝑡 𝑝𝑡

 
𝑥𝑦
 𝑑𝑡

𝑛

0

 

𝐴𝑥𝑦:𝑛⌉ = 1 − 𝛿𝑎𝑥𝑦:𝑛⌉ 

𝑃𝑥𝑦:𝑛⌉ =
𝐴𝑥𝑦:𝑛⌉

𝑎𝑥𝑦:𝑛⌉
 

𝑎𝑥𝑦̅̅̅̅ :𝑛⌉ = ∫𝑒
−𝛿𝑡 𝑝𝑥𝑦̅̅̅̅𝑡

 𝑑𝑡

𝑛

0

 

𝐴𝑥𝑦̅̅̅̅ :𝑛⌉ = 1 − 𝛿𝑎𝑥𝑦̅̅̅̅ :𝑛⌉ = 𝐴𝑥:𝑛⌉ + 𝐴𝑦:𝑛⌉ − 𝐴𝑥𝑦:𝑛⌉ 

𝑃𝑥𝑦̅̅̅̅ :𝑛⌉ =
𝐴𝑥𝑦̅̅̅̅ :𝑛⌉

𝑎𝑥𝑦̅̅̅̅ :𝑛⌉
 

 

The constant, 𝛿 in Tables 1 and 2 shows continuously payable interest rate, i.e. the force of interest rate. 

 

3. MODELING LIFETIME WITH A RIGHT-TRUNCATED COMPOSITE MODEL 

 

3.1. A Right-Truncated Composite Model 

 

In this study, right-truncated lognormal (𝑓𝐿𝑡𝑟) and Pareto (𝑓𝑃𝑡𝑟) probability distributions were used to 

create the composite probability model (𝑓𝐿𝑃𝑡𝑟) given with the Equation (5) in the range  0 < 𝑥 < 100 

instead of 𝑓1(𝑥) and 𝑓2(𝑥) respectively. The composite lognormal-Pareto probability function and 

distribution function, which is formed by right-truncated marginal functions obtained in this way, were 

obtained as in Equations (22) and (23), respectively. 

 

The pdf and cdf of 𝐿𝑡𝑟 model: 

 

𝑓𝐿𝑡𝑟(𝑥, 𝜇, 𝜎
2) =

1

𝑥√2𝜋𝜎𝜙 (
𝑙𝑜𝑔 [100] − 𝜇

𝜎
)
𝑒
−
(𝑙𝑜𝑔[𝑥]−𝜇)2

2𝜎2 ,     0 < 𝑥 < 100 (18) 

 

𝐹𝐿𝑡𝑟(𝑥, 𝜇, 𝜎
2) =

𝜙 (
𝑙𝑜𝑔 [𝑥] − 𝜇

𝜎 )

𝜙 (
𝑙𝑜𝑔 [100] − 𝜇

𝜎 )
, 0 < 𝑥 < 100  . (19) 

 

The pdf and cdf of 𝑃𝑡𝑟 model: 

 

𝑓𝑃𝑡𝑟(𝑥, 𝑘, 𝛼) =
(
𝑘 + 𝑥
𝑘

)
−1−𝛼

𝛼

(1 − (1 +
100
𝑘
)
−𝛼

) 𝑘

, 0 < 𝑥 < 100 

 

(20) 

𝐹𝑃𝑡𝑟(𝑥, 𝑘, 𝛼) = (1 +
1

−1 + (
100 + 𝑘

𝑘
)
𝛼)(1 − (

𝑘 + 𝑥

𝑘
)
−𝛼

) , 0 < 𝑥 < 100. (21) 

 

The pdf and cdf of 𝐿𝑃𝑡𝑟 model: 
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𝑓𝐿𝑃𝑡𝑟(𝑥) =

{
 
 
 

 
 
 

c
𝑒
−
(µ−𝑙𝑜𝑔[𝑥])2

2𝜎2

√2𝜋𝑥𝜎𝜙 (
𝑙𝑜𝑔 [𝜃] − 𝜇

𝜎 )
, 0 < 𝑥 ≤ 𝜃 

 

(1 − 𝑐)(
𝑘 + 𝑥
𝑘

)−𝛼𝛼

(𝑘 + 𝑥)(−(
100 + 𝑘

𝑘
)−𝛼 + (

𝑘 + 𝜃
𝑘

)−𝛼)
,    𝜃 < 𝑥 < 100

  (22) 

 

𝐹𝐿𝑃𝑡𝑟(𝑥) =

{
 
 
 
 

 
 
 
 

c(
𝜙 (
𝑙𝑜𝑔[𝑥] − 𝜇

𝜎
)

𝜙 (
𝑙𝑜𝑔[𝜃] − 𝜇

𝜎
)
)            , 0 < 𝑥 ≤ 𝜃 

 

𝑐 (
𝑘 + 𝜃
𝑘

)
𝛼

[(
100 + 𝑘
𝑘 + 𝑥

)
𝛼

− 1] + (
100 + 𝑘

𝑘
)
𝛼

[1 − (
𝑘 + 𝜃
𝑘 + 𝑥

)
𝛼

]

[(
100 + 𝑘

𝑘
)
𝛼

− (
𝑘 + 𝜃
𝑘

)
𝛼

]

,    𝜃 < 𝑥 < 100.

   

 

 

 

 

(23) 

 

Here c is as follows: 

 

c =
𝛼𝜃𝜎𝜙 (

𝑙𝑜𝑔 [𝜃] − 𝜇
𝜎 )

(𝑘 + 𝜃)

√2𝜋
(1 − (

𝑘 + 𝜃
100 + 𝑘

)
𝛼

)𝑒
−
(µ−Log[𝜃])2

2𝜎2 + 𝛼𝜃𝜎𝜙 (
𝑙𝑜𝑔 [𝜃] − 𝜇

𝜎
)

,   0 < 𝑐 < 1  .                     (24) 

 

Solving the equations under the continuity and the differentiability conditions given by Equations (7) and 

(8) respectively, between in the parameters of the composite lognormal-Pareto distribution 

 

𝜇 = 𝑙𝑜𝑔(𝜃) − (
𝛼𝜃 − 𝑘

𝜃 + 𝑘
)𝜎2             (25) 

 

relation is achieved. In the fourth section, this relation has been used in parameter selection. The derivatives 

required solving of 'c' in the Equation (24) are given in Appendix A1. Also, it is shown in Appendix A2 

that 𝑐 is in the range (0,1).  

 

3.2. The Survival and Mortality Functions for Truncated Models 

 

In a single-life status, survival and mortality functions for the  𝐿𝑡𝑟, 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟 distributions were obtained 

using Equations (12) and (13), respectively as follows. Mathematical expressions of survival and mortality 

functions, which are also found for the joint life status, are not given here because they are very long. 

However, the numerical results of these actuarial quantities calculated at the selected parameter values with 

the help of Mathematica 10.2 program are given in Table 2. Graphs showing changes according to age are 

also presented in Figure 3. 

 

𝐿𝑡𝑟 model: 
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𝑝𝑥 =𝑡
 

𝜙 (
𝑙𝑜𝑔 [100] − 𝜇

𝜎
) − 𝜙 (

𝑙𝑜𝑔 [𝑥 + 𝑡] − 𝜇
𝜎

)

𝜙 (
𝑙𝑜𝑔 [100] − 𝜇

𝜎
) − 𝜙 (

𝑙𝑜𝑔 [𝑥] − 𝜇
𝜎

)
     (26) 

 

𝜇(𝑥 + 𝑡) =
𝑒
−
(µ−𝑙𝑜𝑔[𝑡+𝑥])2

2𝜎2

√2𝜋𝜎(𝑡 + 𝑥) (𝜙 (
𝑙𝑜𝑔 [100] − 𝜇

𝜎
) − 𝜙 (

𝑙𝑜𝑔 [𝑥 + 𝑡] − 𝜇
𝜎

))

  .     (27) 

 

𝑃𝑡𝑟 model: 

 

𝑝𝑥 =
(
𝑘 + 𝑥
𝑘

)𝛼(
𝑘 + 𝑡 + 𝑥

𝑘
)−𝛼(−(

100 + 𝑘
𝑘

)𝛼 + (
𝑘 + 𝑡 + 𝑥

𝑘
)𝛼)

−(
100 + 𝑘

𝑘
)𝛼 + (

𝑘 + 𝑥
𝑘

)𝛼
𝑡
        (28) 

 

𝜇(𝑥 + 𝑡) =
(
100 + 𝑘

𝑘
)𝛼𝛼

(𝑘 + 𝑡 + 𝑥)((
100 + 𝑘

𝑘
)𝛼 − (

𝑘 + 𝑡 + 𝑥
𝑘

)𝛼)
                                     (29) 

 

𝐿𝑃𝑡𝑟 model: 

 

𝑝𝑡
 
𝑥 =

{
 
 
 

 
 
 1 −

1
𝑚
𝜙 (
𝑙𝑜𝑔[𝑥 + 𝑡] − 𝜇

𝜎
)

1 −
1
𝑚
𝜙 (
𝑙𝑜𝑔[𝑥] − 𝜇

𝜎
)

, 0 < 𝑥 ≤ 𝜃

 

(
𝑘 + 𝑥
𝑘

)𝛼(
𝑘 + 𝑡 + 𝑥

𝑘
)−𝛼(−(

100 + 𝑘
𝑘

)𝛼 + (
𝑘 + 𝑡 + 𝑥

𝑘
)𝛼)

−(
100 + 𝑘

𝑘
)𝛼 + (

𝑘 + 𝑥
𝑘

)𝛼
,   𝜃 < 𝑥 < 100

                        (30) 

 

𝜇(𝑥 + 𝑡) =

{
 
 
 

 
 
 𝑐𝑒

−
(µ−𝑙𝑜𝑔[𝑡+𝑥])2

2𝜎2

√2𝜋(𝑡 + 𝑥)𝜎 (𝜙 (
𝑙𝑜𝑔[𝜃] − 𝜇

𝜎 ) − 𝑐𝜙 (
𝑙𝑜𝑔[𝑥 + 𝑡] − 𝜇

𝜎 ))

, 0 < 𝑥 ≤ 𝜃

 

(
𝛼

𝑘 + 𝑡 + 𝑥
) (

1

1 − (
𝑘 + 𝑡 + 𝑥
100 + 𝑘

)
𝛼),   𝜃 < 𝑥 < 100

                  (31)                                                 

 

where  𝑚 =
1

𝑐
𝜙 (

𝑙𝑜𝑔 [𝜃]−𝜇

𝜎
) . 

 

4. ACTUARIAL CALCULATIONS  

 

In this section, the actuarial quantities given in Section 3 are calculated for the selected parameters of        

𝜃 = 60, 𝜇 = 1, 𝜎 = 0.5, 𝑘 = 5, 𝛼 = 0.48 and 𝛿 = 0.06 under the models (𝐿𝑡𝑟, 𝑃𝑡𝑟  and 𝐿𝑃𝑡𝑟). Here, 

parameters that provide Equations (24) and (25) are selected to perform the case study. For the parameters, 

the net single and annual premiums for life annuities (whole/temporary) and life insurance (whole/term) 

under the single life and the joint life statuses are computed using the Mathematica 10.2 program. For 

selected ages, the values of the survival, mortality  and premium functions are given in Table 3 for the 

single life status and in Tables 4-5 for the joint life status. For the joint life status, the actuarial quantities 

are evaluated in the first death state for whole life insurance. Here, it is assumed that the net annual premium 
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is payable throughout the entire lifetime of the insured for a whole life insurance (is called ‘ordinary life’ 

[10]) and is be n payment for n- year term insurance.  

 

Table 3. Values at selected ages of the survival ( 𝑝𝑡
 
𝑥), mortality ( 𝜇𝑡

 
𝑥) and premium (𝑃𝑥 , 𝑃𝑥:𝑛⌉) functions  

under the single life status 

 
 

Table 4. Values at selected ages of survival function ( 𝑝𝑡
 
𝑥𝑦) and mortality rates ( 𝜇𝑡

 
𝑥𝑦)  under the joint life 

status 

 
 

Table 5. The net single and the net annual premium values for the joint life status 

 
 

The graphs showing changes according to the ages are presented in Figures 1-4. From these graphs, it is 

seen that the survival probability for each model is decreased by age (Figure 1b for the single life, Figure 
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3-upper for the joint life). In addition, changes in the mortality rates for the models handled by age can be 

monitored (Figure 1c for the single life, Figure 3-lower for the joint life). It is seen that the present value 

(net single premium) of whole life annuity payments decreases according to age (Figure 2a), and the present 

value (net single premium) of whole life insurance increase according to age (Figure 2b). Net annual 

premiums also increase according to age (Figure 2c for the single life, Figure 4 for the joint life). On the 

other hand, it can be understood from these graphs that the premiums are lower or higher for which model 

according to the ages given. 

 

 

Figure 1. The probability functions (a), The survival functions (b), The mortality functions (c) 

 

 

Figure 2. The net single premiums of annuity (a) and insurance (b), the net annual premiums (c) for the 

single life status 

 

Here, Tables 3 and 5 can be evaluated together. In general, according to the models discussed, there is a 

difference in premiums for single life and joint life statuses. If two individuals in spouse status want to 

purchase an insurance product separately (single life status), the total premiums are higher than the premium 

computed in the joint life status. Sample calculations showing this situation are given below for net single 

and annual premiums. 

 

The net single premiums for a whole life insurance issued for two individuals 30 ages which provides a 

death benefit of 1000 units at the end of the year of death, according to the 𝐿𝑡𝑟 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟 models, while 

for the single life status (see at the line 𝐴𝑥 in Table 3), these are 614.6 (=2×(0.3073×1000)), 713.4 

(=2×(0.3567×1000)) and 663.8 (=2×(0.3319×1000)) units respectively, for the joint life status in the first 

death (see at the line 𝐴𝑥𝑦 in Table 5), these are 450.1(0.4501 ×1000), 521.9 (=0.5219 ×1000) and 445.5 

(=0.4455×1000) units.  

 

The net annual premiums for an ordinary life policy issued for two individuals 30 ages which provides a 

death benefit 1000 units paid at the end of the year of death, according to the 𝐿𝑡𝑟 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟 models, 

while for the single life status (see at the line 𝑃𝑥 in Table 3), these are 53.2 (=2×(0.0266×1000)), 66.6 

(=2×(0.0333×1000)) and 59.6 (=2×(0.0298×1000)) units respectively, for the joint life status in the first 

death (see at the line 𝑃𝑥𝑦 in Table 5), these are 49.1 (0.0491×1000), 65.5 (=0.0655×1000) and 48.2 

(=0.0482×1000) units.  

 

Further examples of Tables 3 and 5 are given in Chapter 4. Here, model comparisons are summarized in 

Tables 6 and 7 for the net annual premium calculations and the results are interpreted in detail. 
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Figure 3. Graphics of  𝑝𝑡

 
𝑥𝑦 (upper) and 𝜇𝑡

 
𝑥𝑦 (lower) functions for the joint life status 

 

 

 
Figure 4. The net annual premium values for the joint life status 

4.1. Illustrative examples  

 

In the previous section, using the information provided in Section 2, life probabilities and mortality rates 

are calculated for some ages and these results are given in Tables 2 and 4, respectively, for the single life 

and the joint life. By using these values, the present values of annuity and insurance and therefore net single 

premiums were calculated. In addition, graphics were drawn to see the changes of these quantities according 

to selected ages and models. The results obtained for the single life and the joint life are given in Tables 3 

and 5 respectively. In order to interpret the results easily, Tables 6 and 7, which are the summary of these 

tables, were prepared. In addition, taking into account the term life insurance and the last survivor states in 

Table 7, all the interpretations of the study outputs are exemplified on these tables and the results are listed 

in this section. 

 

Now, the findings of the study related to net annual premiums for the single life and the joint life statuses 

will be interpreted on a few illustrative examples. The net annual premium values of life insurance (whole 

/ten-year term) calculated for some ages according to 𝐿𝑡𝑟, 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟 models for the single life and the 

joint life statuses with independent lifetimes are presented in Tables 6 and 7, respectively. Comparative 

results of the models according to the net annual premiums are given in detail at the end of the section after 

sample premium calculations for some ages. In addition, the summary of these explanations is given under 

each table. 
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Table 6. The net annual premium values for the single life status 

 
Table 6 shows some the net annual premium calculations for the single lives at ages 40, 45, 65 and 70. 

While the net annual premiums, for a whole life insurance (an ordinary life policy) issued for individuals 

aged 40 , 45, 65 and 70 with a death benefit of 1000 units which will be paid at the end of the year of death, 

according to the 𝐿𝑃𝑡𝑟 model, are 46.3 (=0.0463×1000), 61.8 (=0.0618×1000), 51.1 (=0.0511×1000) and 

59.3 (=0.0593×1000) units respectively, for ten-year term insurance (with ten-payment) it is 89.4 

(0.0894×1000), 91.5 (=0.0915×1000), 99 (0.099×1000) and 102.5 (=0.1025×1000) units. 

 

Table 7 shows some the net annual premium calculations for joint life at ages (40, 45), (45, 65) and (65, 

70). The graphs showing the change of premiums by age for each model are presented in Figure 4. From 

here, it is observed that premiums increase with increasing ages. 

 

Table 7. The net annual premium values for the joint life status 

 First death Last survivor 

 

 

Whole 

life 

(x,y) 𝐿𝑡𝑟_𝑃𝑥𝑦 𝑃𝑡𝑟_𝑃𝑥𝑦 𝐿𝑃𝑡𝑟_𝑃𝑥𝑦 𝐿𝑡𝑟_𝑃𝑥𝑦̅̅̅̅  𝑃𝑡𝑟_𝑃𝑥𝑦̅̅̅̅  𝐿𝑃𝑡𝑟_𝑃𝑥𝑦̅̅̅̅  

(40,45) 0.0685 0.0671 0.0819 0.0173 0.0159 0.0450 

(45,65) 0.0899 0.0808 0.0358 0.0249 0.0224 0.0657 

(65,70) 0.1134 0.0981 0.0213 0.0351 0.0308 0.1381 

 

Term 

life 

(x,y) 𝐿𝑡𝑟_𝑃𝑥𝑦:10⌉ 𝑃𝑡𝑟_𝑃𝑥𝑦:10⌉ 𝐿𝑃𝑡𝑟_𝑃𝑥𝑦:10⌉ 𝐿𝑡𝑟_𝑃𝑥𝑦̅̅̅̅ :10⌉ 𝑃𝑡𝑟_𝑃𝑥𝑦̅̅̅̅ :10⌉ 𝐿𝑃𝑡𝑟_𝑃𝑥𝑦̅̅̅̅ :10⌉ 

(40,45) 0.1129 0.1147 0.1091 0.0760 0.0761 0.0755 

(45,65) 0.1271 0.1212 0.0957 0.0778 0.0770 0.0945 

(65,70) 0.1435 0.1312 0.0807 0.0807 0.0786 0.1275 

Whole 

life 

If (𝑥 < 60, 𝑦 < 60) then 𝐿𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝑃𝑡𝑟 
If (𝑥 < 60, 𝑦 > 60) then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 > 𝐿𝑃𝑡𝑟 
If (𝑥 > 60, 𝑦 > 60) then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 > 𝐿𝑃𝑡𝑟 

Term 

life 

If (𝑥 < 60, 𝑦 < 60) then 𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝐿𝑃𝑡𝑟 
If (𝑥 < 60, 𝑦 > 60) then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 > 𝐿𝑃𝑡𝑟 
If (𝑥 > 60, 𝑦 > 60) then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 > 𝐿𝑃𝑡𝑟 

If (𝑥 < 60, 𝑦 < 60) then 𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝐿𝑃𝑡𝑟 
If (𝑥 < 60, 𝑦 > 60) then 𝐿𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝑃𝑡𝑟 
If (𝑥 > 60, 𝑦 > 60) then 𝐿𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝑃𝑡𝑟 

 
For joint life at ages (40, 45); while for a whole life insurance (an ordinary life policy) jointly issued for 

two individuals at ages 40 and 45 with a death benefit of 1000 units to be payable at the end of the year of 

death if at least one of them dies, the net annual premium is 21.3 (=0.0213×1000) units according to LPtr 
model, it is 80.7 (=0.0807×1000) units for ten-year term insurance. These values were low compared to the 

Ltr and Ptr models. While the premium for 1000 units of whole life insurance to be paid in the event of the 

death of the last survivor is 138.1 (=0.1381×1000), it was found to be 127.5 (=0.1275×1000) units for ten-

year term insurance.  

 

For joint life at ages (45, 65); while for a whole life insurance (an ordinary life policy) jointly issued for 

two individuals at ages 45 and 65 with a death benefit of 1000 units be payable at the end of the year of 

death if at least one of them dies, the net annual premium is 35.8 (=0.0358×1000) units according to LPtr 
model, it is 95.7 (=0.0957×1000) units for ten-year term insurance. These values are low compared to the 

Ltr and Ptr models. While the net annual premium for a whole life insurance with a death benefit of 1000 

 Whole life Term life 

x 𝐿𝑡𝑟_𝑃𝑥 𝑃𝑡𝑟_𝑃𝑥 𝐿𝑃𝑡𝑟_𝑃𝑥 𝐿𝑡𝑟_𝑃𝑥:10⌉ 𝑃𝑡𝑟_𝑃𝑥:10⌉ 𝐿𝑃𝑡𝑟_𝑃𝑥:10⌉ 

40 0.0346 0.0343 0.0463 0.0910 0.0929 0.0894 

45 0.0385 0.0358 0.0618 0.0935 0.0932 0.0915 

65 0.0585 0.0511 0.0511 0.1043 0.0990 0.0990 

70 0.0671 0.0593 0.0593 0.1085 0.1025 0.1025 

 
If 𝑥 < 60  then 𝐿𝑃𝑡𝑟 > 𝐿𝑡𝑟 > 𝑃𝑡𝑟 
If 𝑥 > 60 then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 = 𝐿𝑃𝑡𝑟 

If 𝑥 < 60 then  𝐿𝑃𝑡𝑟 < 𝐿𝑡𝑟 < 𝑃𝑡𝑟 
If 𝑥 > 60 then 𝐿𝑡𝑟 > 𝑃𝑡𝑟 = 𝐿𝑃𝑡𝑟 
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units to be paid in the event of the death of the last survivor is 65.7 (=0.0657×1000), it was found to be 94.5 

(=0.0945×1000) units for ten-year term insurance.  

For the joint life at ages (65, 70); while for a whole life insurance (an ordinary life policy) jointly issued 

for two individuals at ages 65 and 70 with a death benefit of 1000 units to be payable at the end of the year 

of death if at least one of them dies, the net annual premium is 21.3 (=0.0213×1000) units according to 𝐿𝑃𝑡𝑟 
model, it is 80.7 (=0.0807×1000) units for ten-year term insurance. These values are low according to the 

𝐿𝑡𝑟 and 𝑃𝑡𝑟 models. While the net annual premium for 1000 units of whole life insurance to be paid in the 

event of the death of the last survivor is 138.1 (=0.1381×1000), it was found to be 127.5 (=0.1275×1000) 

units for ten-year term insurance.  
 

4.2. Results 

 

In fact, it is a known fact that premiums are determined high according to this situation since the risk of 

death increases with age. In general, according to these models (𝐿𝑡𝑟, 𝑃𝑡𝑟 and 𝐿𝑃𝑡𝑟), it can be seen from the 

results in Tables 6 and 7 that the premium coefficients of higher ages are higher for both the single life and 

the joint life statuses. However, the aim of the study is to compare the premium coefficients for whole life 

and term life insurances based on these models. In this sense, the conclusions reached for the single life and 

the joint life are listed below according to the information in Tables 6 and 7, respectively. 

 

For the single life:   

 

- In insurance policies issued for ages below 60, for whole life insurance, while the highest and lowest 

premium coefficients are respectively determined by the 𝐿𝑃𝑡𝑟 model and the 𝑃𝑡𝑟 model, for the temporary 

life insurance, these coefficients are determined by the 𝑃𝑡𝑟 and the 𝐿𝑃𝑡𝑟 models, respectively. 

 

-In insurance policies issued for ages older than 60, the highest premium coefficient for both whole life 

insurance and term life insurances is determined by the 𝐿𝑡𝑟 model. The premium coefficients of 𝑃𝑡𝑟 and 

𝐿𝑃𝑡𝑟 models, which give the lowest premium coefficients for these ages, are almost the same. (Although 

there are differences in decimals, the values appear the same because only 4 digits are written) 

 

For the joint life:   

 

-In insurance policies issued for the joint life of both individuals under the age of 60, for whole life 

insurance, while the highest premium coefficient is determined by the 𝐿𝑃𝑡𝑟 model and the lowest premium 

coefficient is determined by the 𝑃𝑡𝑟 model, for the temporary life insurance, respectively, by the 𝑃𝑡𝑟 and 

𝐿𝑃𝑡𝑟 model. This situation does not change according to the first death and last survivor conditions. 

 

-In insurance policies issued for the joint life where at least one of the two individuals are over 60 years 

old, for the whole life insurance, while the highest and lowest premium coefficients are respectively 

determined with the  𝐿𝑡𝑟 and the 𝐿𝑃𝑡𝑟, for the temporary life insurance, these coefficients change according 

to the first death and last living states: the highest and lowest premium coefficients are respectively 

determined with the 𝐿𝑡𝑟 and the 𝐿𝑃𝑡𝑟 in the first death state, the 𝐿𝑃𝑡𝑟 and the 𝑃𝑡𝑟 models in the last survivor 

state. 

 

According to these results, in general, when the composite model (𝐿𝑃𝑡𝑟) is compared to other models, the 

premium coefficients are determined as the higher or lower. In a whole life insurance issued for the single 

life, with the 𝐿𝑃𝑡𝑟, a high net annual premium for individuals aged under 60, and a low net annual premium 

for individuals aged over 60 are determined (see Table 6). In the case of the joint life, the premium values 

change according to the policy types issued for the first death and last survivor states. However, for a whole 

life insurance at the both cases, with the 𝐿𝑃𝑡𝑟, a high premium is determined for the joint life consisted 

individuals ages younger than 60. For a term life insurance, with the 𝐿𝑃𝑡𝑟, in the case of first death, while 

low premium is determined for the joint life consisting of individuals younger or older the age of 60 , in the 

last life state, high premium is determined for the joint life formed by individuals where at least one is older 

than 60 years (see Table 7). 
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5. DISCUSSION AND CONCLUSION 

 
In this study, firstly with the assumption that the last age of death is 100, lognormal and right-truncated 

probability distributions of Type 2 Pareto distributions are obtained. Then the composite lognormal-Pareto 

probability function is created for the age range (0,100) using these truncated distributions. And finally, 

survival and mortality functions based on these probability models are obtained.  

 

One of the importance of the study is that the premium coefficients will be decisive in determining the 

premiums for the risk groups formed for different age groups by insurance companies. In other words, 

insurance companies will be able to see high or low premium coefficients for the low or high - risk groups 

according to the selected model and parameters by the composite distribution method discussed in this 

study, and this will enable them to calculate actuarial premiums for certain ages. 

 

The importance of the study is that it can be provide that more accurate actuarial decisions are made with 

the new composite mortality laws for the selected age groups. The other composite models can be developed 

use with the other probability distributions for lifetime. Consequently, it can be tried to demonstrate that 

these existing composite models or new models better fit insurance data in the insurance area. It is thought 

that the study will provide an important contribution to the literature with this perspective and the outputs 

obtained from the study. 
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Appendix A1. The derivatives for solution of ‘c’ 

 

In this appendix section, the derivative calculations required for the solution of 𝑐 using the Equations (7) 

and (8) are given.  

 

The derivatives for the right-truncated lognormal: 

 

dfL (x, μ, σ) = −
𝑒
−
(−𝜇+𝑙𝑜𝑔[𝑥])2

2𝜎2

√2𝜋𝑥2𝜎𝜙[
−𝜇 + 𝑙𝑜𝑔〚100〛

𝜎
]

−
𝑒
−
(−𝜇+𝑙𝑜𝑔[𝑥])2

2𝜎2 (−𝜇 + 𝑙𝑜𝑔[𝑥])

√2𝜋𝑥2𝜎3𝜙[
−𝜇 + 𝑙𝑜𝑔〚100〛

𝜎
]

 

 

dfL(𝜃, μ, σ) = −
𝑒
−
(−𝜇+log[𝜃])2

2𝜎2

√2𝜋𝜃2𝜎𝜙 [
−𝜇 + 𝑙𝑜𝑔〚100〛

𝜎 ]

−
𝑒
−
(−𝜇+Log[𝜃])2

2𝜎2 (−𝜇 + log[𝜃])

√2𝜋𝜃2𝜎3𝜙 [
−𝜇 + 𝑙𝑜𝑔〚100〛

𝜎 ]

 . 

 

The derivatives for the right-truncated Pareto 2: 

 

dfP (x, k, α) =
(
𝑘 + 𝑥
𝑘

)−2−𝛼(−1 − 𝛼)𝛼

(1 − (1 +
100
𝑘
)−𝛼)𝑘2

 

 

dfP(𝜃, 𝑘, 𝛼) =
(−1 − 𝛼)𝛼 (

𝑘 + 𝜃
𝑘

)
−2−𝛼

(1 − (1 +
100
𝑘
)
−𝛼

) 𝑘2
. 

 

By solving one of the Equations (7) or (8), the following solution is obtained for c in Mathematica 10.2 

 

𝑐 =

𝑒
(𝜇−𝑙𝑜𝑔[𝜃])2

2𝜎2 (
100 + 𝑘

𝑘
)𝛼√𝜋𝛼𝜃𝜎Erfc[

𝜇 − 𝑙𝑜𝑔[𝜃]

√2𝜎
]

√2(𝑘 + 𝜃)((
100 + 𝑘

𝑘
)𝛼 − (

𝑘 + 𝜃
𝑘

)𝛼) + 𝑒
(𝜇−𝑙𝑜𝑔[𝜃])2

2𝜎2 (
100 + 𝑘

𝑘
)𝛼√𝜋𝛼𝜃𝜎Erfc[

𝜇 − 𝑙𝑜𝑔[𝜃]

√2𝜎
]

 . 

 

or it can be written as in Equation (24). Here Erfc shows the error function and 𝜙 shows the standard normal 

distribution function and the relation between them can be written as 
1

2
Erfc [

µ−𝑙𝑜𝑔[𝑥]

√2𝜎
] = 𝜙 (

𝑙𝑜𝑔𝑥−𝜇

𝜎
). 

 

Appendix A2. The showing of 𝒄 ∈ (𝟎, 𝟏) 
 

By equalization the continuity and differentiability conditions determined by Equations (7) and (8), the 

following Equation is obtained. Here it is clear that both equations are 0 < 𝑐 < 1. For example, let’s show 

that this is for Equation (7): 

 

0 <
𝑓2(𝜃)𝐹1(𝜃)

𝑓2(𝜃)𝐹1(𝜃) + 𝑓1(𝜃)(1 − 𝐹2(𝜃))
< 1 

 

where the denominator is positive since 0 < 𝑓1(𝜃), 𝑓2(𝜃) < 1 and 0 < 𝐹1(𝜃) , (1 − 𝐹2(𝜃)) < 1. If both 

sides of inequality are multiplied by the denominator, 0 < 𝐹2(𝜃) < 1. This requires that c be in the range 

(0,1) for each selected continuous distribution function. 
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On the other hand, for the composite distribution used in the study, it can be seen from the graphs that c 

changes in the range (0,1). To draw these graphics, the following codes were used written in Mathematica 

10.2: 

 

Manipulatⅇ[Plot[

𝑒
(𝜇−𝑙𝑜𝑔[𝜃])2

2𝜎2 (
100 + 𝑘

𝑘
)
𝛼

√𝜋𝛼𝜃𝜎Erfc [
𝜇 − 𝑙𝑜𝑔[𝜃]

√2𝜎
]

√2(𝑘 + 𝜃) ((
100 + 𝑘

𝑘
)
𝛼

− (
𝑘 + 𝜃
𝑘

)
𝛼

) + 𝑒
(𝜇−𝑙𝑜𝑔[𝜃])2

2𝜎2 (
100 + 𝑘

𝑘
)
𝛼

√𝜋𝛼𝜃𝜎Erfc [
𝜇 − 𝑙𝑜𝑔[𝜃]

√2𝜎
]

 

, {𝜃, 0,100}, AxⅇsLabⅇl → {𝜃, 𝑐}], {𝑘, 0,100}, {𝛼, 0,100}, {𝜇, −20,20}, {𝜎, 0,10}]  . 
 

The graph showing the change of c in the range of (0,1) with respect to θ for the parameters (μ = 1, σ = 0.5, 

k = 5, α = 0.48) used in the study is given in Figure A1. Here, c is 0.999999998214263 for θ = 60. Also, 

for other parameter values, the change of c in the range of (0,1) with respect to θ can be seen by running 

the above code similarly. For example; It is seen from Figure A2 for parameters (μ = 2, σ = 6, k = 10, α = 

10) and here c is 0.9887846832858257 for θ = 60. 

 

  

Figure A1. The change of c with respect to 𝜃 

( 𝜇 = 1, 𝜎 = 0.5, 𝑘 = 5, 𝛼 = 0.48) 

Figure A2. The change of c with respect to 𝜃 

( 𝜇 = 2, 𝜎 = 6, 𝑘 = 10, 𝛼 = 10) 

 


