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In this paper, we introduce generalized weakly contractive mappings in the setting of multiplicative metric
spaces. Further we establish a common fixed point result and proved the existence and uniqueness of a
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1. Introduction

In this paper, RT denotes the set of positive real numbers. The Banach contraction principle [4] is
one of the most powerful and important tools in pure and applied mathematics to prove the existence and
uniqueness of different problems. After publication of [4], R. Kannan[14] and S.K. Chatterjea [7] introduced
types of mapping which is independent of Banach. T. Zamfirescu|20] obtained another fixed point result
for operators by generalizing [4] , R. Kannan[I4] and S.K. Chatterjea [7]. A. Khan et.al.[16] introduce an
(cr, ¥)-admissibility and (v, g)-integral-type contraction with applications to new fixed point theorems for the
admissible and continuous mapping. M. Shoaib et.al.[I9] Obtained Fixed point results and its applications
to the systems of non-linear integral and differential equations of arbitrary order. M. Grossman and R. Katz
[11] gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition
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to division and multiplication, and thus established a new calculus, called multiplicative calculus. Follow-
ing this, A. Bashirov et.al. [5] studied the concept of multiplicative calculus and proved the fundamental
theorem of multiplicative calculus. Furthermore, they gave application of multiplicative calculus, defined
multiplicative absolute value, multiplicative distance between two positive real numbers and finally they in-
troduced the notion of multiplicative metric spaces. L. Florack and H. van Assen|[I0] explored the advantage
of multiplicative calculus in biomedical image analysis. A.E. Bashirov et.al.[6] discussed the simplicity of
solving multiplicative differential equations than ordinary differential equations in different fields. M. Oza-
vsar et.al.[I7] gave the definition of multiplicative contraction and proved Banach contraction principle in
the setting of multiplicative metric spaces and also they studied multiplicative metric topology. The concept
of a weakly contractive mapping was introduced by Y.I. Alber and S. Guerre-Delabriere[3]. Following this,
many authors obtained generalizations and extensions of the weak contraction principle. For example, B.S.
Choudhury et.al.[9] introduced generalized weakly contractive mappings in metric space, M. Abbas et.al.[2]
obtained several fixed and common fixed point results satisfying certain generalized contractive conditions
in the framework of multiplicative metric spaces. M. Abbas et.al.[1] proved common fixed points for locally
contractive mappings and explored the application of multiplicative metric spaces. X. He et.al.[I12] proved
common fixed points for weak commutative mappings on a multiplicative metric space.

In this paper, we introduce generalized weakly contractive mappings, establish a common fixed point theo-
rem for the mappings introduced and prove the existence and uniqueness a common fixed point result in the
setting of multiplicative metric spaces.

2. Preliminaries

In 2008, Bashirov et al., defined new kind of spaces, called multiplicative metric spaces in the following
way:

Definition 2.1. A. Bashirov et.al. [5] Let X be a non-empty set. A mapping d : X x X — R is said to
be a multiplicative metric on X if for any x,y,z € X ,the following conditions hold:

i. d(z,y) > 1 and d(z,y) =1 if and only if © = y.

ii. d(z,y) = d(y,x).

i, d(z,y) < d(z,z).d(z,y).
Then (X, d) is a multiplicative metric space.

Example 2.2. M. Ozavsar et.al. [17] Let R be the collections of n— tuples of positive real numbers. Let
d* : R} x R} — R be defined as follows:

* * *

d*(z,y) = Rt I e In ,
U Y2 Yn
where x = (21,22, ...... s Zn) and Yy = (Y1, Y2, ve-.. Yn) € R and |.|* : RT — RT is defined by
. a if a>1
la*=q,
o ifa<l.

Then it is clear that all conditions of Definition 2.1 are satisfied. Therefore (R'},d*) is a multiplicative
metric space.

Example 2.3. M. Sarwar and R. Badshah-e[18] Let d : R x R — [1,00) be defined as d(z,y) = al*=¥I,

where 2,y € R and a > 1. Then d is a multiplicative metric and (R, d) is a multiplicative metric space.
It is taken as usual multiplicative metric spaces for all real numbers.
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Example 2.4. M. Sarwar and R. Badshah-e [18] Let (X, d) be a metric space. Define a mapping d, on X
by

da(a,y) = o = {1 T E=Y
a ifrity,

where x,y € X and a > 1.

Then d, is a multiplicative metric and (X, d,) is known as the discrete multiplicative metric space.

Remark 2.5. M. Sarwar and R. Badshah-e [18] We note that multiplicative metrics and metric spaces are
independent. Indeed, the mapping d* defined in Example 2.2 is multiplicative metric but not metric as it does
not satisfy triangular inequality. Consider

(11 (1N 3 _ (1

On the other hand the usual metric on R is not multiplicative metric as it doesnt satisfy multiplicative
triangular tnequality, since
d(2,3).d(3,6) =3 <4 =4d(2,6).

Definition 2.6. M. Ozavsar et.al. [I7] Let (X,d) be a multiplicative metric space, v € X and € > 1. We
now define a set B.(z) = {y € X | d(x,y) < €}, which is called multiplicative open ball of radius € with center
x. Similarly, one can describe multiplicative closed ball as Be(x) = {y € X | d(x,y) < €}.

Definition 2.7. M. Ozavsar et.al. [I7] Let (X,d) be a multiplicative metric space. Then a sequence {x,}
m X said to be

(1) multiplicative convergent to x if for every multiplicative open ball Be(x) = {y | d(z,y) < €},e > 1, there
exists a natural number N such that n > N, then x,, € Be(z), that is, d(zp,x) — 1 as n — oo.

(2) a multiplicative Cauchy sequence if for all € > 1, there exists N € Ny such that d(zy,z,) < € for all
m,n > Ny, that is, d(xp,ZTm) — 1 as n,m — oo.

Definition 2.8. M. Ozavsar et.al. [17] We call a multiplicative metric space is complete if every multiplicative
Cauchy sequence in it is multiplicative convergent to x € X.

Theorem 2.9. M. Ozavsar et.al. [17] Let {x,} be a multiplicative Cauchy sequence in a multiplicative metric
space (X, d). If the sequence {x,} has a subsequence {xy,} such that x,, — *x € X as ny — oo, then
T, — *x € X as n — o0.

Remark 2.10. S.M. Kang et.al. See [15] The set of positive real numbers Ry = (0,00) is not complete
according to the usual metric. Let X = Ry and the sequence {x,} = {1}. It is obvious {x,,} is a Cauchy
sequence in X with respect to usual metric and X is not a complete metric space, since 0 ¢ R,. In the case
of a multiplicative metric space, we take a sequence {xy} = {a%}, where a > 1. Then {x,} is a multiplicative
Cauchy sequence since for n > m,

1
T an 1_1
d(Zn, Ym) = == | = |a~ ™
Ym am
11 1 loga
< anm<am <e€eif m> g)
loge
a if a>1
=g 7=t
a ’Lfa<

Also, {xn} — 1 asn — o0 and 1 € R,
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Hence (X, d) is a complete multiplicative metric space.

Definition 2.11. Let f,g: X — X be self-mappings. A point x € X is called

(1) fized point of f if fx = x;

(2) coincidence point of the pair {f, g} if fr = gx;

(3) common fized point of the pair {f, g} if v = fxr = gx.

Definition 2.12. G.Jungck[13] Two self-maps S and T on a nonempty set X are called weakly compatible
if they commute at their coincidence point.

Definition 2.13. A function f : X — [0,00), where X is a metric space, is called lower semi-continuous
if, for all x € X and x, € X with limy,_,oc T, = ,
we have

f(2) < T inf f(zn).

Definition 2.14. M. Abbas et.al.[2] The control functions v and ¢ are defined as follows:

i. U ={y:[l,00) — [1,00) | ¥ is a continuous non-decreasing function with ¥(t) = 1 if and only if
t=1}.

ii. ®={¢:[l,00) — [1,00) | ¢ is a lower semi-continuous function with ¢(t) =1 if and only if t = 1}.

S. Cho [8] proved the following fixed point theorem for generalized weakly contractive mappings in metric
spaces as follows:

Theorem 2.15. Let X be complete metric spaces and T satisfies the following conditions:
P(d(Tz, Ty) + o(Tz) + o(Ty)) < b(m(z,y,d, T, ¢)) — o(l(z,y,d,T,¢)) , forall z,y € X, where ¥ = {1 :

[0,00) — [0,00) | ¥ is a continuous and 1p(t) = 0 if and only if t =0}, & = {¢ : [0,00) — [0,00) | ¢ is a lower semi-
and ¢(t) = 0 if and only if t =0}, p: X — [0,00) is lower semi-continuous function,
m(z,y,d, T,p) = maz{(d(z,y) + ¢(x) + ¢(y), d(z,Tz) + o(zx) + ¢(Tx),
d(y, Ty) + »(y) + «(Ty),
{d(w, Ty) + p(x) + ¢(Ty) + d(y, ) + py) + ¢(Tx)}2}.

and

lw,y,d, T, ) = maz((d(z,y) + ¢(x) + ¢(y). d(y, Ty) + ¢ (y) + o(Ty))-
Then there exists z € X such that z =Tz and p(z) = 0.

3. Main Results

In this section, we introduce generalized weakly contractive mappings, establish a common fixed point
theorem for the mappings introduced and prove the existence and uniqueness a common fixed point result
in the setting of multiplicative metric spaces.

Definition 3.1. Let (X,d) be a multiplicative metric space, let S,T : X — X, and let ¢ : X — [1,00) be
a lower semi-continuous function. Then S and T are called a generalized weakly contractive mapping if they
satisfy the following condition:

(m(Sz,Sy,d, T, ¢))

YT, Ty) o (T)-(TY)) < ~Sare 5y a. T )

where ¢y € U, ¢ € & and
m(Sx,Sy,d, T,v) = mazx{d(Sx,Sy).0(Sx).p(Sy),d(Sx,Tx).o(Sx).p(Tx),
d(Sy, Ty).¢(Sy)-¢(Ty),
{d(S, Ty)-p(Sx)-p(Ty)-d(Sy, Ta).o(Sy) (T)} 2}

, forallz,y € X, (1)
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and
[(Sz, Sy, d, T, p) = max(d(Sz, Sy).o(Sz).0(Sy), d(Sy, Ty).¢(Sy).¢(Ty)). (2)

Theorem 3.2. Let (X,d) be a multiplicative metric space and S and T are generalized weakly contractive
mappings. Assume that

i. T(X) C S(X);

ii. S and T are weakly compatible mappings. If one of the subspaces T(X) or S(X) is complete, then S and
T have a unique common fized point z € X such that z =Tz = Sz cmd o(z) =1.

Proof. Let xo € X be fixed. Since T'(X) C S(X), choose z1 € X such that Sx; = Txp. In general, choose
Zn4+1 € X and define a sequence {z,} by yp+1 = Szpy1 = Tay, for alln =0,1,2, ...

If ¥y, = yns1 for some n, we have Sz, = Sxpy1 = Tx, and x,, is a coincidence point of S and T'. Since S
and T are weakly compatible, we have

TSz, = STz, =SSz, (3)

Here, Sz, is a coincidence point of S and T. Now by setting = z,,+1 and y = Sz, in (2), we have
m(Sz, Sy,d, T, ) = maz{d(Stnit1,S55).0(STpt1).0(SSxy),

d(S2pi1, Tp41)-0(STn41)-P(TTns1),
d(SSxn, TSxy).p(SSxy).0(TSxy),

{d(Szpt1,TSxy).0(Spi1).0(TSxy).d(SSxy, Txn+1).w(SSmn).gp(Ta?nH)}%}

and

[(Sz,Sy,d, T, ¢) = max(d(Stpt1, SSTn).0(Stnt1).0(SSxy), d(SSzp, T'Sxy).0(SSxy).0(T'STs)).
Which implies that

m(Sx,Sy,d, T,¢) = d(Szpt+1,S55%n).p(Sxni1).p(SSzy)
and

1(Sz,Sy,d, T, ) = d(Stpt1,55).0(STnt1)-0(SSTy).
Hence, becomes (d(Txpi1, T'STy).0(Txni1).0(TSzy)) < w(d(smn“’SSZ")"P(S‘T"“)*"ES“?SQ));. Using ,

H(d(STn41,55Tn).0(STni1)-¢
we have ¢(d(Sxpi1,SSx,).0(STpt1).0(SSxy,)) = 1. From this, d(Sz,41,SS5z,) = 1 and Sz, is a fixed

point of S. Again using , d(Sxp41,TSzy,) =1 and Sz, is a fixed point of T'.

Therefore, Sx,, is a common fixed point of S and T.

Suppose Y, # Yn+1 - Plunging x = z,, and y = x4 in we have,

m(Sxn, Stpi1,d, T, p) = max{d(Sztp, Stni1).p(Sxn).0(STnt1),d(Sxy, Tay).0(Szy).0(Txy),
d(Sznt1, Top11).9(STnt1).o(TTn41),
{d(Sn, Tns1)-0(S20) p(Tns1).d(STn 11, Tn)p(Sti1).0(Tn)} 2 }
= maz{(d(Yn, Yn+1)-2(Yn)-L(Yn+1): A(Yn Yn+1)-0(Yn) -2 (Yn+1),

A(WYn+1, Yn+2)-0(Yn+1)-9(Yn+2),
{d(yn Yn+2) 0 () 2 +2)- AU 41, Un 1) (Un11)-0(Un 1) }2 .

Since

{d(Yns Yns2)- ()0 Wns2)- 2 Wns1) -0 Wns 1)} < {dWns Yns1)-A(Ys1, Yv2)-

O(Un) 2 (Ynt2)-(Unr1)-2(Yns1)} 2}
mar{d(Yn, Yn+1)-L(Yn)-L(Yn+1), A(Ynst1, Ynt2)-
©(Yns1)-2(Yni2)}

IN
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m(Sx, Sy, d, T, ¢) = max{d(Yn, Yn+1)-2Yn)-LYn+1), dYns1, Yn+2)-L(Yn+1)-0(Yni2)} (4)
and
1(Sz, Sy, d, T, p) = mar{d(Yn, Ynt1)-L(Un)-LYn+1), A(Yn+1, Yn+2)-0(Yn+1)-0(Ynt2) }- (5)

Then by using and , becomes

Y(maz{d(yYn, Yn+1)-2(Yn)-L(Yn+1); AYnt1, Ynt2)-0(Ynt1)-©(Ynt2) }
VT Ty)-o(T0)-2(T9)) < s )0 () W )s Aets Yr2) 2 i) P lmr2)) O

Now suppose d(Yn, Yn+1)-2(Yn)-(Yn+1) < d(Yn+1s Yn+2)-©(Yn+1)-¢(yYnt2), for some positive integer n.
Then @ becomes

w(d(yn+1a yn+2)'@(yn+1)'¢(yn+2))
A(d(Yn+1,Yn+2)-L(Yn+1)-2(Ynt2))

< w(d(yn+1ayn+2)'gp(yn+1)'¢(yn+2))y

1/1(d(yn+1, yn+2) '(p(yn-i-l)'(p(yn—ﬂ)) <

which is a contradiction. Thus
A(Yn+15 Yn+2)-L(Yn+1)-P(Yn+2) < d(Yn, Ynt1)-0(Yn)- P (Yn+1), (7)
and @ becomes

Y(AYns Ynt1)-(Yn) -0 (Ynt1))
= O(d(Yn, Ynt1)-L(Yn)-L(Ynt1)) (8)

Y(A(Yn+1, Yn+2)- P (Yn+1)-P(Ynt2))

Hence, the sequence {d(yn+1,Yn+2)-©(Yn+1)-©(Yn+2)} is monotone decreasing. Thus, there exists r > 1 such
that

lim (d(yn+1a yn+2)'4p(yn+l)'§0(yn+2)) - T (9)

n—oo

Now we show r = 1. Assume r > 1. Letting n — oo in , by the continuity of ¢ and the lower semi-
continuity of ¢ it follows that

()

(r)

= 1, which is a contradiction since r > 1, from property of ¢. Hence, r = 1

P(r)
¥(r) < limy, 00 i f A(d(Yns Ynt1)-0(Yn) -2 (Yn+1))

<Y
0

—

This implies that ¢(r) < 4
and @ becomes

<

Jim (d(Yni1,Yn+2)) — 1, Hm @(yn41) = Land lim @(yni2)) — 1. (10)
Now we prove that the sequence {y,} is a multiplicative Cauchy sequence. By using , it is sufficient to
prove that {y2,} is a multiplicative Cauchy sequence. To prove this, suppose {y2,} is not a multiplicative
Cauchy sequence, that is there exist € > 1 for which we can find two sequences of positive integers 2m(k)
and 2n(k) such that for all positive integer k, 2n(k) > 2m(k) > k,

A(Yomk)s Yon(k)) = € and d(Yom k), Yon(k—2)) < € (11)

Now using the triangle inequality,
€ < d(Yam(k)> Yon(k)) < dWYam(k) Yon(k)-2)-AY2n(k)—2> Y2nk)—1)-AY2n k) -1, Yon(k))-

This implies that € < d(Yom(r) Y2nk)) < €-dYan(k)—2: Y2n(k)—1)-A(Yonk)— 15 Yon(k))-
Letting k — oo in the above inequalities and using @D, we have

m (d(Yom(k), Yon(r))) < € (12)

k—o0
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Now letting £ — oo in and using , we have

i (d(Y2m(k), Yon(k))) = €

k—o0
Again,
A(Yam(k)s Y2nk) < AY2m(k)s Yomk)+1)-AY2m k) +1> Yonk)+1)-AY2n (k) +15 Y2n(k))
and
A(Yam (k) +15 Yon(k)+1) < AY2m()+1> Y2mk))-A(Y2m(k)> Yon(k))-A(Yan(k)s Y2n(k)+1)-
Letting £ — o0, using and , we have

lim (d(me(k)-i—b y2n(k)+1)) =€

k—o0

Again,
(Yon(k)+2> Y2n(k)+1) - A(Y2n(k)+1> Yom(k)+1)s
(Yon(k)+15 Yon(k)+2) - AY2n(k)+2> Y2m(k)+1)

d(y2n(k)+2a y2m(k)+1)

<d
A(Yon(k)+15 Yomk)+1) < d

and similarly,

A(Yam@k)s Yonk)+1) < AWam(k) Yon(k))-A(Yon(k)> Yon(k)+1)s
A(Yom(k)> Yonk)) < AYam(k) Yan(k)+1)-A(Y2nk)+1> Y2n(k))-

Letting kK — oo in the above inequalities, using , and , we have
kh_{go(d(an(k)—&-Qa Yom(k)+1)) = €

kh_fgo(d(y?m(k)’ y2n(k)+2)) =€
. (d(Yamk) Yan(ry+1)) = €
By setting & = Zopx) and y = T, )41 In , we have
m(Sx2m(k)7 Sx2n(k)+1a d,T,p) = maI{d(szm(k)y S$2n(k)+1)'@(8$2m(k))'@(Sx2n(k)+1)7
d(STom(k)s TTom(k))-P(STamr))-L(T Tam(k))s
d(STon()+1: TTonk)+1)-2(STank) +1)-P(T2nk)11),
{d(STomiys TTonk)+1) -2 Yamk))- L (TY2n(k)+1)-
1
d(STon(k)+1> TTomk))- P(STonk)+1)- L (TTom) ) 2 }
= mazr{(d(Y2m(k)> Yon(k)+1)-PY2mk))-PY2n(k)+1)s
d(Yam(k)s Y2m(k)+1)- 2 Y2m(k))- 2 Yom(k)+1)s
d(y2n(k)+la y2m(k)+2)~80(y2n(k)+1)~80(yzm(k)+2)7
{d(yZm(k)7 yzm(k)+2)-90(yzm(k))-SD(yzm(k)+2)-
1
A(Yan(k)+15 Y2m(k)+1)- P Yank)+1) L Yamk)+1) } 2

and

L(SZomi)s STank)y+1, 4 T ) = max(d(STomk), STan(k)+1)-L(STam (k) - P(STonk)+1),
d(STon(k)+1> TTon(k)+1)-L(STan(k) +1)-P(T T2 (k) +1)
= max(d(Yamk)s Y2n(k)+1)-LY2m k)P Y2n(k)+1)s
A(Yan (k) 115 Y2n(k)+2)- L Yon(k)+1)-P(Y2n(k) +2)-
Letting kK — oo in the above inequalities, using @, and - , we have

lim (m(5$2m(kz)v San(k)—i—lv a,T, 90)) =eand klggo(l(sx2m(k)’ S$2n(k)+la a,T, (70)) =€

k—00
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Thus from , we have

Y(Mm(STom k), STonk)+1, 4 T, ¥))
P STom(ky, STan)+1,d, T, @)

V(AT T2y To2n(k)+1)-P(TT2m(k))-P(TTonm) 1)) <

or

¢( (S'TQm(k) Sx?n(k)—i—lad T, 80))
P(L(STom@ys STon(ky+1,d; T, )

Letting k — o0, using , and , applying continuity of ¥ and lower semi-continuity of ¢, we have

e e
limy o0 an(b( (S‘TQm(k)a S‘rQn(k)Jrla d,T, 90)) B ¢(‘€)

¢(d(yzm(k)+1a y2n(k)+2)~80(yzm(k)+1>-<P(Z/2n(k)+2))

P(e) <

This implies that,
¥(e)
¢(e)

Ple) < <¥(e),

which is a contradiction from property of ¢.
Therefore {yay, } is a multiplicative Cauchy sequence. Hence by , {yn} is a multiplicative Cauchy sequence.
Now since S(X) is a complete subspace of X, it has multiplicative convergent subsequence of {y,}. That is,
there exists p € X such that

Sp = z. (19)
As {y,} is a multiplicative Cauchy sequence containing a convergent multiplicative subsequence, therefore

the sequence {y,,} also converges to z € X such that

lim Sx, = h_>m Tz, = z. (20)

n—o0

Since @ is lower semi- continuous, ¢(z) < lim,_,o infp(yn) = 1. But ¢(z) > 1, which implies that ¢(z) = 1.
Now we show Tp = z.
By setting x = x, and y = p in , we have

m(Szp, Sp,d, T,¢) = max{(d(Sxy,Sp).0(Syn).0(Sp),d(Sxy, Txy).0(Szy).0(Txy),
d(Sp, Tp).p(Sp).o(Tp),
1
{d(Szy, Tp).o(Szn).0(Tp).d(Sp, Txn).0(Sp).o(Txy)} 2}
and
[(Sy, Sp,d, T, ) = max{d(Sxy, Sp).p(Szn).(Sp), d(Sp, Tp).p(Sp).o(Tp)}.
Letting n — oo, using and applying lower semi-continuty of ¢, we have
Jim m(Szy, Sp,d, T, ) = max{(d(z, Sp).p(2)-¢(Sp), d(z, 2).0(2).(2),
d(Sp, Tp).p(Sp).o(Tp),
1
{d(z, Tp).o(2).¢(Tp).d(Sp, 2).0(Sp).(2)} 2 }
= d(z,Tp).p(Tp)
and
[(Szn, Sp,d, T, ) = d(z, Tp).o(Tp). (21)
Then using , we have

¢(m(5$n7 Sp7 da T7 (10))
¢(I(San, Sp,d, T, ) -

Y(d(Txy, Tp).o(Tzn).0(Tp)) <
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Letting n — oo, using and by applying the continuity of v, the lower semi-continuity of ¢, we have
(

g(d(z, Tp).o(Tp)) < %{%, which implies that ¢(d(z, Tp).¢(T'p)) = 1. Then from property of ¢, we
ave

d(z,Tp).p(Tp) = 1.
Hence,d(z,Tp) = 1 implies that z = Tp and ¢(Tp) = 1. (22)
Therefore, from and , we have Sp =Tp = z.
Since S and T are weakly compatible, we have
STp=TSp=95z=Tx. (23)
Now we show Tz = z.
Again by setting r = z and y = x,, in , we have
m(Sz, Sxy,d, T, o) = max{d(Sz, Szy,).0(Sz).0(Sxy),d(Sz,Tz).0(Sz).0(Tz),
d(Sxp, Tzy).0(Sxy).0(Txy),
{d(S2, T2n)p(52).p(T).d(S, T2).p(Swn)0(T2)} 7 }.
and
1(Sz,Sxy,d, T, ) = max{d(Sz, Sx,).0(S2).0(Sxy), d(Stpn, Txy).0(Sxp).0(Tzy)}
Letting n — oo, using and applying lower semi-continuity of ¢, we have
m(Tz,z,d,T,p) = max{(d(Tzz2).0(Tz).0(2),d(Tz,Tz).p(Tz).0(Tz),
d(z, 2).0(2).¢(2),
{d(T2,2).0(T%).0(2).d(2, T2).0(2).0(T)} 2}
= d(Tz,z2).o(Tz).
and
Tz, z,d,T,¢)=d(Tz,z).0(Tz).

(24)
Then using , we have Y(d(Tz,Txy).p(Tz).0(Txy)) < %&gizsi?ddg:;))) Letting n — oo, using ,
and applying lower semi-continuity of ¢, we have

_ (T2 2).0(T2))
~ 0(d(Tz,2).0(T2))
Which implies that ¢(d(T'z,2).¢(T'2)) = 1. Then from property of ¢, we have

d(Tz,z) =1 and hence, Tz = z. Therefore z is a fixed point of T". Using , Tz =2=25xz.
Hence z is a common fixed point of 1" and S.

P(d(Tz, 2).p(Tz))

Uniqueness.
Suppose there is another common fixed point of T' and S say u with Tw = u and Su = u. Setting z = z and
Yy =uin and applying semi-continuity of ¢, we have
m(Sz,Su,d, T,p) = max{d(Sz, Su).o(Sz).p(Su),d(Sz,Tz).0(Sz).0(Tz),
d(Su, Tu).p(Su).o(Tu),
{d(Sz, Tu).o(S2).o(Tw).d(Su, Tz).o(Su).o(Tz)}2 }
= max{(d(z,u).¢(z)-p(u),d(z, 2).0(2).¢(2),
d(u, u).o(u).p(u),
1
{d(z,u)-0(2).0(u).d(u, 2).p(u).0(2)}2 }
= d(z,u).
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and
1(Sz,Su,d, T, ) = max{d(Sz, Su).p(Sz).p(Su),d(Su, Tu).o(Su).o(Tu)}
= max{d(z,u).p(2)-p(u), d(u, u).p(u).p(u)}
= d(z,u).
Using , we have
Y(m(Sz, Su,d, T, p))

o(1(Sz, Su,d, T, p))
Y(d(z,u))
10} U

P(d(Tz, Tu).p(Tz).p(Tu)) < (d(z,u).0(2).0(u) <

(d(z,u)
By applying lower semi-continuity of ¢ to the left side, we have

$(d(z, )
) = at )

Which implies that ¢(d(z,u)) = 1. Then from property of ¢, we have d(z,u) = 1 and hence, z = u.
Therefore, T and S have a unique common fixed point z. O

The following is an example in support of our main result.

Example 3.3. Let X = [1,00) with the usual multiplicative metric d. Define S and T : X — X by

S(x):{x if 1<z <5;

12 if x> 5;
and
T(z) = {g/"? Z; 1:n§>365S ’
for all x € X. Let ¢, : [1,00) — [1,00) defined by 1(t) =t fort € [1,00),
o(t) = { ft ZZ tt§>55
and

ez ift>s
¢(t)_{1 ift <5.

Now we show condition as follows.
Case 1: Let x,y € (5,00) . Then
(0). P(d(Tz, Ty).p(Tx).0(Ty)) = ¢(d(5,5).¢(5).0(5))

()

= (100) = 10000.
(79). d(Sxz,Sy).p(Sz).p(Sy) = d(12,12).9(12).p(12)

121"
= |33 .24.24 = 576.
(131). d(Sz,Tx).o(Sz).e(Tx) = d(12,5).0(12).¢(5)
= % .24.10 = 576.
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Similarly,
(). d(Sy, Ty).¢(Sy).¢(Ty) = 576.
1
(v). (d(Sz, Ty).p(Sz).0(Ty).d(Sy, Tx).0(Sy).p(Tx)))2 = 576.
Thus, using (ii), (iii), (iv) and (v), (3) becomes
m(Sz, Sy,d, T, ) = max{576, 576,576,576} = 576
and
[(Sx,Sy,d, T, p) = 576. (25)

Hence, using (i) and , becomes 10,000 < ZES;S)) < 13,824.
Case 2. Let x,y € [1,5] with x > y. Then

(i). $(d(T2, Ty)o(Ta)o(Ty) = o (d(ab,y3) o (3) 0 (7))

1 |*
2
= 1/1(3:1 .x%.y ):xQ.

y2
(ii). d(Sz,Sy).p(Sz).0(Sy) = d(z,y).0(z).0(y)

D=

(iii). d(Sz,Tz).0(Sz).0(Tz) = d(z,vz).0(2)0(V)

Stmilarly,
(iv). d(Sy,Ty).o(Sy).p(Ty) =
(). (d(Sz, Ty).o(Sx).o(Ty).d(Sy, Tz).p(Sy).p(Tx): = ay.

Hence, becomes
1 < 2% for x >y, where equality holds for x =1

and
1 <y? forx<y.

Case 3. Let x € (5,00) andy € [1,5].

(i) Y(d(T, Ty).o(Ta)p(Ty)) = P(d(5,y7)-0(5)-0(y?))

_ (51 . .y§> = 625.
y2
(i). d(Sz,Sy).p(Sx).p(Sy) = d(12,y).p(12).¢(y)
= 1; 24.y = 288.
(i7i). d(Sz,Tx).p(Sx).o(Tx) = d(12,5).0(12).0(5)
= % 24.5 = 288.
(iv). d(Sy,Ty)-0(Sy)-0(Ty) = dy,vy)-»¥)-»(/Y)
_ | Y ) _ 2
= NG YNY =Y
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Similarly,
(v). (d(Sz, Ty).p(S2).0(Ty).d(Sy, Tx) o(Sy) p(T))} = 60v2
Here,
m(Sxz,Sy,d,T,¢) = max{288,1>, 288,60v/2} = 288
and
[(Sz,Sy,d,T, ) = max{288,288} = 288. (26)
Hence, using (i) and (26), becomes 625 < 4887.68.

Case 4. Lety € (5,00) and x € [1,5].
(). Y(d(Tz, Ty).o(Tx).o(Ty)) = P(d(Vz,5).0(v7).0(5)

= ‘f * Ax.5) = 625.
(79). d(Sz,Sy).p(Sxz).p(Sy) = d(z,12).p(z).p(12)
_ %*.x.24:288.
(ii). d(Sz,Tx).p(Sz).p(Tx) = d(z,vx)(r).0(Vr)
= i xZ. .’L’I.’E2.
= |74l
(). d(Sy,Ty).o(Sy)-p(Ty) = d(12,5).0(12).0(5)
— | 22] 245 = 288,
Stmilarly,
(v). (d(Sz, Ty).p(S).0(Ty).d(Sy, Tz).o(Sy).o(Tx))? = 60v2
Here,
m(Sxz, Sy, d, T, ¢) = max{288, 22, 288, 60v/2} = 288
and
[(Sx,Sy,d, T,p) = max{288, 288} = 288. (27)

Hence, using (i) and (27), becomes
625 < 4887.68.

Therefore, condition 1s satisfied.
Next St = Tx at x = 1 and STx = TSx = 1. This shows that S and T are weakly compatible. Again
T(X) CS(X).

Thus all conditions of the Theorem 3.2. are satisfied and x =1 is a unique common fixed point of S and T.

4. Conclusion

In this paper, we have discussed the historical back ground of multiplicative calculus with its applications
in different fields and simplicity of its operation. Next, we have explored the properties of multiplicative
metric spaces with its some of topological spaces, development of contraction and weak contraction in mul-
tiplicative metric spaces and also the independence of metric spaces and multiplicative metric spaces has
been discussed. We introduced generalized weakly contractive mappings, establish a common fixed point
theorem for the mappings introduced and prove the existence and uniqueness a common fixed point result
in the setting of multiplicative metric spaces. We have supported the result of this work by example.
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