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A B S T R A C T  
 

Fractional polynomials are powerful statistic tools used in multivariable building model to 

select relevant variables and their functional form. This selection of variables, together with 

their corresponding power is performed through a multivariable fractional polynomials 
(MFP) algorithm that uses a closed test procedure, called function selection procedure 

(FSP), based on the statistical significance level α. In this paper, Genetic algorithms, which 

are stochastic search and optimization methods based on string representation of candidate 

solutions and various operators such as selection, crossover and mutation; reproducing 
genetic processes in nature, are used as alternative to MFP algorithm to select powers in an 

extended set of real numbers (to be specified) by minimizing the Bayesian Information 

Criteria (BIC). A simulation study and an application to a real dataset are performed to 

compare the two algorithms in many scenarios. Both algorithms perform quite well in terms 
of mean square error with genetic algorithms that yield a more parsimonious model 

comparing to MFP Algorithm. 
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1. Introduction 

Linear regression models are statistic techniques that are often used to examine relationships between a response 

variable (dependent variable) and a set of covariates (independent variables) based on some assumptions, whose one 

is the existence of a linear relationship between the dependent and the independent variables. However, in many 

cases, especially in medical research, this assumption is violated and other alternatives are suggested such as 

categorization (the problem of cutpoints), splines functions (the problem of number and position of knots), and 

higher-order polynomials (the problem of overfitting). [1] introduced fractional polynomials to model the nonlinear 

relation between the response and covariates. 

In a multivariable model building, fractional polynomials are used to select variables and functions through an 

MFP algorithm that allows selecting powers in a prefixed set 𝑆 = {−2, −1, −0.5,   0, 0.5, 1, 2, 3} using multiple 

testing based on the Likelihood ratio test procedure, see [2]. Our proposed approach uses a stochastic search technique 

termed Genetic algorithms to select powers by minimizing the Bayesian information criterion in the extended search 

grid. 
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𝑃 = {𝑁𝐴, −3, −2.5, −2, −1.5, −1, −0.5, −0.25, 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3}, where 𝑁𝐴 represents the non-

selection of a variable. 

Throughout this paper, we will refer to this approach as the GAFP algorithm. Simulations based on an artificial 

dataset from Breiman [3] and Friedman [4] are performed taking into account many scenarios depending on sample 

size and error variance to compare both MFP and GAFP algorithms. 

We apply both algorithms to a diabetes dataset used in [5], and compute different statistic measures to compare 

the goodness of fit and predictive performance of the two algorithms. Results reveal that the two algorithms are 

powerful to select relevant variables and their functional form. They both provide parsimonious models that are 

interpretable and generalizable. 

 

2. Fractional Polynomials and MFP Algorithm 
2.1. Definition and shape 

Fractional polynomials are a generalization of conventional polynomials that include negative and fractional 

powers. More formally, for a univariate case, a fractional polynomial transformation of order (degree) 𝑚 ≥ 1 is 

defined as: 

𝐹𝑃𝑚(𝑥; 𝛽; 𝑝𝑗) = ∑ 𝛽𝑗𝐻𝑗
𝑚
𝑗=0 (𝑥)           (1) 

where 𝛽1, … , 𝛽𝑚 are regression coefficients, 𝑝0 = 0 and 𝐻𝑗(𝑥) a particular type of power function recursively defined 

as 

𝐻𝑗(𝑥) = {
𝑥𝑝𝑗                                      𝑝𝑗 ≠ 𝑝𝑗−1

𝐻𝑗−1(𝑥) ln(𝑥)               𝑝𝑗 = 𝑝𝑗−1
,         (2) 

with 𝑗 = 1,2, … , 𝑚 and 𝐻𝑜(𝑥) = 1. 

Remarks: 

• In the previous definition, powers 𝑝𝑗 belongs to a predefined set   𝑆 = {−2, −1,

−0.5,   0, 0.5, 1, 2, 3},  with 𝑥0 denoting ln(𝑥) as introduced by [1]. 

• The term 𝐹𝑃𝑚(𝑥; 𝛽; 𝑝𝑗) = ∑ 𝛽𝑗𝐻𝑗
𝑚
𝑗=0 (𝑥)  is a linear predictor, therefore fractional polynomials can be applied 

to all models that use linear predictors such as logistic regression models, Cox models, etc. 

Examples: 

• A fractional polynomial of first degree with power 𝑝 = 0.5 is given by the transformation: 𝐹𝑃1(𝑥) = 𝑥0.5. 
• A fractional polynomial of the second degree with different powers 𝑝(−2,0.5) is given by the transformation: 

  𝐹𝑃2(𝑥) = 𝑥−2 + 𝑥0.5. 

• A fractional polynomial of the second degree with repeated powers 𝑝(2,2) is given by the 

transformation: 𝐹𝑃2(𝑥) = 𝑥2 + 𝑥2 ln(𝑥). 

The univariate FP definition described previously can be extended to FP of multiple continuous covariates and is 

called a multivariable FP (MFP) model. With K continuous covariates  𝑥1, … , 𝑥𝑘 ; the linear predictor is given by:  

𝐹𝑃𝑚(𝑥; 𝑝1, … , 𝑝𝑘) = 𝛽0 + ∑ ∑ 𝛽𝑘𝑗𝐻𝑗
𝑚
𝑗=1

𝐾
𝑘=1 (𝑥𝑘 , 𝑝(𝑘))        (3) 

where 𝐻𝑗(𝑥𝑘 , 𝑝(𝑘)) is defined as in (2), 𝑘 indexes and 𝑚𝑘  the degree of a fractional polynomial correspondent to the 

variable  𝑥𝑘 ,  𝛽0  the global intercept and  𝛽𝑘𝑗 the coefficient for the 𝑘𝑡ℎ 𝐹𝑃𝑚 model and the  𝑗𝑡ℎ  transformation.  

[6] suggested to consider 𝐹𝑃1 and 𝐹𝑃2 families since models with a degree higher than two are not often required 

in multivariable analysis. Compared to conventional polynomials of the same degree, Fractional polynomials provide 

many potential improvements when fitting. 

 

2.2. Estimation and MFP algorithm 

Regression coefficients in fractional polynomial models are estimated conditionally on powers in a set 𝑆. Once 

powers in 𝑆 are selected, these coefficients are estimated using the maximum likelihood method. Fractional 

polynomials models having the same degree are compared using the deviance, i.e. minus twice the maximized 

loglikelihood of the model. The best-fitting model is the one with small deviance value. Fractional polynomials 
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models having a different degree are compared using the deviance difference (Likelihood ratio test) on some degree 

of freedom. 

For practical use, [6] stated that a fractional polynomial of degree 𝑚 has approximately 2𝑚 degree of freedom. 

Hence an 𝐹𝑃2 has 4 df; 2 df for the two powers and other 2 df for the two regression coefficients. A linear model has 

1 df; an 𝐹𝑃1 has 2 df; one for the unique power and another for the one regression coefficient. 

For the univariate case, [6] used the function selection procedure (FSP) to select the best univariate fractional 

polynomial model. This function selection procedure is called 𝑅𝐴2 in [7] and in [8]. In the following description of 

FSP, the linear function will be preferred unless the data require a more complex function. Before implementing the 

FSP, the user must first choose the nominal 𝑝 −value and the degree 𝑚 of the most complex function to be used. 

Recall that the FSP preserves the overall type I error probability at a chosen level 𝛼. We explain the FSP steps 

according to [6]. It runs as follows: 

• The first step is of the overall relationship of the outcome and the predictor 𝑥.  𝐹𝑃2 model is tested with the null 

model using 4 df. If the test is not significant, we conclude that the predictor 𝑥 doesn't affect the outcome, 

otherwise we continue.   

• The second step checks the evidence for non-linearity. 𝐹𝑃2  is tested with a linear model using 3 df. If the test 

is not significant, we conclude that the model is linear (straight line), otherwise, we continue. 

• The last step checks the complexity of the model. 𝐹𝑃2 model is tested with 𝐹𝑃1 model using 2 df. If the test is 

not significant, 𝐹𝑃1 is chosen as the final model, otherwise, the final model is 𝐹𝑃2 model. 

In R statistical software, the default choices of significance level 𝛼 and the degree 𝑚 are 0.05 and 2 respectively. 

Recall that the user must also choose two different significance levels 𝛼1 for variable selection (used in step 1) and 

𝛼2  for function selection (used in steps 2 and 3). 

For a multivariable case, the FSP is used as a building block from which multivariable model building is 

constructed. 

• Suppose we have 𝐾 variables in the model, before applying the MFP algorithm, significance levels 𝛼1  for 

variable selection, 𝛼2  for function selection must be chosen included the maximum degree for each 

variable 𝑚1, … , 𝑚𝑘. Defaults are 𝛼1 = 𝛼2 = 0.05 and 𝑚1 = 𝑚2 = ⋯ = 𝑚 = 2. 

• The full linear model is fit and the variables are ranked according to their Wald's test statistic (p-value) from 

the most significant to the least. 

• The first cycle begins by applying the FSP defined previously to the most significant variable in the list and its 

functional form is obtained. If the variable is categorical or binary, the joint significance of its dummy 

variable(s) is tested at the 𝛼1 level. If the test is significant, the binary variable is retained, otherwise, it is 

dropped. During the first cycle, FSP is applied to each continuous variable until the least significant. All 

remaining variables are included in the model as adjustment terms every time when FSP is applied to a variable. 

The first cycle ends when all variables are revisited. 

• The second cycle begins with all variables and functional forms selected in the first cycle. The cycle begins by 

applying the FSP to the most significant variable and all remaining variables stay in the model with their 

functional form found in the first cycle as adjustment terms. The procedure repeats until all variables are 

revisited including also variables that were not selected from the first cycle. 

• The algorithm ends when the convergence condition is met. i.e. variables and functional forms for two 

successive cycles haven't changed. 

Remarks: 

• Generally, MFP needs two, three or occasionally four cycles for convergence. 

• FP models are strongly affected by the covariates’ outliers or covariates distribution, especially heavy-tailed 

covariate distribution. To dampen these effects, MFP algorithm performs some preliminary shifting (when 𝑥 ≤
0) to ensure the positivity of the predictor and scaling to reduce the chance of numerical underflow or overflow 

in extreme cases, which may result in inaccuracies and difficulties when estimating the model. For shifting and 

scaling operations, see [6]. 
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2.3. Example 

Let’s consider a banal example that consists of using the Gaussian model to predict the Chi-square Quantiles using 

degrees of freedom when 𝛼 = 0.05. The mathematical expression is presented as follows: 

𝑦(𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 𝜒𝛼=0.05
2 (𝑥 = 𝑑𝑓) 

To get this dataset in R and perform the MFP algorithm (with defaults 𝑚 = 2 and 𝛼1 = 𝛼2 = 0.05) on it, we use 

the following command:  

> df = 1:200 
> quantile = qchisq(0.05, df, lower.tail = FALSE) 

> chisquare = data.frame(quantile = quantile, df = df) 

> modfp = mfp(quantile~fp(df, select=0.05), family=gaussian, data=chisquare) 

     Results of the MFP algorithm is presented in Table 1.  

Table 1. Chi-square data. Application of the MFP algorithm. The selected model is FP2. 

Model Deviance D Powers Step Comparison Dev. diff p-value 

FP2 0.1546073 0.5,1 1 FP2 vs Null 854076.5 <0.0001 (4 df) 

FP1 478.1275 1 2 FP2 vs Linear 477.9729 <0.0001 (3 df) 

Linear 478.1275 1 3 FP2 vs FP1 477.9729 <0.0001 (2 df) 
Null 854076.7 -     

In this table, it is clear that the best  𝐹𝑃1 model has power 𝑝 = 1 which is a linear model and that the best 

 𝐹𝑃2  model has powers 𝑝(−0.5,1). Since we have only one continuous predictor, MFP algorithm applies the FSP to 

that predictor and the results are described in the Table as follows: 

The test (based on deviance differences) of  𝐹𝑃2 against the null model on 4 df is significant at significance 

level 𝛼 = 0.05; the p-value < 0.001 is very small. We conclude that the predictor df affects the outcome quantile, 

hence there is an association between these two variables. 

The test of  𝐹𝑃2 against linear model on 3 df is also significant at 𝛼 = 0.05, p-value < 0.001, implying that the 

association between df and quantile is non-linear. 

The test of  𝐹𝑃2 against  𝐹𝑃1  model on 1 df is again significant, p-value < 0.001. 

Finally, we conclude that the relationship between df and quantile is complex.  𝐹𝑃2 model is selected with powers 

𝑝(−0.5,1). 

The model summary is given below 

Call: 

glm(formula = quantile ~ I((df/100)^0.5)+ I((df/100)^1),data = chisquare) 

Deviance Residuals:  

      Min     1Q    Median  3Q     Max   
     -0.28 -0.012   -0.002 0.01   0.04   

Coefficients: 

                 Est   SE    t-val P-val     

(Intercept)     0.74  0.01   59.95  0  
I((df/100)^0.5)   24  0.03  780.40  0 

I((df/100)^1)   99.7  0.02 5674.49  0 

(Dispersion parameter for gaussian family taken to be 0.0007848085) 

Null deviance: 8.5408e+05  on 199   df 
Residual deviance: 0.15461 on 197   df 

AIC: -857.46 

Number of Fisher Scoring iterations: 2 

The summary shows the shifted and scaled continuous predictor df with two significant terms I((df/100)^0.5) and 

I((df/100)^1). The shift parameter was taken to be zero since predictor values are all positives. The scale parameter 

was taken to be 100. For this 𝐹𝑃2 model, the linear predictor is of the form:  

𝐹𝑃2(𝑑𝑓) = 0.73924 + 23.91101 × (
𝑑𝑓

100
)

0.5
+ 99.70743 × (

𝑑𝑓

100
)

1
. 
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3. Genetic Algorithms and Their Implementation in FPs 
3.1. Implementation of GAs in FPs models 

Genetic Algorithms (GAs) are stochastic search and optimization methods that work on the principle of evolution 

through natural selection mechanism [9]. The basic concepts of GAs were developed by [10]. The evolutionary 

algorithm which is based on biological evolution requires that the fitness on individual determines its ability to 

survive and reproduce. The evolution process of GAs is presented in Figure 1. The principle behind GAs is that they 

generate and maintain a population of individuals represented by chromosomes (essentially a character string similar 

to the chromosomes occurring in DNA). These chromosomes represent encoded solutions to a problem. First, the 

initial population formed by a certain number of chromosomes (encoded solutions) is generated randomly from a 

population. 

Chromosomes then undergo a process of evolution according to the mechanism rules of selection, crossover and 

mutation. Chromosomes in this generation are then evaluated according to their fitness function, with the fittest 

surviving and the less fit being eliminated. To avoid losing good solutions, the most fitted ones, called elites, are 

copied directly to the next generation. Reproduction or selection Reproduction selects individuals with high fitness 

values in the population, and through crossover and mutation of such individuals, a new population is derived in 

which individuals may be even better fitted to their environment. 

The process of crossover involves two chromosomes changing chunks of data (genetic information) and is similar 

to the process of sexual reproduction. Mutation introduces mild changes into a small proportion of the population to 

increase its diversity. The result is a new population that evolves over time to produce better and fitter solutions to 

the problem at hand. 

 

Figure 1. Evolution of GAs [11] 

GAs are stochastic iterative methods and are not guaranteed to converge on an optimal solution. Therefore, search 

process typically ends when a pre-specified fitness value is reached, a set amount of computing time passes or until 

no significant improvement occurs in the population for a given number of iterations [12]. 

The most important genetic algorithms parameters include population size, number of generations, crossover and 

mutation occurrence probability, and number of elitist individuals for each generation. These tuning parameters must 

be set correctly since they strongly affect the results and computational time of GAs. This is the main drawback of 

GAs. However, their positive side is that they are parallelizable and succeed to solve an optimization problem where 

analytic methods fail. The details of GAs and their diverse applications can be found in [13]. 

 

3.2. Implementation of GAs in FPs models 

In this section, GAs are applied to FPs to select powers in the extended set 𝑃. To do so, we use the GA package 

in the R statistical software [14]. 

 

3.2.1. Environment representation 

To implement genetic algorithms, a search space (solution space) is needed and must be encoded in bit strings 

when a binary GA is used. The search space for powers is our extended set  
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𝑃 = {𝑁𝐴, −3, −2.5, −2, −1.5, −1, −0.5, −0.25, 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3}, where 𝑁𝐴 represents non-power 

selection. The set 𝑃 has 16 powers in total, therefore it requires a 4-bit string to be represented. A one to one 

correspondence function gafpEncoding is created to link the set of powers 𝑃 to the integer set (from 0 to 15) using 

the Gray code representation of those integers [15]. 

For variable representation, two powers are used since the most complex permitted fractional polynomial function 

is of second degree 𝑚 = 2. This is the default in mfp package [16]. Therefore, a continuous variable will be 

represented by the 8-bit string. A categorical variable will be represented by 1 if it is selected in the model and by 0 

otherwise. 

 

3.2.2. Chromosome representation and initialization 

In the multivariable model building, a model is a combination of variables (either continuous or categorical). 

Several models are possible and they are considered as chromosomes (encoded solutions) in this task. Since GAs 

generate a random population of chromosomes, we need to represent them the inadequate way. Suppose that our 

model is composed of two continuous variables with powers (NA, 3) and (1, 2); and one categorical variable. In this 

case, the model (chromosome) representation is given by the following (2 × 8) + 1 = 17 bit string:  

0000   1000   1110   1011   1. 

Recall that for generating the initial population, the function gabin_Population in the GA package is used to 

generate a random population with specified size and length. 

 

3.2.3. Fitness function 

The main objective of GAs is to find an optimal or near-optimal solution to an optimization problem. GAs search 

for candidates that have a good performance which is measured in terms of the fitness function. The goal is to choose 

a model that has a small Bayesian Information Criterion value (BIC). This criterion is preferred over Akaike's 

Information Criterion (AIC) since it penalizes more the number of parameter and yields more parsimonious, 

interpretable and generalizable models [17]. 

We create the function gafpFitness (string, X, y, family) to be maximized, and the function gafpPowers (string, 

x) to decode the solution string provided by the function gafpFitness (string, X, y, family). 

 

3.2.4. Genetic operators 

In GAs search, genetic operators are used to direct the algorithm towards an optimal solution for a problem. They 

are applied to a previous generation to generate a new one. For our problem at hand, we choose genetic operators 

that are efficient and decrease the computational time. 

• Selection: Once an initial population is generated, candidates are evaluated according to their fitness value. The 

selection operator is a criterion based on fitness value. Individuals with higher fitness value have a chance to 

reproduce and undergo crossover and mutation. Several selection methods were proposed such as roulette 

Wheel Selection, tournament Selection, Rank Selection, Stochastic Selection and Elitism Selection. In this 

study, we use the binary tournament selection presented by [18]. The tournament selection is preferred over 

other fitness proportionate selection for several reasons such as lack of stochastic noise [19], parallelization and 

efficiency in coding [20]. 

• Crossover: The crossover operator or recombination is usually the primary operator with mutation serving only 

as a mechanism to introduce diversity in the population. It is applied to a pair of selected individuals with 

probability 𝑃𝑐 . Parents exchange their genetic information to produce offspring. Crossover methods are: Single 

Point Crossover, Two Points Crossover, Multipoint Crossover, Uniform Crossover, and Arithmetic Crossover. 

For this study, we use uniform crossover as it doesn’t exhibit positional bias caused by dividing the parent 

chromosome into segments for recombination, which is the case for N-point crossover operators, see [21]. 

Figure 2 shows an example of a uniform crossover. 
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Figure 2. Uniform crossover. The chromosome with 8-bit strings 

If the bit in crossover mask is 1, then the corresponding gene is copied from the first parent and if the bit in 

crossover mask is 0, then the corresponding gene is copied from the second parent. A new crossover mask is 

generated randomly for each pair of parent chromosomes. Since the quantity of crossover point is not fixed, the 

offspring have a mixture of genes from both parents. 

• Mutation: Mutation introduces new genetic material into the population. It increases diversity in the population 

to prevent premature convergence. The mutation changes one or more randomly selected genes of a 

chromosome from its initial state. It happens during evolution according to a user-defined mutation probability. 

This probability should be small otherwise, the search will turn into a primitive random search. Figure 3 shows 

a mutation of an eight-bit chromosome. Two genes, the first and the fifth altered their value after mutation 

operation. 

 

Figure 3. Mutation of a chromosome 

3.2.5. Genetic algorithms parameters 

As mentioned before, one of the main disadvantages of GAs is that they use several parameters for the search. 

These parameters can affect strongly the GAs results when badly set. Good settings of these parameters allow GAs 

to find better solutions in a reasonable computational time. The “No Free Lunch Theorem” states that there is no 

optimal parameter configuration for all problem, hence most of GA parameters depend on the problem at hand. 

Throughout this study, the parameters set used for the execution of our genetic algorithms are results of an empirical 

test and the optimal configuration is: population size (100), selection operator (tournament selection), crossover rate 

(0.8), crossover operator (uniform), mutation rate (0.15), mutation operator (random mutation) and maximum number 

of iterations (2000). 

 

4. Simulation Studies  

In this section, we perform some simulations to compare the two algorithms MFP and GAFP and examine their 

performance in building a multivariable model when non-linear relationships exist between the response and 

predictors. Weaknesses of both algorithms will be presented. To perform the MFP algorithm, we use the mfp function 

contained in the mfp package with current defaults: 𝐹𝑃2 as the most permitted complex functions, i.e. 𝑚 = 2 or 𝑑𝑓 =
4  and 𝛼1 = 𝛼2 = 0.05. As for the GAFP algorithm, the parameter settings presented above will be used. 

For illustration reason, we perform simulations based on a Gaussian model using artificial data as described in [3] 

and [4]. The training data is generated as follows: 

𝑦 = 10 sin(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5 + 𝜀,  

where the five continuous predictors come from a uniform distribution with zero mean and unit standard deviation; 

the error term is generated from a normal distribution with mean zero and standard deviation 𝑠. We consider different 

scenarios based on sample size 𝑛 = {20,200,2000} and error standard deviation 𝑠 = {1,5,10}. 
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The test data is also generated in the same way as training. It is clear that the response variable 𝑦 is related to the 

five predictors. Three of them 𝑥1, 𝑥2 and 𝑥3 are not linearly related to the response whereas the remaining predictors 

𝑥4  and 𝑥5 are linearly related to the response. To build a model, we use an extra variable 𝑥6, not related to 𝑦 and 

having the same uniform distribution as the other five predictors in order to check in which situations both algorithms 

are likely to select relevant predictors with their functional form. To compare both algorithms, several statistic 

measures such as R-squared, BIC and the root mean square error (RMSE) for training and test data are computed. 

The number 𝑘 of selected predictors is also given. The results are summarized in Table 2. 

Simulation results for both algorithms are shown through different statistic measures. For a small sample, i.e 𝑛 =
20, both algorithms select the wrong number of variables and are prone to overfitting. The results are good for 

training data and are bad for the test data. When the sample size is small, whatever the noise (error standard deviation), 

both algorithms perform badly and the bias selection is very large. 

Table 2. Simulation results for artificial dataset. 

  MFP Algorithm GAFP Algorithm 

n s k BIC Tr R-

squared 

Tst R-

squared 

Tr 

RMSE 

Tst 

RMSE 

k BIC Tr R-

squared 

Tst R-

squared 

Tr 

RMSE 

Tst 

RMSE 

 1 3 99.0138 0.8088 0.502 2.0576 3.5931 6 67.3203 0.9888 0.3 0.3917 21.0833 

20 5 0 133.6692 0.1605 0.0992 6.2248 7.2495 6 112.8234 0.8218 0.135 2.0485 1542.6837 

 10 0 152.5553 0.1091 0.031 9.8222 11.6183 3 151.0988 0.616 0.0789 5.6506 360.5105 

 1 5 829.6418 0.8988 0.8278 1.5835 2.1363 5 828.1294 0.898 0.834 1.5901 2.0936 

200 5 5 1267.465 0.4696 0.3979 5.0026 5.4175 4 1262.2609 0.457 0.3808 5.0598 5.4946 

 10 3 1517.9587 0.1668 0.0949 10.0226 15.7197 3 1513.6196 0.149 0.0889 10.1293 11.9796 

 1 5 7849.1089 0.8881 0.8859 1.6736 1.6862 5 7856.2582 0.8885 0.8863 1.6709 1.683 

2000 5 5 12351.233 0.4511 0.4398 5.1535 5.2083 5 12348.178 0.4507 0.439 5.1555 5.2119 

 10 5 14987.822 0.186 0.1755 9.9929 10.1534 5 14980.73 0.1823 0.1711 10.0152 10.1807 

When the medium sample size is used, i.e. 𝑛 = 200, both algorithms select the right number of relevant predictors 

and perform well when noise is small, i.e. 𝑠 = 1. However, as long as the sample becomes noisy, i.e. 𝑠 = {5,10}, 
they select wrong predictors and fail to perform correctly. When the sample size is sufficiently large, i.e. 𝑛 = 2000, 

both algorithms select exactly the true number of relevant predictors with their true functional forms and perform 

well even though the sample is very noisy. Values reported in Table 2 are the averaged values from the 100 

simulations. 

As a conclusion, both algorithms MFP and GAFP produce interpretable and transportable models when the sample 

has an adequate size and the noise is small. Recall that here the sample size may be small or large according to the 

total number of predictors used to fit the model. One cannot expect to obtain reliable and stable models when several 

predictors are used to model a response variable with a small sample size. For practical use, [6] suggested the sample 

size recommendation based on the event- per-variable (EPV) relationship. It consists of using at least 10 observations 

(events) per model parameter. 

 

5. Application to Diabetes Data 

This data set contains measures on 442 diabetes patients and is described in [5] who analysed it to determine the 

prediction model for the response variable. Ten baseline variables, age, sex, body mass index (BMI), average blood 

pressure (BP) and six blood serum measurements (S1, S2, S3, S4, S5, S6) were obtained for each of 𝑛 =  442 diabetes 

patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline. The 

aim was to find a parsimonious model that provides accurate predictions of response for future patients.  

In this section, we carry out model selection using both algorithms MFP and GAFP on the Diabetes data and 

compare the results of both algorithms with the full linear model. First, we load the Diabetes data by the following 

commands:  

> Diabetes = read.table("http://www.stanford.edu/~hastie/Papers/LARS/diabetes.data", 

header = TRUE) 

> Diabetes$SEX<-factor(Diabetes$SEX) 

R codes and results for the three models are given below by 
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Full linear model 

> modlin = glm(Y~AGE+SEX+BMI+BP+S1+S2+S3+S4+S5+S6,data=Diabetes, 

                             family = gaussian(link="identity")) 

Model from MFP algorithm 

> require(mfp) 
> modfp=mfp(Y~SEX+fp(AGE,select = 0.05)+ fp(BMI,select = 0.05)+ 

                  fp(BP,select = 0.05)+ fp(S1,select = 0.05)+ 

                  fp(S2,select = 0.05)+ fp(S3,select = 0.05)+ 

                  fp(S4,select = 0.05)+ fp(S5,select = 0.05)+  
                  fp(S6,select = 0.05), data=Diabetes, 

                  family= gaussian(link="identity") 

> modfp$powers 

       power1 power2 
BMI       1     NA 

BP        1     NA 

S5        1     NA 

SEX2      1     NA 
S1        1     NA 

S2        1     NA 

S4       NA     NA 

S6        1      2 
S3       NA     NA 

AGE      NA     NA 

Model from GAFP algorithm 

> require(GA) 

> y = Diabetes$Y 

> X = Diabetes[,-11] 
> require(memoise) 

> gafpFitness = memoise(gafpFitness) 

> GA = ga(type = "binary", nBits = gafpNumBits(X), fitness = gafpFitness, x = X, y = y, 

       family = gaussian(link="identity"), pmutation = 0.15, pcrossover =0.8, 
       popSize = 100, parallel = TRUE, maxiter = 2000, run = 100, seed = 63) 

> pwrs = gafpPowers(GA@solution[1,],X) 

> print(pwrs) 

       power1 power2 
AGE       NA   NA 

SEX        1   NA 

BMI       NA    1 

BP         1   NA 

S1        NA   NA 

S2        NA   NA 

S3        NA    1 

S4        NA   NA 
S5        NA    1 

S6        NA   NA 

> modga = glm(Y ~ SEX + fpoly(BMI,1)+ fpoly(BP,1)+ fpoly(S3,1)+ fpoly(S5,1), 

                      family = gaussian(link = "identity"), data = Diabetes) 

In the full linear model with all predictors, only four predictors SEX, BMI, BP, and S5 are statistically significant 

at 𝛼 = 0.05. Other predictors in the model are redundant. MFP algorithm selected seven variables with eight 

parameters in total. The predictor S6 has been selected with an 𝐹𝑃2 function which is not reasonable to have two 

terms for this variable. Moreover, the two terms for this predictor only have medium effect whereas other predictors 

selected by MFP algorithm have a strong effect on the response. GAFP algorithm which is carried out by minimizing 

the BIC that penalizes more parameters in the model, selected only five predictors SEX, BMI, BP, S3, and S5. Remark 

that all the five predictors have a very strong effect (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) on the response 𝑌. Different statistic 

measures for the three models are presented in Table 3. 

Both algorithms provide models with a small number of parameters than the full linear model and perform as good 

as the full linear model in terms of goodness of fit and the predictive performance. GAFP algorithm seems to yield 

more parsimonious, interpretable, and generalizable models having approximately the same statistic measures as the 

model from MFP and the full linear model. 
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Table 3. Diabetes data. Statistic measures and selected variables for the three models 

Models Parameters in the model BIC R-Squared RMSE 10-Fold Cross-validation based on RMSE 

Full linear 10 4845.08 0.520 54.15 54.61472 

From MFP 8 4831.62 0.520 53.58 53.91447 

From GAFP 5 4816.81 0.519 54.35 54.51445 

 

6. Summary and Future Work 

In this paper, Genetic algorithms were applied to Fractional polynomials for selecting powers in an extended set 

in order to build multivariable models. The proposed approach, referred to as the GAFP algorithm, selects models 

by minimizing the BIC, whereas the MFP algorithm selects models by using multiple Likelihood Ratio Tests with 

some pre-defined significance levels. Both models provide reasonable results when the sample size is large enough 

with a less noisy dataset. Through an application to diabetes data, both models outperformed the linear model which 

was taken as the baseline model. GAFP algorithm seemed to provide a model that is as parsimonious, interpretable 

and transportable as MFP model. However, both models are shown to perform very bad when the sample is noisy 

and small. For practical use, a good recommendation will be to consider at least 10 observations per estimated 

parameter. For future work, we let for interested readers the issue of performing both algorithms by incorporating 

model uncertainty and shrinkage to reduce selection bias or to combine the genetic algorithms with the imputed MFP 

developed by [22] in order to handle covariates with missing values, often presented in datasets in which MFP models 

are applied. Another useful recommendation in order to reduce the computational time is to use either the Hybrid 

Genetic Algorithms (HGAs) [23] which incorporates efficient local search algorithms into GAs to speed up the 

convergence to global optimum, or  GAs evolving using an Island evolution approach [23]. Here the population is 

partitioned in a set of sub-populations (islands) in which isolated GAs are executed on separated processor runs. 

Occasionally, some individuals from an island migrate to another island, thus allowing sub-populations to share 

genetic material. 
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