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Educational data mining, programming language has become a popular environment for data mining
rattle, due to its availability and flexibility. The rattle package in R contains a set

of functions to implement data mining with a graphical user interface. This
study demonstrates three widely used data mining algorithms (classification
and regression tree, random forest, and support vector machine) in EDM
Support vector machines using real data from the 2015 administration of the Programme for
International Student Assessment (PISA). First, a brief introduction to EDM
is provided along with the description of the selected data mining
algorithms. Then, how to perform data mining analysis using the rattle’s
graphical user interface is demonstrated. The study concludes by comparing
the results of the selected data mining algorithms and highlighting how
those algorithms can be utilized in the context of educational research.
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1. INTRODUCTION

As an interdisciplinary field, educational data mining (EDM) refers to the development and use
of advanced statistical methods to explore and identify patterns and relationships in data derived
from educational settings. EDM aims to implement advanced machine learning and data mining
algorithms (1) to exploit unprocessed data from educational settings (e.g., large-scale
assessments, records of students’ academic progress in school, and log data from e-learning
systems), (2) to discover relations, patterns, and trends in education, and (3) to use the
discovered information in order guide and improve the decision-making process in educational
practices. The increasing availability and popularity of big data in education has created new
pathways for educational researchers who are interested in applying EDM methods to find
solutions for various problems in education — such as enhancing the quality of online learning
environments (Ducange, Pecori, Sarti, & Vecchio, 2016), early prediction of student dropouts
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(Aulck, Velagapudi, Blumenstock, & West, 2016), and forecasting students’ academic
performance and identifying students who might be at risk of academic failure (Hussain, Zhu,
Zhang, Abidi, & Ali, 2019).

Educational researchers who intend to use the EDM methods typically follow a deductive
reasoning approach in which they first collect or get access to large volumes of data, explore
the data visually and statistically, and then do further investigations in order to discover hidden
patterns and relationships in the data. Unlike theory-driven educational research that usually
aims to obtain evidence supporting a priori hypothesis, the primary goal of a typical EDM
process is to find and extract new knowledge from the data without a particular priori hypothesis
and to use the discovered information for the purpose of building new theory, if possible. In the
context of EDM, educational researchers’ interests are mainly focused on several dimensions,
such as learning, predictive, behavioral, and visual analytics (Aldowah, Al-Samarraie, & Fauzy,
2019). Recent systematic review studies have also highlighted a vast and growing body of
research on EDM and its applications in various areas of education (e.g., Aldowah et al., 2019;
Baker, Martin, & Rossi, 2017; Dutt, Ismail, & Herawan, 2016; Pefia-Ayala, 2014). The findings
of these review studies reveal that educational researchers will continue to harness the power
of EDM for solving complex problems in education with the availability of big data in
education.

From the methodological point of view, EDM methods are the same as the data mining methods
utilized in other scientific fields (e.g., business, finance, medicine, and agriculture). The current
data mining methods can be categorized into two main types according to the availability of a
target (i.e., dependent) variable in the data: supervised (also known as predictive) and
unsupervised (also known as descriptive). Supervised data mining methods are appropriate
when the researcher wants to predict a specific target variable that is already available in the
data. Typical examples of supervised data mining applications include regression and
classification tasks where the researcher wants to predict either a categorical (classification) or
continuous (regression) variable using a set of predictors (i.e., features) available in the data.
Unsupervised data mining methods are appropriate when the goal is to find hidden structures
or relations in the data instead of predicting a target variable. Common examples of
unsupervised data mining applications include clustering, association rule mining, and
dimensionality reduction. A detailed review of data mining methods commonly used in
educational research can be found in Aldowah et al. (2019) and Pefia-Ayala (2014).

In education, researchers and practitioners are often interested in research problems in which
the primary goal is the prediction of an outcome (i.e., dependent) variable from a set of
predictors (Berland, Baker, & Blikstein, 2014; Sinharay, 2016). Therefore, EDM applications
mostly involve supervised data mining methods, instead of unsupervised data mining methods.
Previous research indicated that the supervised data mining methods often provide higher
prediction accuracy than traditional methods, such as multiple linear and logistic regression
(e.g., Fernandez-Delgado, Cernadas, Barro, & Amorim, 2014; Koon & Petscher, 2015, 2016;
Spikol, Ruffaldi, Dabisias, & Cukurova, 2018). This study focuses on three data mining
algorithms that can be used for both classification and regression problems: classification and
regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), random forest (RF;
Breiman, 2001), and support vector machines (SVM; Cortes & Vapnik, 1995). These
algorithms have been widely used in previous EDM research due to their relatively lower
complexity and ease of implementation and interpretation (e.g., Guruler, Istanbullu, &
Karahasan, 2010; Ivancevic, Celikovic, & Lukovic, 2011; Mccuaig & Baldwin, 2012; Pardos,
Wang, & Trivedi, 2012).

The CART algorithm relies on stratifying a large dataset into a number of smaller subsets in
which separate regression models can be built for either continuous or categorical outcome
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variables. Then, the model provides a set of classification or regression rules in a decision tree
based on the nodes generated from the utilized predictors (Agarwal, Pandey, & Tiwari, 2012).
As a nonparametric approach, CART does not make explicit assumptions about the
distributions of variables, and thus it can produce relatively more accurate predictions (e.g.,
Strobl, 2013). The RF algorithm is similar to the CART algorithm in terms of relying on a
regression or classification tree model for prediction. However, unlike CART, the RF algorithm
generates many decision trees and combines all of them for making a final prediction (Breiman,
2001). Therefore, the RF algorithm can overcome many estimation issues (e.g., instability, high
bias, and under-representation of classifications) in the CART algorithm because predictions
are made based on the combination of many tree models that are generated differently using
bootstrap samples, instead of a single decision tree model based on the entire sample (Sinharay,
2016; Williams, 2011). Differently from the previous two algorithms, the SVM algorithm relies
on creating a separating hyperplane in an N-dimensional prediction space where N refers to the
number of available predictors in the data. A hyperplane can be considered as a decision
boundary that helps separate or classify the data points. If the outcome variable is categorical,
then the hyperplane aims to create classes having the maximum distance between each other
(Williams, 2011). If, however, the outcome variable is continuous, then the hyperplane creates
a regression line (or plane) that can minimize the difference between the predicted and original
values of the outcome variable.

Currently, there are many software programs that are capable of implementing the data mining
algorithms mentioned above — such as RapidMiner, Weka, KEEL, KNIME, Orange, Python,
R, and IBM SPSS Modeler (see Slater, Joksimovi¢, Kovanovic, Baker, and Gasevic [2017] for
a detailed review). Some of these programs (e.g., RapidMiner, Weka, and IBM SPSS Modeler)
provide a graphical user interface (GUI) for users to easily select an algorithm along with the
type of data mining analysis that they want to perform. Compared to these software programs,
advanced programming languages such as Python and R (R Core Team, 2019) can provide
users with more sophisticated tools to explore, organize, visualize, and model the data within
the same computing environment. However, the amount of time that it takes to learn a new
programming language and to achieve expertise in it can be very long for novice users who do
not have any previous experience in programming. An exception in this situation is the rattle
package (Williams, 2011) that provides a user-friendly GUI to perform data mining analysis
within the R statistical computing environment (R Core Team, 2019). The rattle package can
perform data mining analysis using a variety of advanced algorithms. The purpose of this study
is to demonstrate how to use the rattle package for performing data mining analysis. Using a
real dataset from a large-scale international assessment, the implementation of the CART, RF,
and SVM algorithms using the rattle package is demonstrated. The steps for building and
evaluating a predictive model in the rattle are also described in detail.

2. METHOD
2.1. Study Group

The sample of this study comes from the 2015 administration of the Organisation for Economic
Co-operation and Development’s (OECD) Programme for International Student Assessment
(PISA). PISA is a large-scale, international assessment program that assesses the extent to
which 15-year-old students have acquired adequate competency in various subject areas such
as reading, mathematics, and science (OECD, 2018). The 2015 administration of PISA involved
approximately 540,000 15-year-old students from 72 participating countries and economies.
The sample of this study consists of 5896 students (49.83 % female) who participated in PISA
2015 from Turkey. This study uses the PISA dataset for the demonstration of the rattle package
because the  dataset is  publicly available through the OECD  website
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(http://www.oecd.org/pisa/) and it consists of many categorical and continuous variables from
students and schools — which creates a large-size database suitable for an EDM research study.

2.2. Measures
2.2.1. Scientific Literacy Test in PISA 2015

The primary focus of PISA 2015 was to assess students’ scientific literacy as well as their
attitudes and preferences regarding learning experiences in science. The results of PISA 2015
suggest that there is a large variation in students’ competency levels in science and that this
variation can be explained by many factors, such as demographic variables, socioeconomic
status, students’ participation in science-related activities, and the opportunity to learn science
at school (Mostafa, Echazarra & Guillou, 2018; OECD, 2018). In this study, students’
performance levels in scientific literacy were obtained from the PISA 2015 Scientific Literacy
Test. The scientific literacy test was designed to assess three major competencies: explaining
phenomena scientifically, evaluating and designing scientific inquiry, and interpreting data and
evidence scientifically (OECD, 2017). Moreover, 36% of the items in the test were in physical,
36% in living, 28% in earth and space context. Students’ scores obtained from the test were
scaled with a mean of 500 and a standard deviation of 100. The average scientific literacy score
in PISA 2015 was 493 across all participating countries. Using this score as a cutoff value, a
categorical variable (science perf) was created. For students whose scores were equal or higher
than 493, science perf was labeled as “High”. If, however, students’ scores were less than 493,
then the label of “Low” was assigned to science perf. The resulting categorical variable was
used as the outcome variable in the data mining analysis.

2.2.2. The student questionnaire

The other variables regarding students (i.e., predictors) were obtained from the student
questionnaire of PISA 2015. Table 1 shows the complete list of the variables used in this study.

Table 1. The list of the variables used in this study

Variable Data type Description

gender Categorical Female=1, Male=0

computer Categorical Owning a computer at home; Yes=1, No=0
software Categorical Owning software at home; Yes=1, No=0

internet Categorical Owning internet at home; Yes=1, No=0

desk Categorical Owning a desk at home; Yes=1, No=0

own.room Categorical Owning a room at home; Yes=1, No=0
quiet.study Categorical Owning a quiet study area at home; Yes=1, No=0
ANXTEST Numeric Test anxiety

COOPERATE Numeric Enjoying cooperation

EMOSUPS Numeric Parents emotional support

PARED Numeric Highest education of parents in years

TMINS Numeric Learning time in total

ESCS Numeric Index of economic, social and cultural status
TEACHSUP Numeric Teacher support in a science class

TDTEACH Numeric Teacher-directed science instruction

IBTEACH Numeric Inquiry-based science teaching and learning practices
SCIEEFF Numeric Science self-efficacy

science perf Categorical If science scores >= 493, High; Low otherwise
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2.3. Procedure

To use the rattle package, readers first need to download and install the R software program
into their computers. Readers who have no experience regarding downloading, installing, and
using R are recommended to check the program manual on the CRAN website (https://cran.r-
project.org/doc/manuals/r-release/R-intro.pdf) prepared by Venables, Smith, and the R Core
Team (2019). The rattle package contains a set of functions to implement data mining with a
GUIL The latest installation instructions can be found at http://rattle.togaware.com. In this study,
Rattle version 5.2.0 was used for data mining analysis. To download and install the rattle
(Williams, 2011) and its required extension RGtk2 (Lawrence & Lang, 2010), the following
codes must be executed in the R console (note that this step requires Internet connection):

#Installing the packages
install.packages("'rattle"
install.packages("RGtk2")

Once the packages have been installed successfully, both packages must be activated using the
library command in R:

#Activating the packages
library("rattle")
library("RGtk2")

The next step is to the rattle command, which will open the rattle GUI as demonstrated in
Figure 1.

#Opening the rattle GUI
rattle()

The rattle GUI can read several data formats, such as text files with .txt, .dat, or .csv extensions,
RData files, and Open Database Connectivity (ODBC) files. This study uses “pisa_turkey.csv”,
which consists of the variables listed in Table 1. To open the pisa_turkey.csv in the rattle, the
first step is to click “Filename” under the “Data” tab and look for the data file in the computer.
Once the data file is found, the “Open” and “Execute” buttons should be clicked, respectively.
This process will open the pisa_turkey.csv file in the ratt/e and load the dataset into the program
(see Figure 2). For other types of data formats, the same procedure can be followed by selecting
a specific file format available under “Source”. Once a dataset is properly read and loaded into
the rattle, a summary screen of the dataset becomes available (see Figure 3). The summary
menu shows all the variables in the dataset, types of variables (numeric or categorical), and the
role of the variables (e.g., input, target, and identity). Furthermore, the “Comment” column in
the summary screen can help users identify potential issues in the variables (e.g., extreme
missingness). Using the summary menu, users can change the default preferences regarding the
variables. For example, the outcome variable must be labeled as “Target” so that this variable
can be used as the outcome variable in the modeling stage. If the user wants to exclude some
variables from the dataset, these variables should be labeled as “Ignore”. Note that changes
made on the summary screen will be saved only after the user clicks the “Execute” button.
Otherwise, changes made on the variables will be lost.
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Project Tools Settings Help 0 Rattle Version 5.2.0 togaware.com
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Welcome to Rattle (rattle.togaware.com) .

Rattle is a free graphical user interface for Data Science, developed using R. R is a free
software environment for statistical computing, graphics, machine learning and artificial
intelligence. Together Rattle and R provide a sophisticated enviromnment for data science,
statistical analyses, and data visualisation.

See the Help menu for extensive sppport in using Rattle. The two books Data Mining with
Rattle and R (https://bit.ly/rattle data_mining) and The Essentials of Data Science
(https:.-"fbir:.lyfessentials_data_science} are available from BAmazon. The Togaware Desktop
Data Mining Surviwval Guide includes Rattle documentation and is available from
datamining.togaware.com

Figure 1. The graphical user interface (GUI) of the rattle
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Figure 2. Loading the data
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Figure 3. The view of the “pisa_turkey.csv” dataset

3. RESULTS/FINDINGS

This section demonstrates how to implement the CART, RF, and SVM algorithms for the
prediction of students’ proficiency status in the scientific literacy test. For each algorithm, the
rattle will require users to download and install the required packages for the first-time
implementation. Therefore, users should accept and install the suggested packages if the rattle
shows any warning messages about downloading and installing such packages. By default, the
rattle should be able to recognize “science perf” as the target variable. However, if this is not
the case, it must be specified as “Target” under the Data option before running the subsequent
analyses (see Figure 3). Once the “Partition” option is checked, the rattle splits the dataset into
three parts: training dataset (70% of the dataset), test dataset (15% of the dataset), and the
validation dataset (the remaining 15% of the dataset). These partitions are created using random
sampling based on the seed value (default =42) under the Data tab. Using the same seed ensures
that the user can get the same randomly drawn training, test, and validation datasets every time
the rattle is used for the same dataset. The training dataset is used for model building and the
other two datasets are used for evaluating the accuracy of predictions made from the model.
Alternatively, two datasets (e.g., training with 70% and validation with 30%) can be created by
typing 70/30 inside the “Partition” box.
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3.1. Classification and regression trees (CART)

The first two steps to build a decision tree using the CART approach are to switch to the
“Model” tab in the rattle and to select the “Tree” option (see Figure 4). Then, the third step is
to set the model parameters. “Min Split” is the minimum number of observations that must exist
in a node (default = 20); “Min Bucket” is the minimum number of observations in any terminal
node (default is Min Split/3); “Max Depth” is the maximum depth of any node of the final tree
(default = 3); and “Complexity” is the complexity parameter to prune the subtrees that do not
improve the overall model fit (default = 0.01). If this parameter is set to zero, then the CART
algorithm keeps all the estimated nodes and typically creates a highly complex model that might
be hard to interpret. However, a large value for the complexity parameter might also be
detrimental to the model because it would remove many useful nodes from the model and leave
a simple model with a very low predictive accuracy. Therefore, users are recommended to build
several models by tuning the model parameters based on resulting model evaluation indices
(e.g., accuracy, sensitivity, and recall). The fourth step is to click on the “Execute” button —
which runs the CART algorithm based on the requested settings. The CART algorithm uses all
the variables selected as “input” under the Data tab to predict the target variable (science perf).
Once the estimation is complete, the results can be printed on the screen by clicking on the
“Rules” button. Furthermore, visualizations can be drawn for the final decision tree model by
clicking the “Draw” button. Figure 4 illustrates the steps to be followed to implement the CART
approach and the output returned from the rattle.

G5 R Data Miner - [Rattle (pisa_turkey.csv)] =2 O *

Project Tools Settings Help @ Rattle Version 5.2.0 togoware.com
[Pl D B @ | < © 4

Execute MNew Open Save | Export | ] Stop Quit

Datz Explore Test Transform Cluster AsscrciatEEl.raluatE Log

T}rge Forest () Boost () SVM () Linear () Neural Met Survival O All

Target: science_pedf  Algorithr:  ®) Traditional (O Conditional Model Builder: rpart

Min Split: 20 : Max Depth: 3 =N Priors: [ Include Missing

Min Bucket: 7 z Complexity: 0.0100 =N Loss Matrix: . 5 6

Summary of the Decision Tree model for Classification (built using 'rpart'):

n= 412&

node), split, n, loss, yval, |(vprob)
¥ denotes terminal node

1) root 4126 748 Low (0.13128%4 0.8187106)
2) ES5C5>=-0.5027 506 309 Low (0.34105%& 0.6539404)
4) THMINS«< 1660 &86 277 Low (0.4037501 0.556205%9)
8) TMINS5>=1545 508 244 Low (0.4803150 0.5196850)
16) ES5C5»=0.33085 213 82 High (0.6150235 0.38457&5)
17) E5C5«< 0.33085 285 113 Low (0.3830508 0.61659492)
34) IBTEACH< 1.086%%9 231 103 Low (0.4458874 0.5541126)
68) TDIEACH>=0.4546 41 13 High (0.6325268 0.3170732)
69) TDIEACH< 0.4546 1839 75 Low (D.35%68254 0.6031746)
353) IBTEACH>=1.06%8% 45 & Low (0.1777778 0.8222222)
) TMINS< 1545 178 33 Low (0D.1853933 0.8146087)
3) TMINS»>=1660 16% 25 Low (0.14752%0 0.85320710)
3) E5C5«< -0.5027 3186 439 Low (0.13735%2 0.3626408)

Figure 4. Building a predictive model with the CART algorithm
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The output returned from the CART model shows the rules that were used to create the nodes
in the decision tree. The output shows the decision nodes and the terminal nodes that were
specified with *. For example, a decision node was created based on ESCS (index of economic,
social and cultural status) at the beginning of the tree. Based on whether students’ ESCS index
values were equal or larger than -0.5027, two branches were created in the decision tree model.
Then, the group of students who meet the ESCS condition is split into two additional branches
depending on whether their total learning time (TMINS) is less than 1660 minutes. The
remaining nodes can be interpreted in a similar manner. A relatively easier way to see all the
nodes in the model is to draw a decision tree plot. The “Draw” option under the Model tab
generates a decision tree plot based on the nodes summarized in the output. Figure 5 shows the
decision tree plot returned from the rattle for the prediction of the proficiency status in scientific
literacy (i.e., science_perf).

Decision Tree pisa_turkey.csv $ science_perf .

Low
.18 82
100%

................ jes | ESCS >= 0.5 [m0 ) o

Low
34 66
22%
............................. TMINS € 1BB0 v over oo
Low
40 60
17%
................................. TMING Se BB st o ety
Low
48 52
12%
.......................... ESCSE D= 0,33 -+ vorroeoernrones
Low
.38 62
7%
IBTEACH < 1.1

Low

45 55
6% é é : :
-~ TDTEACH >= 0.45

[1e] [e:] [e3] [5] [5]
High High Low Low Low Low Low
62 38 68 32 40 60 18 82 19 81 15 85 14 86
5% 1% 5% 1% 4% 4% 7%

Figure 5. The decision tree plot for the prediction of science_perf

In Figure 5, the categories of science perf are color-coded where the blue color boxes represent
the “Low” category and the green color boxes represent the “High” category. Within each box,
the two values in the middle represent the probabilities of the first and second categories. For
example, the first terminal node on the right-hand side of the plot shows that students who have
ESCS index values smaller than -0.5 have the probabilities of 14% of being in the “Low”
category and 86% of being in the “High” category. The number at the bottom of each box
represents the percentage of observations in the node. Focusing on the same blue box from the
previous example, 77% of the students in the training dataset fall into the node where ESCS is
smaller than -0.5. Figure 5 also shows that only four of the input variables (ESCS, IBTEACH,
TDTEACH, and TMINS) were used as the predictors. This is because the CART algorithm
keeps the predictors that can significantly contribute to the prediction, depending on the selected
model parameters (e.g., complexity, min split, and max depth).
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3.2. Random forest (RF)

To implement the RF algorithm for the same classification task (i.e., predicting science perf)
in the rattle, the “Forest” option must be selected under the “Model” tab. Then, the model
parameters need to be determined. “Trees” refer to the numbers of decision (or regression) trees
to be built (default = 500); “Variables” is the number of predictors randomly sampled as
candidates at each split (default = square root of the number of predictors for classification and
the number of predictors / 3 for regression); and “Sample Size” is the sizes of sample to draw
(default = 0.632 * the number of observations in the training dataset). Once the model
parameters are determined, the next step is to click on the “Execute” button to perform the
analysis. Like the CART algorithm, the RF algorithm also uses all of the input variables to
predict the target variable (science perf). Once the estimation is complete, the results can be
printed on the screen by clicking the “Rules” and “Importance” buttons. Figure 6 shows the
steps to be followed to implement the RF algorithm and to view the output in the rattle.

@5 R Data Miner - [Rattle (pisa_turkey.csv]] = O >
Project Tools Settings  Help 3.,_5 Rattle Version 5.2.0 togaware.com
3 = B !
I & O B ® | @ 4

Execute Mew Open Save Export 1 Stop Quit

Date Explore Test Transform Cluster Associate Evaluate Log
Type: 5 Treze () Boost () SVM () Linear () Meural Met Survival () All

Target: science_perf  Algorithm: @ Traditional ) Conditional Model Builder: randomForest
Trees: 500 : Sample Size: 4 Impeortance Rules 1 :
Variables: |4 &z Impute 00B ROC

Summary of the Random Forest Model

Numker of observations used to build the model: 4126
Missing value imputation is actiwve.

Call:
randomForest (formula = science perf ~ .,
data = crsfdataset[crsftrain, c(crsfinput, crsStarget)],
ntree = 500, mtry = 4, importance = TBUE, replace = FALSE, na.action = rando

est: classification
s: 500
Ho. of wariables tried at each spliN, 4

Type of random

OCOB estimate of error rate: 16.67%
Confusion matrix:
High Low class.error
High 146 €02 0.80481283
Low 86 3292 0.02545885

Figure 6. Building a predictive model with the RF algorithm

The output returned from the RF algorithm shows the number of observations used for building
the model, the formula used to build the predictive model, and the selected model parameters.
The output also shows additional information, such as the out-of-bag (OOB) estimate of the
error rate and the confusion matrix. OBB is a method of measuring the prediction error of a
predictive model estimated with the RF algorithm. In this example, the OOB estimate of error
rate is 16.67 %, suggesting that 83.33 % of the predictions made for science perf is correct
within the training dataset. Additionally, the visual output returned from the “Importance” and
“Errors” indicates the importance of the predictors in the prediction process (Figure 7) and error
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rates across all of the decision trees built for the model (Figure 8). Based on the variable
importance measures shown in Figure 7, ESCS, IBTEACH, TMINS, and computer appear to
be the strongest predictors in the estimated model since they have higher importance values,
compared to the other variables. Although there is no particular cut-off value to determine
which predictors are more important, the predictive power of these variables appears to be
relatively higher than the other variables (see the “High” category of the top-left corner of
Figure 7). The findings also suggest that the model error rates did not change after 100 trees.
That is, the same model could be estimated with only 100 trees to obtain the final model more
efficiently.
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Figure 7. A plot of variable importance for the RF algorithm
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Figure 8. A plot of error rates for the RF algorithm
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3.3. Support vector machine (SVM)

To implement the SVM algorithm for predicting science perf, the “SVM” option must be
selected under the “Model” tab. Unlike the CART and RF algorithms, there are not many model
parameters to choose for the SVM algorithm. Instead, the most important decision that users
must make is the selection of a kernel function. The default kernel function in the rattle is
“rbfdot”, which refers to the Gaussian radial basis function. The “rbfdot” function is a general-
purpose kernel suitable for cases where there is no prior knowledge about the data. There are
also other popular kernel functions available for the SVM algorithm, such as “polydot” for the
polynomial kernel function and “vanilladot” for the linear kernel function. Non-linear kernels
often provide a better model-data fit than linear kernels at the expense of high computational
complexity and estimation time. Once a kernel is selected, the next step is to click on the
“Execute” button to perform the analysis. Like the previous algorithms, the SVM algorithm
also utilizes all of the selected input variables to predict the target variable (science perf). Once
the estimation is complete, the results are printed on the screen. Figure 9 shows the steps to be
followed to implement the SVM algorithm in the rattle.

& R Data Miner - [Rattle (pisa_turkey.csv)] — | >
Project Tools Settings Help &_;9 Rattie Version 5.2.0 togaware.com

3] & D B & < ® 4

Execute MNew Open Save Export 1 Stop Cuit

Dat: Explore Test Transform Cluster Associate Evaluate Log
Type: () Tree () Forest () Bo& ® SYMB ) Linear () Meural Met Survival ) All

Target: science_perf Model Builder:  kswrn

Kernel: |Radial Basis (rbfdot) ~ | Options:

Summary of the 5VM model (built using kswvm) :
Support Vector Machine object of class "ksvm"

SV type: E-svc (classification)
parameter @ cost C =1

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0403308264316584
Number of SuppWt Vectors : 1651

Objective Functioz alue : —1345.546
Training error : 0.205262

Probabkility model included.

Figure 9. Building the support vector machine classification model

The output returned from the SVM algorithm shows the default settings used in the estimation
process (the cost parameter of C as 1 and the hyperparameter of sigma as 0.0408). In addition,
the output shows the number of support vectors created in the model (1651). An important
section of the output is “Training error”. The results show that the overall prediction error in
the training dataset was around 20.53%. That is, roughly 80% of the predictions made for
science perf in the training dataset are accurate. It should be noted that although the output
resulted from the SVM algorithm is quite concise in the rattle compared to those from the
CART and RF algorithms, it is often much more difficult to interpret the content of this output
given the complex hyperparameters used in the SVM algorithm.
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3.4. Evaluating models

Unlike traditional statistical methods, the data mining methods require researchers to build
several models, evaluate outcomes from each model, adjust the models accordingly, and
continue to tune the models until an acceptable level of accuracy is reached. As demonstrated
in this tutorial, several algorithms can also be used for the same classification or regression task.
Therefore, researchers must not only tune their models but also select the most suitable
algorithm based on the model evaluation measures. In the rattle, model evaluation can be
performed using the options under the “Evaluate” tab. For model evaluation, either validation
or test datasets should be used because these datasets consist of the observations that the
algorithms have not seen when building the prediction model. Figure 10 shows the steps to view
the error matrix from the SVM algorithm, although the same steps can be followed to see the
same output for other algorithms as well. This tutorial focused on the prediction of a binary
outcome variable (science perf), and thus the error matrix returns a two-by-two matrix of
predicted and actual values and proportions of the two categories (i.e., “High” and “Low”
proficiency in scientific literacy). The overall prediction error for the SVM-based model is 21%
and the average classes (i.e., category) error is 49.4%. The error matrix shows that the prediction
accuracy of the “Low” category was precise, whereas the prediction accuracy of the “High”
category was quite poor.

i R Data Miner - [Rattle (pisa_turkey.csv)] = O *
Project  Tools  Settings  Help %} Rattie Version 5.2.0 togaware. com
3 & O B @ ®H =] @
Execute Mew Open Save Export Stop ] Cuit
——

Dat: Explore’ Test Transform Cluster Assiociate ModeILng

2| Typed® Error Matrix O Risk (O Cost Curve O Hand O Lift (O ROC (O Precision (O Sensitivity PrvOb (O Score

Maodel: [] Tree Boost [ Forest /] SWYM [ | Linear | | Meural Net| | Survival || KMeans | | HClust
Data: () Training (@ Validation (O Testing (O Full Enter () €SV File |83 rattle i (O R Dataset

Risk Variable: Report: ®) Class () Probability  Include: |dentifiers All
Error matrix for the 5VM model on pisa turkey.csv [validate] (counts): -
Predicted
Lotual High Low Erxror
High 2 142 898.8
Low 1:-537 0.2

Error matrix for the 5VM model on pisa turkey.csv [validate] (proportions):

Predicted

Overall error: 21%, Awveraged class error: 49.4%

Figure 10. The view of the “Evaluate” tab in rattle

The “Evaluate” tab offers many useful measures for model evaluation. For example, the
sensitivity, specificity, precision, and recall plots can be created using the “Sensitivity” and
“Precision” options under the “Evaluate” tab. Users must select one of these evaluation options
and click “Execute” to draw the plots. Table 2 shows the calculation of the evaluation measures
available in the rattle.



Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

Table 2. Evaluation measures for the classification of “Low” and “High” groups in science perf

) ) ) Actual Classification
Predicted Classification

Low proficiency in science High proficiency in science
Low proficiency in science True Positive (TP) False Positive (FP)
High proficiency in science False Negative (FN) True Negative (TN)

Note: Sensitivity = TP/TP+FN; Specificity = TN/TN+FP; Precision = TP/(TP+FP); Recall = TP/(TP+FN)

To compare the results from different data mining algorithms, the models must be estimated
with each algorithm first so that the evaluation measures under the “Evaluation” tab can draw
the plots by including the results from all algorithms. Figures 11 and 12 show the plots of
sensitivity/specificity and precision/recall across the three data mining algorithms (i.e., CART,
RF, and SVM). Figure 11 shows that there is a significant trade-off between sensitivity and
specificity for all the algorithms. As the specificity level (i.e., detecting “High”) increases, the
sensitivity level (i.e., detecting “Low”’) decreases. Among the three algorithms, the performance
of the RF algorithm appears to be the best in terms of balancing sensitivity and specificity.
Figure 12 shows the precision and recall levels across the three algorithms. The results suggest
that all the algorithms indicate high precision and recall values in predicting the “High” and
“Low” values of science perf. Given the similar precision and recall values across the three
algorithms, sensitivity and specificity can be more decisive evaluation measures for the
example presented in this study.

Sensitivity/Specificity (tpritnr) pisa_turkey.csv [validate]

o |
@ |
(]
&
=
:‘a‘
& =
[
Models
o — rpart
L= el
------- ksvm
o |
= I T I T T I
0.0 0.2 0.4 06 08 1.0

Specificity

Figure 11. The sensitivity and specificity plots of the three data mining algorithms (Note: rpart refers
to CART, rf refers to RF, and ksvm refers to SVM).
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Precision/Recall Plot pisa_turkey.csv [validate]
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Figure 12. The precision and recall plots of the three data mining algorithms (Nete: rpart refers to
CART, rf refers to RF, and ksvm refers to SVM).

4. DISCUSSION and CONCLUSION

The purpose of this study was to demonstrate the implementation of the three data mining
algorithms (i.e., CART, RF, and SVM) using the rattle package (Williams, 2011) in R (R Core
Team, 2019). The selected algorithms are widely used methods in EDM research for both
classification and regression tasks. The example used in this study demonstrated how to build
classification models using the CART, RF, and SVM algorithms for predicting students’
proficiency levels (low or high) in the scientific literacy test of PISA 2015. In addition, the
model evaluation stages were also described.

Based on the results of this study, the RF algorithm appeared to be the best performing
algorithm for predicting students’ proficiency levels in the scientific literacy test of PISA 2015.
This is not a surprising finding because the RF algorithm often provides accurate prediction
results in datasets that contain both numerical and categorical predictors (i.e., features). These
findings tie well with a previous study wherein Fernandez-Delgado et al. (2014) compared the
performances of 179 classification algorithms using 121 real datasets. The researchers found
that the RF algorithm was the best algorithm for most real world classification problems,
followed by the SVM algorithm. A similar pattern of results was obtained in the current study.

The results from the three algorithms were somewhat different in this study mainly because
each algorithm handles different types of variables and their relationships in the pisa_turkey
dataset. For example, the CART algorithm yielded sensitivity and specificity values similar to
those from the other two algorithms, but it used fewer predictors in the estimation. Depending
on what complexity parameter has been selected, the decision tree model can either retain or
eliminate the subtrees created based on relatively less important predictors in the dataset.
Furthermore, when some predictors are highly correlated, the CART algorithm may choose
only one of those predictors and ignore the others. Therefore, researchers are recommended to
choose an algorithm and tune its parameters after careful consideration and review of their data.

As a free software program, the rattle uses many powerful packages available within the R
computing environment for conducting data mining analysis. Unlike the R software program
that requires users to type and execute their codes, the rattle provides a user-friendly GUI that
enables users to import their data files easily, select an algorithm from a variety of options, and
evaluate the results using model evaluation measures. The output returned from the rattle
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involves both statistical and visual outcomes to facilitate users’ evaluation and fine-tuning of
their models. Although it is not demonstrated in this study, the ratt/e is also capable of providing
users with the opportunity to explore their datasets descriptively and to transform variables
(e.g., rescaling, recoding, and normalizing) before performing further analysis. In addition, the
rattle is capable of performing unsupervised data mining, including clustering with k-means
and hierarchical clustering methods and association rule analysis. For advanced R users who
might prefer to keep the R codes for their analysis, the rattle provides a script that presents the
underlying R codes for all analyses conducted in the program under the “Log” tab. For a
comprehensive review of the rattle, readers are recommended to check out Data Mining with
Rattle and R by Williams (2011) who is also the author of the rattle.
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