Conference Proceedings of Science and Technology, 2(2), 2019, 129-133

Conference Proceeding of 17th International Geometry Symposium (2019) Erzincan/Turkey.

Detecting Similarities of Bézier Curves for the Groups $LSim(E_2), LSim^+(E_2)$

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

İdris Ören^{1,2,*} Muhsin İncesu¹

¹ Department of Mathematics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey, ORCID:0000-0003-2716-3945

² Education Faculty, Muş Alparslan University, 49100, Muş, Turkey, ORCID:0000-0003-2515-9627

* Corresponding Author E-mail: oren@ktu.edu.tr

Abstract: In this paper, for linear similarity groups, global invariants of plane Bézier curves (plane polynomial curves) in E_2 are introduced. Using complex numbers and the global *G*-invariants of a plane Bézier curve(a plane polynomial curve), for given two plane Bézier curves (plane polynomial curves) x(t) and y(t), evident forms of all transformations $g \in G$, carrying x(t) to y(t), are obtained.

Keywords: Polynomial curve, Bézier curve, Invariant, Linear similarity group.

1 Introduction

Let E_2 be the 2-dimensional Euclidean space, $G = LSim(E_2)$ be the group of all linear similarities of E_2 and $G = LSim^+(E_2)$ be the group of all orientation-preserving linear similarities of E_2 .

In [1], using local differential invariants and Frenet frames of two curves, uniqueness and existence theorems for a curve determined up to a direct similarity of E_2 .

For the group $Sim^+(n)$, this theorem shows that a necessary and sufficient conditions for two curves in E_n to be equivalent is that they have same shape curvatures and the other specially conditions.

The complete systems of global G-invariants of a path and a curve in E_2 are obtained. For the groups G, existence and uniqueness theorems for a curve and a path are given in the terms of global G-invariants of a path and a curve in [2].

LSim(2)-equivalence of two Bézier curves without using differential invariants of Bézier curves in the terms of control invariants of Bézier curves is proved in [3, 4].

In this work, starting from the ideas in [2–4, 8–11], we address how to compute explicitly an linear similarity transformation which carrying a Bézier curve into another Bézier curve in the terms of control invariants of a Bézier curve for the groups $LSim(E_2)$ and $LSim^+(E_2)$ without using differential invariants of Bézier curves.

2 Preliminaries

The following definitions and propositions are known in [2].

Let R be the field of real numbers and \mathbb{C} be the field of complex numbers. The multiplication in \mathbb{C} has the form $(a_1 + ia_2)(b_1 + ib_2) =$

 $(a_{1}b_{1}-a_{2}b_{2})+i(a_{1}b_{2}+a_{2}b_{1}).$ We will consider element $a = a_{1} + ia_{2}$ also in the form $a = \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix}$. For $a = a_{1} + ia_{2}$, denote by P_{a} the matrix $\begin{pmatrix} a_{1} & -a_{2} \\ a_{2} & a_{1} \end{pmatrix}$ and consider P_{a} also as the transformation $P_{a}: \mathbb{C} \to \mathbb{C}$, where $P_{a}b = \begin{pmatrix} a_{1} & -a_{2} \\ a_{2} & a_{1} \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = \begin{pmatrix} a_{1}b_{1}-a_{2}b_{2} \\ a_{1}b_{2}+a_{2}b_{1} \end{pmatrix}$ for all $b = b_{1} + ib_{2} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \in \mathbb{C}$. Then we have the equality

$$ab = P_a b. \tag{1}$$

for all $a, b \in \mathbb{C}$. Let $P(\mathbb{C})$ denote the set of all matrices P_a , where $a \in \mathbb{C}$. We consider on $P(\mathbb{C})$ the following standard matrix operations: the component-wise addition, a scalar multiplication and the multiplication of matrices. Then $P(\mathbb{C})$ is a field, where the unit element is the unit matrix. The following Propositions are known.

Proposition 1. The mapping $P : \mathbb{C} \to P(\mathbb{C})$, where $P : a \to P_a$ for all $a \in \mathbb{C}$, is an isomorphism of fields.

For vectors $a = a_1 + ia_2$, $b = b_1 + ib_2 \in \mathbb{C}$, we put $\langle a, b \rangle = a_1b_1 + a_2b_2$. Then $\langle a, b \rangle$ is a bilinear form on E_2 and $\langle a, a \rangle = a_1^2 + a_2^2$ is a quadratic form on E_2 . Put $Q(a) = \langle a, a \rangle$. We consider the field \mathbb{C} also as the two-dimensional Euclidean space E_2 with the scalar product $\langle a, b \rangle$. Then $||a|| = |a| = \sqrt{Q(a)}$, $\forall a \in \mathbb{C}$.

Proposition 2. (i) Equalities $Q(a) = det(P_a)$, Q(ab) = Q(a)Q(b), |ab| = |a| |b|, $Q(a) = det(P_a) = hold$ for all $a, b \in \mathbb{C}$. (ii) Let $a = a_1 + ia_2 \in \mathbb{C}^*$. Then $det(P_a) = Q(a) > 0$.

An endomorphism ψ of a vector space \mathbb{C} is called an involution of the field \mathbb{C} if $\psi(\psi(a)) = a$ and $\psi(ab) = \psi(a)\psi(b)$ for all $a, b \in \mathbb{C}$. For an element $a = a_1 + ia_2 \in \mathbb{C}$, we set $\overline{a} = a_1 - ia_2$.

Proposition 3. The mapping $a \to \overline{a}$ is an involution of the field \mathbb{C} . In addition, for an arbitrary element $a = a_1 + ia_2 \in \mathbb{C}$, equalities $a + \overline{a} = 2a_1, < a, a >= a\overline{a} = a_1^2 + a_2^2 \in R$ hold.

Proposition 4. Let $x \in \mathbb{C}$. Then the element x^{-1} exists if and only if $Q(x) \neq 0$. In the case $Q(x) \neq 0$, equalities $x^{-1} = \frac{\overline{x}}{Q(x)}$ and $Q(x^{-1}) = \frac{1}{Q(x)}$ hold.

Let $W = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. We will use W also for the writing of the element \overline{z} in the form $\overline{z} = Wz$.

Proposition 5. Q(Wx) = Q(x) for all $x \in \mathbb{C}$ and $\langle Wx, Wy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{C}$.

Put $\mathbb{C}^* = \{z \in \mathbb{C} \mid Q(z) \neq 0\}$. \mathbb{C}^* is a group with respect to the multiplication operation in the field \mathbb{C} . Let $a = a_1 + ia_2 \in \mathbb{C}^*$ that is $|a| \neq 0$. Put

$$P_a^+ = \left(\begin{array}{cc} \frac{a_1}{|a|} & \frac{-a_2}{|a|} \\ \frac{a_2}{|a|} & \frac{a_1}{|a|} \end{array}\right).$$

Proposition 6. Let $a = a_1 + ia_2 \in \mathbb{C}^*$. Then the equality $P_a = |a| P_a^+$ holds, where $P_a^+ \in SO(2)$.

Put $S(\mathbb{C}^*) = \{z \in \mathbb{C} \mid Q(z) = 1\}$, $P(\mathbb{C}^*) = \{P_z \mid z \in \mathbb{C}^*\}$ and $P(S(\mathbb{C}^*)) = \{P_z \mid z \in S(\mathbb{C}^*)\}$. $S(\mathbb{C}^*)$ is a subgroup of the group \mathbb{C}^* and $S(\mathbb{C}^*) = \{e^{i\varphi} \mid \varphi \in R\}$. Denote the set of all matrices $\{gW \mid g \in P(\mathbb{C}^*)\}$ by $P(\mathbb{C}^*)W$, where gW is the multiplication of matrices g and W.

Theorem 1. (see [7, p.172]) The following equalities are hold:

(i) $LSim^+(E_2) = \{P_a : E_2 \to E_2 | a \in \mathbb{C}^*\} = P(\mathbb{C}^*).$ (ii) $LSim^-(E_2) = \{P_aW : E_2 \to E_2 | a \in \mathbb{C}^*\} = P(\mathbb{C}^*)W.$ (iii) $LSim(E_2) = LSim^+(E_2) \cup LSim^-(E_2).$

Proposition 7. (i) Let $u, v \in \mathbb{C}$. Assume that $Q(u) \neq 0$. Then the element vu^{-1} exists, the following equalities hold:

$$vu^{-1} = \frac{\langle u, v \rangle}{Q(u)} + i \frac{[uv]}{Q(u)}$$

and

$$P_{vu^{-1}} = \begin{pmatrix} \frac{\langle u, v \rangle}{Q(u)} & -\frac{[uv]}{Q(u)} \\ \frac{[uv]}{Q(u)} & \frac{\langle u, v \rangle}{Q(u)} \end{pmatrix}.$$
(2)

(ii) Assume that $Q(u) \neq 0$. Then $det(P_{vu^{-1}}) = (\frac{\leq u, v \geq}{Q(u)})^2 + (\frac{[uv]}{Q(u)})^2 \neq 0$ if and only if $Q(v) \neq 0$.

3 Control invariants of planar Bézier curve

A planar Bézier curve is a parametric curve(or a *I*-path, where I = [0, 1]) whose points x(t) are defined by $x(t) = \sum_{i=0}^{m} p_i B_{i,m}(t)$, where the $p_i \in E_2$ are control points and $B_{i,m}(t)$ are Bernstein basis polynomials.(for more details, see [6].)

A planar polynomial curve is a parametric curve whose points x(t) are defined by $x(t) = \sum_{i=0}^{m} a_i t^i$, where the $a_i \in E_2$ are monomial control points.(for more details, see [6, p.181].)

All polynomial curves can be represented in Bézier form. The following lemma is given in [6, p.181].

Lemma 1. The following equalities

$$a_i = \sum_{j=0}^{i} (-1)^{i-j} \frac{m!}{i!(m-i)!} \frac{i!}{j!(i-j)!} b_j$$
(3)

hold for all $i = 1, 2, \ldots, m$ and $i \ge j$.

Let $G = LSim(E_2), LSim^+(E_2).$

Definition 1. (see [5]) A function $f(z_0, z_1, \ldots, z_m)$ of points z_0, z_1, \ldots, z_m in E_2 will be called G-invariant if $f(Fz_0, Fz_1, \ldots, Fz_m) = 0$ $f(z_0, z_1, \ldots, z_m)$ for all $F \in G$.

A G-invariant function $f(b_0, b_1, ..., b_m)$ of control points $b_0, b_1, ..., b_m$ of a Bézier curve $x(t) = \sum_{j=0}^m b_j B_{j,m}(t)$ will be called a control G-invariant of x(t), where $B_{j,m}(t)$ are Bernstein basis polynomials. A G-invariant function $f(a_0, a_1, ..., a_m)$ of monomial control points a_0, a_1, \ldots, a_m of a polynomial curve $x(t) = \sum_{j=0}^m a_j t^j$ will be called a monomial G-invariant of x(t).

Definition 2. (see [5]) Bézier curves x(t) and y(t) in E_2 will be called G -similar and written $x \stackrel{G}{\sim} y$ if there exists $F \in G$ such that $y(t) = Fx(t) \text{ for all } t \in [0, 1].$

Since Bézier curves can be introduced by control points, we will define the problem of G-similarity of points in E_2 .

Definition 3. (see [5]) m-uples $\{z_1, z_2, \ldots, z_m\}$ and $\{w_1, w_2, \ldots, w_m\}$ of points in E_2 will be called G-similar and written by $\{z_1, z_2, \ldots, z_m\} \stackrel{G}{\sim} \{w_1, w_2, \ldots, w_m\}$ if there exists $F \in G$ such that $w_j = Fz_j$ for all $j = 1, 2, \ldots, m$.

Let u, v be points in E_2 . We denote the matrix of column-vectors u, v by ||u| v|| and its determinant by |u| v|.

Example 1. Since $\frac{\langle g(u), g(v) \rangle}{\langle g(u), g(u) \rangle} = \frac{\langle u, v \rangle}{\langle u, u \rangle}$ for all $g \in LSim(E_2)$, we obtain that the function $\frac{\langle u, v \rangle}{\langle u, u \rangle}$ of points $u, v \in E_2$ is $LSim(E_2)$ -invariant. Similarly, the function $\frac{|u|v|}{\langle u, u \rangle}$ is $LSim^+(E_2)$ -invariant.

Example 2. Let x(t) and y(t) be Bézier curves of degrees of m and k, respectively. Assume that $x \stackrel{LSim(E_2)}{\sim} y$. Then m = k that is the degree of a Bézier curve x(t) is $LSim(E_2)$ -invariant.

Similarity of planar Bézier curves 4

Theorem 2. Let $x(t) = \sum_{j=0}^{m} a_j t^j = \sum_{j=0}^{m} p_j B_{j,m}(t)$ and $y(t) = \sum_{j=0}^{m} c_j t^j = \sum_{j=0}^{m} q_j B_{j,m}(t)$ be Bézier curves in E_2 of degree m, where $m \ge 1$. Then following conditions are equivalent:

- $\begin{array}{ll} (i) & x(t) & \overset{LSim(E_2)}{\sim} y(t) \\ (ii) & \{p_0, p_1, \dots, p_m\} & \overset{LSim(E_2)}{\sim} \{q_0, q_1, \dots, q_m\} \\ (iv) & \{a_0, a_1, \dots, a_m\} & \overset{LSim(E_2)}{\sim} \{c_0, c_1, \dots, c_m\} \end{array}$

Theorem 3. Let $x(t) = \sum_{j=0}^{m} a_j t^j = \sum_{j=0}^{m} p_j B_{j,m}(t)$ and $y(t) = \sum_{j=0}^{m} c_j t^j = \sum_{j=0}^{m} q_j B_{j,m}(t)$ be Bézier curves in E_2 of degree m, where $m \ge 1$. Then following conditions are equivalent:

(i) $x(t) \stackrel{LSim^+(E_2)}{\sim} y(t)$ $\begin{array}{l} (i) \ \{p_0, p_1, \dots, p_m\} & \stackrel{LSim^+(E_2)}{\sim} \{q_0, q_1, \dots, q_m\} \\ (iv) \ \{a_0, a_1, \dots, a_m\} & \stackrel{LSim^+(E_2)}{\sim} \{c_0, c_1, \dots, c_m\} \end{array}$

Remark 1. In Theorems 2 and 3, we have considered the problem of G-similarity of polynomial curves in the case $m \ge 1$. For the case m = 0, the problem of G-similarity of polynomial curves $x(t) = a_0$ and $y(t) = c_0$ reduces to the problem of G-similarity of points a_0 and c_0 in E_2 . For the groups $G = LSim(E_2)$, $LSim^+(E_2)$, it is obvious that $a_0 \stackrel{G}{\sim} c_0$ for all a_0 and c_0 in E_2 . In what follows, $m \ge 1$. The case m = 0 is easily considered.

Theorem 4. Let $A = \{a_0, \ldots, a_m\}$ and $C = \{c_0, \ldots, c_m\}$ be two systems in E_2 such that $a_k \neq 0$, $c_k \neq 0$, where $k \in \{0, 1, \ldots, m\}$. Then, A and C are $LSim^+(E_2)$ -similar if and only if

$$\begin{cases} \frac{\langle a_i, a_k \rangle}{\langle a_k, a_k \rangle} = \frac{\langle c_i, c_k \rangle}{\langle c_k, c_k \rangle}, \\ \frac{[a_i a_k]}{\langle a_k, a_k \rangle} = \frac{[c_i c_k]}{\langle c_k, c_k \rangle} \end{cases}$$
(4)

for all i = 0, 1, ..., k - 1, k + 1, k + 2, ..., m. Moreover, there exists the unique element $F \in LSim^+(E_2)$ such that $c_j = Fa_j$ for all $j = fa_j$. $0, 1, \ldots, m$, where the matrix F can be written as

$$F = \begin{pmatrix} \frac{\langle a_k, c_k \rangle}{Q(a_k)} & -\frac{[a_k c_k]}{Q(a_k)} \\ \frac{[a_k c_k]}{Q(a_k)} & \frac{\langle a_k, c_k \rangle}{Q(a_k)} \end{pmatrix}.$$
(5)

Theorem 5. Let $A = \{a_0, \ldots, a_m\}$ and $C = \{c_0, \ldots, c_m\}$ be two systems in E_2 such that $a_k \neq 0$, $c_k \neq 0$ for $k \in \{0, 1, \ldots, m\}$ and rankA = rankC = 1. Then, A and C are $LSim(E_2)$ -similar if and only if

$$\frac{\langle a_i, a_k \rangle}{\langle a_k, a_k \rangle} = \frac{\langle c_i, c_k \rangle}{\langle c_k, c_k \rangle} \tag{6}$$

for all i = 0, 1, ..., k - 1, k + 1, k + 2, ..., m. Moreover, there exists the unique element $H \in LSim(E_2)$ such that $c_j = Ha_j$ for all j = 1 $0, 1, \ldots, m$, where the matrix H has the form (5).

Remark 2. Let $A = \{a_0, \ldots, a_m\}$. In the case rankA = 2, denote by index A smallest of $s, 0 \le s \le m$, such that $a_s \ne \lambda a_k$ for all $\lambda \in E_2$ and $a_k \neq 0$. The number index A is $LSim(E_2)$ -invariant.

Theorem 6. Let $A = \{a_0, \ldots, a_m\}$ and $C = \{c_0, \ldots, c_m\}$ be two systems in E_2 such that $a_k \neq 0$, $c_k \neq 0$, rankA = rankC = 2 and indexA = indexC = l for $k, l \in \{0, 1, \ldots, m\}$, $l \neq k$. Then, A and C are $LSim(E_2)$ -similar if and only if

$$\begin{cases}
\frac{\langle a_i, a_k \rangle}{\langle a_k, a_k \rangle} = \frac{\langle c_i, c_k \rangle}{\langle c_k, c_k \rangle} \\
\left(\frac{[a_l \ a_k]}{\langle a_k, a_k \rangle}\right)^2 = \left(\frac{[c_l \ c_k]}{\langle c_k, c_k \rangle}\right)^2 \\
\frac{[a_i \ a_k]}{[a_l \ a_k]} = \frac{[c_i \ c_k]}{[c_l \ c_k]}
\end{cases}$$
(7)

for all $i = 0, 1, \dots, m$, $i \neq k$ and $i \neq l$. Moreover, there exists the unique element $M \in LSim(E_2)$ such that $c_i = Ma_i$ for all $j = 1, \ldots, m$. Then there exist following cases:

- (i) In the case $\frac{[a_l \ a_k]}{\langle a_k, a_k \rangle} = \frac{[c_l \ c_k]}{\langle c_k, c_k \rangle}$, the matrix $M \in LSim^+(E_2)$ and it has the form (5). (ii) In the case $\frac{[a_l \ a_k]}{\langle a_k, a_k \rangle} = -\frac{[c_l \ c_k]}{\langle c_k, c_k \rangle}$, the matrix $MW \in LSim(E_2)$ and it can be represented by

$$M = \begin{pmatrix} \frac{\langle Wa_k, c_k \rangle}{Q(a_k)} & -\frac{[Wa_k c_k]}{Q(a_k)}\\ \frac{[Wa_k c_k]}{Q(a_k)} & \frac{\langle Wa_k, c_k \rangle}{Q(a_k)} \end{pmatrix}.$$
(8)

Theorem 7. (i) Let $x(t) = \sum_{j=0}^{m} a_j t^j$ and $y(t) = \sum_{j=0}^{m} c_j t^j$ be two polynomial curves in E_2 of degree m, where $m \ge 1$ such that

 $\begin{array}{l} x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Then, the equalities (4) in Theorem 4 hold.} \\ (ii) \ \text{Conversely, if } x(t) = \sum_{j=0}^m a_j t^j \ \text{and } y(t) = \sum_{j=0}^m c_j t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the } t^j \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{are two polynomial curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1 \ \text{are two polynomial curves } m \geq 1$ equalities (4) in Theorem 4 hold, then $x(t) \stackrel{LSim^+(E_2)}{\sim} y(t)$. Moreover, there exists the unique $F \in LSim^+(E_2)$ such that y(t) = Fx(t) for all $t \in [0, 1]$ and F has the form (5).

Theorem 8. (i) Let $x(t) = \sum_{j=0}^{m} a_j t^j$ and $y(t) = \sum_{j=0}^{m} c_j t^j$ be two polynomial curves in E_2 of degree m, where $m \ge 1$ such that

 $\begin{array}{l} x(t) \stackrel{LSim(E_2)}{\sim} y(t). \ Then, \ the \ equalities \ (7) \ in \ Theorem \ 6 \ hold. \\ (ii) \ Conversely, \ if \ x(t) = \sum_{j=0}^{m} a_j t^j \ and \ y(t) = \sum_{j=0}^{m} c_j t^j \ are \ two \ polynomial \ curves \ in \ E_2 \ of \ degree \ m, \ where \ m \ge 1 \ such \ that \ the \ equalities \ (7) \ in \ Theorem \ 6 \ hold, \ then \ x(t) \stackrel{LSim(E_2)}{\sim} y(t). \ Moreover, \ there \ exists \ the \ unique \ F \in LSim(E_2) \ such \ that \ y(t) = Fx(t) \ for \ all \ and \ y(t) = Fx(t) \ for \ all \ x(t) \ for \ all \ x(t) \$ $t \in [0, 1]$. Then,

 $\begin{array}{l} t \in [0,1] \text{. Then,} \\ (a) \text{ In the case } \frac{[a_l \ a_k]}{\langle a_k, a_k \rangle} = \frac{[c_l \ c_k]}{\langle c_k, c_k \rangle}, \text{ F has the form (5).} \\ (b) \text{ In the case } \frac{[a_l \ a_k]}{\langle a_k, a_k \rangle} = -\frac{[c_l \ c_k]}{\langle c_k, c_k \rangle}, \text{ F has the form (8).} \end{array}$

Theorem 9. (i) Let $x(t) = \sum_{j=0}^{m} p_j B_{j,m}(t)$ and $y(t) = \sum_{j=0}^{m} q_j B_{j,m}(t)$ be two Bézier curves in E_2 of degree m, where $m \ge 1$ such that

 $\begin{array}{l} x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Then by Lemma 1, the equalities (4) in Theorem 4 hold.} \\ (ii) \ \text{Conversely, if Let } x(t) = \sum_{j=0}^{m} p_j B_{j,m}(t) \ \text{and } y(t) = \sum_{j=0}^{m} q_j B_{j,m}(t) \ \text{be two Bézier curves in } E_2 \ \text{of degree } m, \ \text{where } m \geq 1 \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{such that the equalities (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t). \ \text{Moreover, there exists the unique } F \in LSim^+(E_2) \ \text{moreover (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t) \ \text{moreover (4) in Theorem 4 and Lemma 1 hold, then } x(t) \stackrel{LSim^+(E_2)}{\sim} y(t) \ \text{moreover (4) in Theorem 4 and Lemma 1 hold, then } x(t) \quad \text{moreover (4) in Theorem 4 and Lemma 1 hold, then } x(t) \quad \text{moreover (4) in Thourm 4 and Lemma 1 hold, then } x(t) \quad \text{moreover (4) in$

that y(t) = Fx(t) for all $t \in [0, 1]$ and F in the terms of the equalities given in Lemma 1 has the form (5).

Theorem 10. (i) Let $x(t) = \sum_{j=0}^{m} p_j B_{j,m}(t)$ and $y(t) = \sum_{j=0}^{m} q_j B_{j,m}(t)$ be two Bézier curves in E_2 of degree m, where $m \ge 1$ such

that $x(t) \xrightarrow{LSim(E_2)} y(t)$. Then by Lemma 1, the equalities (7) in Theorem 6 hold. (ii) Conversely, if $x(t) = \sum_{j=0}^{m} p_j B_{j,m}(t)$ and $y(t) = \sum_{j=0}^{m} q_j B_{j,m}(t)$ be two Bézier curves in E_2 of degree m, where $m \ge 1$ such that the equalities (7) in Theorem 6 and Lemma hold, then $x(t) \stackrel{LSim(E_2)}{\sim} y(t)$. Moreover, there exists the unique $F \in LSim(E_2)$ such that y(t) = Fx(t) for all $t \in [0, 1]$. Then,

(a) In the case $\frac{[p_1 \ p_k]}{\langle p_k, p_k \rangle} = \frac{[q_1 \ q_k]}{\langle q_k, q_k \rangle}$, F in the terms of the equalities given in Lemma 1 has the form (5). (b) In the case $\frac{[p_1 \ p_k]}{\langle p_k, p_k \rangle} = -\frac{[q_1 \ q_k]}{\langle q_k, q_k \rangle}$, F in the terms of the equalities given in Lemma 1 has the form (8).

Acknowledgements

The authors is very grateful to the reviewer for helpful comments and valuable suggestions.

5 References

- R. P. Encheva and G. H. Georgiev, Similar Frenet curves, Result.Math, 55 (2009), 359-372. [1]
- [2] D. Khadjiev, İ. Ören, Ö. Pekşen, Global invariants of path and curves for the group of all linear similarities in the two-dimensional Euclidean space, Int.J.Geo. Modern Phys, 15(6) (2018).1-28

- [3] M. İncesu, LS(2) Equivalence conditions of control points and application to planar Bézier curves, NTMSCI 5(3) (2017), 70-84.
 [4] M. İncesu, Düzlemsel Bézier eğrilerinin S(2) denklik şartları, MSU J. of Sci., 5(2) (2018), 471-477.
 [5] İ. Ören, , Equivalence conditions of two Bézier curves in the Euclidean geometry, Iran J Sci Technol Trans Sci., 42 (2018), 1563-1577.
 [6] D. Marsh, Applied geometry for computer graphics and CAD, Springer-Verlag, London, 1999.
 [7] M. Berger, Geometry I, Springer-Verlag, Berlin Heidelberg, 1987.
 [8] WK. Wang, H. Zhang, XM. Liu, JC. Paul, Conditions for coincidence of two cubic Bézier curves, J. Comput. Appl. Math., 235 (2011), 5198-5202.
 [9] J. SĂanchez-Reyes, On the conditions for the coincidence of two quartic Bézier curves. Appl Math Comput 225 (2013), 731-736.
 [11] XD. Chen, C. Yang, W. Ma, Coincidence condition of two Bézier curves of an arbitrary degree, Comput. Graph 54 (2016), 121-126.