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Abstract

The main aim of this paper is to construct generating functions for the
Bernstein type polynomials. Using these generating functions, various
functional equations and differential equations can be derived. New
proofs both for a recursive definition of the Bernstein type basis func-
tions and for derivatives of the nth degree Bernstein type polynomials
can be given using these equations. This paper presents a novel method
for deriving various new identities and properties for the Bernstein type
basis functions by using not only these generating functions but also
these equations. By applying the Fourier transform and the Laplace
transform to the generating functions, we derive interesting series rep-
resentations for the Bernstein type basis functions. Furthermore, we
discuss analytic representations for the generalized Bernstein polyno-
mials through the binomial or Newton distribution and Poisson distri-
bution with mean and variance. By using the mean and the variance,
we generalize Szasz-Mirakjan type basis functions.
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1. Introduction and main definition

In the literature in Bezier Curves and Surfaces, one can find systematic and extensive
investigations not only of the classical Bernstein polynomials and Bezier curves, but also
of their various generalizations and q-extensions. According to Goldman [7], freeform
curves and surfaces are smooth shapes often describing man-made objects. The hood
of a car, the hull of a ship, and the fuselage of an airplane are all examples of freeform
shapes which differ from the classical surfaces. The classical surfaces are easy to describe
with a few parameters. But the hood of a car or the hull of a ship is not easy to describe
with a few parameters. Thus recently many scientists and engineers have developed
mathematical techniques for describing freeform curves and surfaces. It is also well-
known that scientists and engineers use freeform curves and surfaces to interpolate data
and to approximate shape. The Bezier curves, which are polynomials curves, have many
practical applications, ranging from the design of new fonts to the creation of mechanical
components and assemblies for large scale industrial design and manufacture. By using
the Bernstein polynomials, one can easily find an explicit polynomial representation for
Bezier curves. Therefore, the Bernstein polynomials have many applications in theory of
freeform curves and surfaces, in approximations of functions, in statistics, in numerical
analysis, in p-adic analysis and in the solution of differential equations. It is also well-
known that in Computer Aided Geometric Design polynomials are often expressed in
terms of the Bernstein basis functions. The goal of this paper is to develop some of
properties underlying the Bernstein polynomials using their novel generating functions.

Many of the known identities for the Bernstein basis functions are currently derived
in an ad hoc fashion, using either the binomial theorem, the binomial distribution, tricky
algebraic manipulations or blossoming. The aim of this paper is to derive functional
equations and differential equations using novel generating functions for the Bernstein
polynomials. By using these equations, we provide a new approach to derive both for
standard identities and for new identities for the Bernstein type basis functions.

The organization of the paper is as follows:
In Section 2; We define generating functions for the Bernstein type basis functions.

We find many functional equations and differential equations of this novel generating
function. Using these equations, many properties of the Bernstein type basis functions
can be determined. For instance, we give sum and alternating sum of the Bernstein type
basis functions, some well-known properties of the Bernstein type basis functions, sub-
division property, a recursive definition of the Bernstein type basis functions, derivatives
of the nth degree Bernstein basis functions. We also prove many other properties of the
Bernstein basis functions via functional equations. In Section 3; we give some application
of the Fourier transform and the Laplace transform to the generating functions for the
Bernstein type basis functions. We derive series representations for the Bernstein type
basis functions. In Section 4; by using novel generating functions and their functional
equation, we give some new identities related to the Bernstein type basis function. In
Section 5; we give relations between the Bernstein basis functions, the binomial distri-
bution and the Poisson distribution. Using the Poisson distribution, we give generating
functions for the Szasz-Mirakjan type basis functions. By using Abel and Li’s method [1],
and applying our generating functions to Proposition 5.1, we derive identities which give
pointwise orthogonality relations for the Bernstein polynomials and the Szasz-Mirakjan
type basis functions.
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2. New approach to deriving new proofs of the identities and
properties for the Bernstein type basis functions

In this section, we provide fundamental properties of the Bernstein basis functions
and their generating functions. We introduce some functional equations and differential
equations of the novel generating functions for the Bernstein basis functions. We also
give new proofs of some well known properties of the Bernstein basis functions by using
functional equations and differential equations.

2.1. Generating Functions. Recently the Bernstein polynomials have been defined
and studied in many different ways, for example, by q-series, by complex functions, by
p-adic Volkenborn integrals and many algorithms. Here, by using entire function, related
to nonnegative real parameters, we construct generating functions for the Bernstein type
basis functions.

The Bernstein type basis functions Ynk (x; a, b,m) are defined as follows:

2.1. Definition. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let n be non-negative integer. The Bernstein type
basis functions Ynk (x; a, b,m) can be defined by

(2.1) Ynk (x; a, b,m) =

(
n
k

)
(x− a)k (b− x)n−k

(b− a)m
,

where

k = 0, 1, . . . , n,

and (
n
k

)
=

n!

k!(n− k)!
.

Remark 1. In the special case when m = n, Definition 2.1 immediately yields the
corresponding well known results concerning the Bernstein basis functions Bnk (x, a, b)
that appears, for example, in Goldman [7, p. 384, Eq.(24.6)] and cf. [3]:

Ynk (x; a, b, n) = Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k
,

where k = 0, 1,· · · , n and x ∈ [a, b] (cf., see also [5]). One can easily see that

(2.2) Bnk (x) =

(
n
k

)
xk(1− x)n−k,

where k = 0, 1, · · · , n and x ∈ [0, 1] cf. [1]-[19]. In [7], Goldman gives many properties
of the Bernstein polynomials Bnk (x, a, b). The functions Bn0 (x, a, b), · · · , Bnn(x, a, b) are
called the Bernstein basis functions. Goldman [7, Chapter 26], shows that the Bernstein
basis functions form a basis for the polynomials of degree n.

Generating functions for the Bernstein type basis functions can be defined as follows:

2.2. Definition. Let a and b be nonnegative real parameters with a 6= b. Let t ∈ C.
Let m be a positive integer and let x ∈ [a, b]. The Bernstein type basis functions can be
defined by means of the following generating function

(2.3) fY,k(x, t; a, b,m) :=

∞∑
n=0

Ynk (x; a, b,m)
tn

n!
,

where k = 0, 1, . . . , n.

We construct novel generating functions for the Bernstein type basis functions explic-
itly by the following theorem:
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2.3. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let t ∈ C. Let
m be a positive integer and let x ∈ [a, b]. Then we have

(2.4) fY,k(x, t; a, b,m) =
tk (x− a)k e(b−x)t

(b− a)mk!
.

Proof. By using (2.1) and (2.3), we have

∞∑
n=0

Ynk (x; a, b,m)
tn

n!
=

∞∑
n=0

(
n
k

)
(x− a)k (b− x)n−k

(b− a)m
tn

n!
.

From this equation, we obtain

∞∑
n=0

Ynk (x; a, b,m)
tn

n!
=

(x− a)k tk

k!(b− a)m

∞∑
n=k

(b− x)n−ktn−k

(n− k)!
.

The series on the right hand side is the Taylor series for e(b−x)t. Thus we are led to the
formula (2.4) asserted by Theorem 2.3. �

Alternative form of the generating functions for the Bernstein type basis functions
can be given as follows

(2.5)
tk (x− a)k

(b− a)mk!
= fY,k(x, t; a, b,m)e(x−b)t.

Substituting m = n in (2.1), we now give another well-known generating function for
the Bernstein basis functions:

∞∑
n=0

(
n∑
k=0

Bnk (x; a, b)tk
)
zn

n!
=

∞∑
n=0

(
n∑
k=0

(
n
k

)
tk
(
x− a
b− a

)k (
b− x
b− a

)n−k)
zn

n!
.

By using the Cauchy product in the above equation, we have

∞∑
n=0

(
n∑
k=0

Bnk (x; a, b)tk
)
zn

n!
=

∞∑
n=0

(
t
x− a
b− a

)n
zn

n!

∞∑
n=0

(
b− x
b− a

)n
zn

n!
.

From this equation, we find that

∞∑
n=0

(
n∑
k=0

Bnk (x; a, b)tk
)
zn

n!
= ez(

b−x
b−a

+t x−a
b−a ).

After some elementary calculations in the above relation, we arrive at the following
generating function for the Bernstein basis functions:

(2.6)

n∑
k=0

Bnk (x; a, b)tk =

(
b− x
b− a + t

x− a
b− a

)n
.

Remark 2. If we set a = 0 and b = 1 in (2.6), then we have

(2.7)
n∑
k=0

Bnk (x)tk = ((1− x) + tx)n .

This generating function is given by Goldman [9]-[8, Chapter 5, pp. 299-306]. Goldman
[9]-[8, Chapter 5, pp. 299-306] also constructs the following generating function for the
Bernstein basis functions:

n∑
k=0

Bnk (x)eky = ((1− x) + tey)n .
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Remark 3. If we set a = 0 and b = 1 in (2.4), we obtain a result given by Simsek
[18], Simsek et al. [19] and Acikgoz et al. [2]:

(xt)k

k!
e(1−x)t =

∞∑
n=0

Bnk (x)
tn

n!
,

so that, obviously;

Ynk (x; 0, 1, n) = Bnk (x),

where Bnk (x) denote the Bernstein basis functions.

2.2. Bernstein type polynomials. A Bernstein type polynomial P(x, a, b,m) is a
polynomial represented in the Bernstein basis functions:

(2.8) P(x, a, b,m) =

n∑
k=0

cnkYnk (x; a, b,m).

Remark 4. If we set a = 0, b = 1 and m = n in (2.8), then we have

P (x) =

n∑
k=0

cnkB
n
k (x)

(cf. [4]).

2.3. Bezier type curve. We define the Bezier type curve B(x, a, b) with control points

P0, . . . , Pn

as follows:

(2.9) B(x, a, b;m) =

n∑
k=0

PkYnk (x, a, b,m).

Remark 5. In the special case when m = n, Equation (2.9) yields the corresponding
well known results concerning the Bezier curve B(x, a, b) with control points P0, . . . , Pn
defined as follows (cf. [7]):

B(x, a, b) =

n∑
k=0

PkB
n
k (x, a, b).

2.4. Some well-known properties of the Bernstein type basis functions. Below
are some well-known properties of the Bernstein type basis functions:

Non-negative property :

(2.10) Ynk (x; a, b,m) ≥ 0, for 0 ≤ a ≤ x ≤ b.
Symmetry property :

(2.11) Ynk (x; a, b,m) = Ynn−k(b+ a− x; a, b,m).

Corner values:

(2.12) Ynk (a; a, b, n) =

{
0 if k 6= 0,
1 if k = 0,

and

(2.13) Ynk (b; a, b, n) =

{
0 if k 6= n,
1 if k = n.

Remark 6. If we set a = 0, b = 1 and m = n, then (2.10)-(2.13) reduce to Goldman’s
results [9]-[8, Chapter 5, pp. 299-306]. In [9] and [8, Chapter 5, pp. 299-306], Goldman
also gives many identities and properties for the univariate and bivariate Bernstein basis
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functions, for example boundary values, maximum values, partitions of unity, representa-
tion of monomials, representation in terms of monomials, conversion to monomial form,
linear independence, Descartes’ law of sign, discrete convolution, unimodality, subdivi-
sion, directional derivatives, integrals, Marsden identities, De Boor-Fix formulas, and the
other properties.

In the next section, by using the same method in [18], we give some functional equa-
tions. By using this equations, we find sum and alternating sum of the Bernstein basis
functions.

2.5. Sum of the Bernstein type basis functions. Using the same method proposed
in [18], we get the following functional equation:

∞∑
k=0

fY,k(x, t; a, b,m) =
e(b−a)t

(b− a)m
.

From the above equation, we have the sum of the Bernstein basis functions:

n∑
k=0

Ynk (b; a, b,m) = (b− a)n−m .

Observe that by substituting n = m into the above equation, we obtain sum of the
Bernstein basis function as follows:

n∑
k=0

Bnk (b; a, b) = 1.

2.6. Alternating sum of the Bernstein type basis functions. Using the same
method proposed in [18], we get the following functional equation:

(2.14)

∞∑
k=0

(−1)kfY,k(x, t; a, b,m) =
e(b−a−2x)t

(b− a)m
.

By using this equation, we easily arrive at the following alternating sum for the Bernstein
type basis functions:

2.4. Theorem.

(2.15)

n∑
k=0

(−1)kYnk (b; a, b,m) =
(b− a− 2x)n

(b− a)m
.

Remark 7. Substituting m = n in (2.1), we get

∞∑
n=0

(
n∑
k=0

(−1)kBnk (x; a, b, n)

)
tn

n!
=

∞∑
n=0

 n∑
k=0

(
a−x
b−a

)k (
b−x
b−a

)n−k
k!(n− k)!

 tn.

By using the Cauchy product in the above equation, we have

∞∑
n=0

(
n∑
k=0

(−1)kBnk (x; a, b)

)
tn

n!
= e(

a+b−2x
b−a )t.

From this relation, we also arrive at the following alternating sum for the Bernstein basis
functions:

n∑
k=0

(−1)kBnk (x; a, b) =

(
a+ b− 2x

b− a

)n
.
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2.7. Differentiating the generating function. Here, we give higher order derivatives
of the Bernstein type basis functions by differentiating the generating function in (2.4)
with respect to x. Using Leibnitz’s formula for the lth derivative, with respect to x, of
the product fY,k(x, t; a, b,m) of two functions

g(t, x; a, b) =
tk (x− a)k

(b− a)mk!
(a 6= b)

and

h(t, x; b) = e(b−x)t,

we obtain the following higher order partial derivative equation:

(2.16)
∂lfY,k(x, t; a, b,m)

∂xl
=

l∑
j=0

(
l
j

)(
∂jg(t, x; a, b)

∂xj

)(
∂l−jh(t, x; b)

∂xl−j

)
.

By using induction on l, Equation (2.16) is easily obtained.

2.5. Theorem. Let l be a non-negative integer. Then

∂lfY,k(x, t; a, b,m)

∂xl
=

l∑
j=0

(
l
j

)
(−1)l−j

tl

(b− a)j
fY,k−j(x, t; a, b,m− j).

Proof. By using (2.16), we easily arrive at the desired result. �

By using Theorem 2.5, we obtain higher order derivatives of the Bernstein type basis
functions by the following theorem:

2.6. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let k, l and n be nonnegative integers with n ≥ k.
Then

dlYnk (x; a, b,m)

dxl
=

n!

(n− l)!

l∑
j=0

(−1)l−j
(

l
j

) Yn−lk−j(x; a, b,m− j)
(b− a)j

.

Remark 8. Substituting a = 0, b = 1 and m = n into Theorem 2.6, we have

dlBnk (x)

dxl
=

n!

(n− l)!

l∑
j=0

(−1)l−j
(

l
j

)
Bn−lk−j(x),

Substituting l = 1 into the above equation, we have

d

dx
Bnk (x) = n

(
Bn−1
k−1 (x)−Bn−1

k (x)
)

(cf. [9], [8, Chapter 5, pp. 299-306], [18]) and (cf. [1]-[19]).

2.8. Recurrence Relation. Here, by using higher order derivatives of the novel gen-
erating function with respect to t, we derive a partial differential equation. Using this
equation, we shall give a new proof of the recurrence relation for the Bernstein type basis
functions.

Differentiating Equation (2.4) with respect to t, we prove a recurrence relation for
the Bernstein type basis functions. This recurrence relation can also be obtained from
Equation (2.1). By using Leibnitz’s formula for the vth derivative, with respect to t, of
the product fY,k(x, t; a, b,m) of two function

g(t, x; a, b) =
tk (x− a)k

(b− a)mk!
(a 6= b)
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and

h(t, x; b) = e(b−x)t,

we obtain another higher order partial differential equation as follows:

(2.17)
∂vfY,k(x, t; a, b,m)

∂tv
=

v∑
j=0

(
v
j

)(
∂jg(t, x; a, b)

∂tj

)(
∂v−jh(t, x; b)

∂tv−j

)
.

By using induction on v, Equation (2.17) is easily obtained.

2.7. Theorem. Let v be an integer number. Then

∂vfY,k(x, t; a, b,m)

∂tv
=

v∑
j=0

(b− a)v−jBvj (x; a, b)fY,k−j(x, t; a, b,m− j),

where fY,k(x, t; a, b,m) and Bvj (x; a, b) are defined in (2.4) and (2.1), respectively.

Proof. Proof of Theorem 2.7 follows immediately from (2.17). �

Using definition (2.3), (2.1), and Theorem 2.7, we obtain a recurrence relation for the
Bernstein type basis functions by the following theorem:

2.8. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let k, v and n be nonnegative integers with n ≥ k.
Then

Ynk (x; a, b,m) =

v∑
j=0

(b− a)v−jBvj (x; a, b)Yn−vk−j (x; a, b,m− j).

Remark 9. Substituting a = 0 and b = 1 into Theorem 2.8, we obtain the following
result (cf. [18]):

Bnk (x) =

v∑
j=0

Bvj (x)Bn−vk−j (x).

Substituting v = 1 into above equation, we have (cf. [1]-[19])

Bnk (x) = (1− x)Bn−1
k (x) + xBn−1

k−1 (x).

2.9. Multiplication and division by powers of (x−a
b−a )d and ( b−x

b−a )d. In [4], Buse
and Goldman present much background material on computations with Bernstein poly-
nomials. They provide formulas for multiplication and division of Bernstein polynomials
by powers of x and 1−x and for degree elevation of Bernstein polynomials. Our method
is similar to that of Buse and Goldman’s [4]. Here, we find two functional equations.
Using these equations, we also give new proofs of both the multiplication and division
properties for the Bernstein polynomials.

By using the generating function in (2.4) , we provide formulas for multiplying Bern-

stein polynomials by powers of
(
x−a
b−a

)d
and

(
b−x
b−a

)d
and for degree elevation of the

Bernstein polynomials.
Using (2.4), we obtain the following functional equation:(

x− a
b− a

)d
fY,k(x, t; a, b, n) =

(k + d)!

k!td
fY,k(x, t; a, b, n).

After elementary manipulations in this equation, we get

(2.18)

(
x− a
b− a

)d
Bnk (x; a, b) =

n!(k + d)!

k!(n+ d)!
Bn+dk+d (x; a, b).
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Substituting d = 1, we have

(2.19)

(
x− a
b− a

)
Bnk (x; a, b) =

k + 1

n+ 1
Bn+1
k+1 (x; a, b).

Remark 10. Substituting a = 0 and b = 1 into (2.19), we have

xBnk (x) =
k + 1

n+ 1
Bn+1
k+1 (x).

The above relation can also be proved by (2.2) (cf. [4]).
Similarly, using (2.1), we obtain(

b− x
b− a

)d
Bnk (x; a, b) =

n!(n+ d− k)!

(n+ d)!(n− k)!
Bn+dk (x; a, b).

Substituting d = 1 into the above equation, we have

(2.20)

(
b− x
b− a

)
Bnk (x; a, b) =

n+ 1− k
n+ 1

Bn+1
k (x; a, b).

Consequently, by the same method as in [4], if we have (2.8), then

(2.21)

(
x− a
b− a

)d
P(x, a, b) =

n∑
k=0

cnk
n!(k + d)!

k!(n+ d)!
Bn+dk+d (x; a, b),

and

(2.22)

(
b− x
b− a

)d
P(x, a, b) =

n∑
k=0

cnk
n!(n+ d− k)!

(n+ d)!(n− k)!
Bn+dk (x; a, b).

We now consider division properties. We assume that (2.8) holds and that we are given

an integer j > 0. Since
(
x−a
b−a

)j
divides Bnk (x; a, b) for all k ≥ j, it follows that

(
x−a
b−a

)j
divides P(x, a, b). Similarly, using (2.4), we obtain the following functional equation:

fY,k(x, t; a, b, n)(
x−a
b−a

)j =
(k − f)!tj

k!
fY,k−j(x, t; a, b, n− j).

For k ≥ j, from the above equation, we have

Bnk (x; a, b)(
x−a
b−a

)j =
n!(k − j)!
k!(n− j)!B

n−j
k−j (x; a, b).

By a calculation similar to that in [4], for j ≤ n− k, we have

Bnk (x; a, b)(
b−x
b−a

)j =
n!(n− j − k)!

(n− k)!(n− j)!B
n−j
k (x; a, b).

Therefore

(2.23)
P(x, a, b)(
x−a
b−a

)j =

n∑
k=j

cnk
n!(k − j)!
k!(n− j)!B

n−j
k−j (x; a, b),

and

(2.24)
P(x, a, b)(
b−x
b−a

)j =

n−j∑
k=0

cnk
n!(n− j − k)!

(n− k)!(n− j)!B
n−j
k (x; a, b).
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2.10. Degree elevation. According to Buse and Goldman [4], given a polynomial rep-
resented in the univariate Bernstein basis of degree n, degree elevation computes rep-
resentations of the same polynomial in the univariate Bernstein bases of degree greater
than n. Degree elevation allows us to add two or more Bernstein polynomials which are
not represented in the same degree Bernstein basis functions.

Adding (2.19) and (2.20), we obtain the degree elevation formula for the Bernstein
basis functions:

Bnk (x; a, b) =
k + 1

n+ 1
Bn+1
k+1 (x; a, b) +

n+ 1− k
n+ 1

Bn+1
k (x; a, b).

Substituting d = 1 into (2.22), and adding it with the latter equations gives the following
degree elevation formula for the Bernstein polynomials:

(2.25) P(x, a, b) =

n∑
k=0

(
k

n+ 1
cnk−1 +

n+ 1− k
(n+ 1)

cnk

)
Bn+1
k (x; a, b),

where

cn+1
k =

k

n+ 1
cnk−1 +

n+ 1− k
(n+ 1)

cnk .

Remark 11. If we set a = 0 and b = 1, then Equation (2.25) reduces to Equation
(2.5) in [4, p. 853].

3. Application of the Fourier and the Laplace transforms to the
generating functions

In this section, by applying the Fourier transform and the Laplace transform to the
generating function for the Bernstein basis functions, we obtain some interesting series
representations for the Bernstein basis functions.

In [18, p. 5, Eq. (11)], the following functional equation was derived:

(3.1) fB,j(xy, t) = fB,j (x, ty) et(1−y).

From this generating function, we obtain subdivision property for the Bernstein basis
functions (see [18]):

Bnj (xy) =

n∑
k=j

Bkj (x)Bnk (y)

cf. (see also [9]-[8, Chapter 5, pp. 299-306]).
By using (3.1), we obtain functional equation

fB,k(xy, t)e−t = fB,k (x, ty) e−ty.

For a = 0 and b = 1, combining (2.4) with the above equation, we get

(3.2)
∞∑
n=0

Bnk (xy)
tn

n!
e−t =

∞∑
n=0

Bnk (x)yn
tn

n!
e−ty.

Integrate this equation (by parts) with respect to t from 0 to ∞, we get

∞∑
n=0

Bnk (xy)

n!

∞∫
0

tne−tdt =

∞∑
n=0

Bnk (x)yn

n!

∞∫
0

tne−tydt.

By using the Laplace transform in the above equation, we arrive at the following Theorem:
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3.1. Theorem. Let x, y ∈ [0, 1]. The following relationship holds true:

∞∑
n=0

Bnk (xy) =

∞∑
n=0

1

y
Bnk (x).

From (2.4), we define the following functional equation:

tk (x− a)k

(b− a)mk!
e−xt =

∞∑
n=0

Ynk (x; a, b,m)
tn

n!
e−bt.

By applying the Fourier transform to the above equation,

(x− a)k

(b− a)mk!

∞∫
0

tke−xte−istdt =

∞∑
n=0

Ynk (x; a, b,m)
1

n!

∞∫
0

tne−bte−istdt.

From this equation, we arrive at the following Theorem:

3.2. Theorem. Let x ∈ [a, b] and s ∈ R. We have

∞∑
n=0

Ynk (x; a, b,m)

(b+ is)n+1 =
(x− a)k

(b− a)m (x+ is)k+1
,

where
∣∣∣ b−xb+is

∣∣∣ < 1.

4. New Identities

By using novel generating functions, we derive some new identities related to the
Bernstein type basis function.

4.1. Theorem.

n∑
j=0

j∑
k=0

(−1)k
(
n
j

)
Yjk(x; a, b,m) (2x)n−j = (b− a)n−m .

Proof. By using (2.14), we obtain

(4.1)

∞∑
k=0

(−1)kfY,k(x, t; a, b,m)e2xt =
1

(b− a)m
e(b−a)t.

From this equation, we get

∞∑
n=0

n∑
k=0

(−1)kYnk (x; a, b,m)
tn

n!

∞∑
n=0

(2x)n
tn

n!
=

∞∑
n=0

(b− a)n−m
tn

n!
.

Therefore

∞∑
n=0

(
n∑
j=0

j∑
k=0

(−1)k
(
n
j

)
Yjk(x; a, b,m) (2x)n−j

)
tn

n!
=

∞∑
n=0

(b− a)n−m
tn

n!
.

Comparing the coefficients of tn

n!
on the both sides of the above equation, we arrive at

the the desired result. �

4.2. Theorem.
n∑
k=j

(−1)n−k
(
n
k

)
Bkj (xy) = yn

n∑
k=j

(−1)n−k
(
n
k

)
Bkj (x).
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Proof. Using (3.2), we obtain

∞∑
n=0

Bnk (xy)
tn

n!

∞∑
n=0

(−1)n
tn

n!
=

∞∑
n=0

Bnk (x)yn
tn

n!

∞∑
n=0

(−y)n
tn

n!
.

From the above equation, we get

∞∑
n=j

 n∑
k=j

(−1)n−k
(
n
k

)
Bkj (xy)

 tn

n!
=

∞∑
n=j

yn n∑
k=j

(−1)n−k
(
n
k

)
Bkj (x)

 tn

n!
.

Comparing the coefficients of tn

n!
on the both sides of the above equation, we arrive at

the the desired result. �

5. Further remarks and observations on the generating functions
fY,k(x, t; a, b,m), Poisson distribution and Szasz-Mirakjan type
basis functions

The identity of Jetter and Stöckler represents a pointwise orthogonality relation for
the multivariate Bernstein polynomials on a simplex. This identity give us a new rep-
resentation for the dual basis which can be used to construct general quasi-interpolant
operators (cf., see, for details, [10] and [1]). As an application of the generating functions
for the basis functions to the identity of Jetter and Stöckler, Abel and Li [1] proved
Proposition 5.1, which is given in this section. Applying our generating functions to
Proposition 5.1, we give pointwise orthogonality relations for the Bernstein polynomials
and the Szasz-Mirakjan basis functions.

In this section, we give relations between the Bernstein basis functions, the binomial
distribution and the Poisson distribution. First we consider the generalized binomial or
Newton distribution (probability function). Suppose that 0 ≤ x−a

b−a ≤ 1 and 0 ≤ b−x
b−a ≤ 1.

Set

(5.1) Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k
.

Remark 12. If we set a = 0 and b = 1, then (5.1) reduces to

Bnk (x) =

(
n
k

)
xk(1− x)n−k

which is the binomial or Newton distribution (probabilities) function. If 0 ≤ x ≤ 1 is
the probability of an event E, then Bnk (x) is the probability that E will occur exactly k
times in n independent trials (cf. [13]).

Expected value or mean and variance of Bnk (x; a, b) are given by

µ =
n∑
k=0

kBnk (x; a, b) = n

(
x− a
b− a

)
,

and

σ2 =

n∑
k=0

k2Bnk (x; a, b)− µ2 =
n (x− a) (b− x)

(b− a)2
.

If we let n→∞ in (5.1), then we arrive at the well-known Poisson distribution:

(5.2) Bnk

(
b− a
n

µ+ a; a, b

)
→ µke−µ

k!
.

The following proposition is proved by Abel and Li [1, p. 300, Proposition 3]:
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5.1. Proposition. Let the system {fn(x)} of functions be defined by the generating
function

At(x) =

∞∑
n=0

fn(x)tn.

If there exists a sequence wk = wk(x) such that

∞∑
k=0

wkD
kAt(x)DkAz(x) = Atz(x)

with D = d
dx

, then we have

∞∑
k=0

wkD
kfi(x)Dkfj(x) = δi,jfi(x), (i, j = 0, 1, . . .) .

As an application of Proposition 5.1, Abel and Li [1] use the generating function in
Equation (2.7) for the Bernstein basis functions. They also use generating functions for
the Szasz-Mirakjan basis functions and Baskakov basis functions.

In this section, we apply our novel generating functions to Proposition 5.1, which give
pointwise orthogonality relations for the Bernstein polynomials and the Szasz-Mirakjan
type basis functions, respectively.

As applications of Proposition 5.1, we give the following examples:
Example 1. For given n and k, the Bernstein basis functions

fk(x, n; a, b) = Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k
are generated by the function in (2.4), that is

At(x) =
tk (x− a)k e(b−x)t

(b− a)nk!
=

∞∑
k=0

fk(x, n; a, b)

k!
tk.

It is easy to check that Proposition 5.1 holds with wk = wk(x) = Bnk (x; a, b).
Example 2. Using (5.2), for j ≥ 0, we generalize the Szasz-Mirakjan type basis

functions as follows

fj(x, n; a, b) =
(nx−a

b−a )je−n
x−a
b−a

j!
,

where a and b are nonnegative real parameters with a 6= b, n is a positive integer and
x ∈ [a, b]. The functions fj(x, n; a, b) are generated by

At(x) = exp

(
(t− 1)n

(
x− a
b− a

))
=
∞∑
i=0

fi(x, n; a, b)ti,

where exp(x) = ex. In this case, Proposition 5.1 holds with wk = wk(x) =
( x−a

b−a )k

nkk!
.

Therefore, we have

∞∑
k=0

(
x−a
b−a

)k
nkk!

D
kfi(x, n; a, b)Dkfj(x, n; a, b) = δi,jfi(x, n; a, b).

Remark 13. If a = 0 and b = 1 in Example 2, then we arrive at the Szasz-Mirakjan
basis functions which are given in [1, p. 300, Example 2].
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