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Abstract: In this paper, we investigated the ruled surfaces in the three-dimensional pseudo-Galilean space. We obtained the dis-
tribution parameter of the ruled surface by using the Frenet frame of directrix curve. Moreover, we derived the necessary conditions
to construct a developable ruled surface in the pseudo-Galilean space.

Keyword: Developable, Distribution parameter, Pseudo-Galilean space, Ruled surface.

1 Introduction

A surface formed by a one-parameter family of straight lines is called a ruled surface. The ruled surfaces are one of the most important topics
of the differential geometry since, the ruled surfaces appear in many different areas such as geometric design and manufacturing [6, 7, 9, 11],
tool path planning and robot motion planning [13]. So, many geometers studied on the ruled surfaces in different spaces such as Minkowski
and Galilean. Turgut and Hacısalihoglu [14, 15] defined timelike ruled surfaces and obtained some properties in the Minkowski space. Yaylı
[17] obtained the distribution parameter of a spacelike ruled surface with respect to Frenet frame. O. Röschel [12] introduced the ruled surfaces
in the Galilean space. He classified ruled surfaces into three types in the Galilean space. After that, Kamenarovic [8] obtained the defining
equations for the ruled surfaces of types A, B and C in the Galilean space. Divjak and Milin-Sipus [4, 5] calculated the special curves on the
ruled surfaces in the Galilean and pseudo-Galilean spaces. Recently, Milin-Sipus [10] investigated the ruled Weingarten surfaces in the Galilean
space.

The pseudo-Galilean space is a Cayley-Klein space equipped with the projective metric of signature (0, 0,+,−). The absolute figure of the
pseudo-Galilean geometry consists of an ordered triple {ω, f, I}, where ω is the real (absolute) plane, f is the real line (absolute line) in ω. I
is the fixed hyperbolic involution of points of f . More information can be found in [1–3, 6, 16].

Definition 1.1. Let a = (a1, a2, a3) and b = (b1, b2, b3) be vectors in the pseudo-Galilean space. The scalar product is given by

< a,b >= a1b1. (1)

The scalar product of two isotropic vectors p = (0, p2, p3) and q = (0, q2, q3) is given by

< p,q >1= p2q2 − p3q3. (2)

Definition 1.2. The isotropic angle measure ϑ between two vectors u = (1, u2, u3) and v = (1, v2, v3) is defined by

ϑ = ‖u− v‖1 =
√
|(u2 − v2)2 − (u3 − v3)2|. (3)

On the otherhand, the angle measure between two isotropic vectors p = (0, p2, p3) and q = (0, q2, q3) is given by

cosh θ =
< p,q >1

‖p‖1 ‖q‖1
. (4)

Definition 1.3. An admissible curve c is given by the parametrization

r(u) = (u, y(u), z(u)). (5)

The Frenet frame is given by
t = (1, y′(u), z′(u))

n =
1

κ
(0, y′′(u), z′′(u))

b =
1

κ
(0, z′′(u), y′′(u))
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where κ =
√
|y′′2 − z′′2| is the curvature.

Frenet formulas are given by

d

dx

 t
n
b

 =

 0 κ 0
0 0 τ
0 τ 0

 t
n
b

 (6)

where τ =
1

κ2
det[r′, r′′, r′′′] is the torsion.

There are there types of the ruled surfaces in the pseudo-Galilean space.
Definition 1.4. A ruled surface of type A is parametrized by

ΦA(x, u) = m(x) + ua(x) (7)

where the directrix curve m(x) = (x, y(x), z(x)) does not lie in an pseudo-Euclidean plane and the generator a(x) = (1, a2(x), a3(x)) is
non-isotropic.

Definition 1.5. A ruled surface of type B can be parametrized by

ΦB(x, u) = r(x) + ua(x) (8)

where the directrix curve r(x) = (0, y(x), z(x)) lies in an pseudo-Euclidean plane and a(x) = (1, a2(x), a3(x)) is the generator.
Definition 1.6. A ruled surface of type C is given by the parametrization

ΦC(x, u) = n(x) + uk(x) (9)

where the directrix n(x) = (x, y(x), 0) lies in an isotropic plane and the generator k(x) = (0, a2(x), a3(x)) is isotropic.
The ruled surfaces of type B and C are the special case of the ruled surfaces of type A. Moreover, the distribution parameters of the ruled

surfaces of type B and C never vanish since, there are not developable ruled surfaces of type B and C. Hence, we omit them in this study.

2 Ruled surface of type A

The natural frame of the ruled surface of type A is defined by

e1(x) = (1, a2(x), a3(x))

e2(x) =
1

κ
(0, a′2(x), a′3(x))

e3(x) =
1

κ
(0, a′3(x), a′2(x))

(10)

where κ =
√∣∣a′22 − a′32∣∣.

Frenet formulas are given as follows

d

dx

 e1
e2
e3

 =

 0 κ 0
0 0 τ
0 τ 0

 e1
e2
e3

 (11)

where τ =
det(a,a′,a′′)

κ2
is called the torsion.

The parameter of distribution d is given by

d =
det(m′,a,a′)
〈a′,a′〉1

. (12)

The striction curve of the ruled surface of type A can be given by

s(x) = m(x) + u(x)a(x)

where

u(x) =

〈
a−m′,a′

〉
1

〈a′,a′〉1
. (13)

Using the directrix curve m(x) of the ruled surface of type A, we can define an another moving frame which is called the Frenet frame
{t,n,b} . The Frenet frame can be given in the following form

t = (1, y′(x), z′(x))

n =
1

κ∗
(0, y′′(x), z′′(x))

b =
1

κ∗
(0, z′′(x), y′′(x))

(14)

where κ∗ =
√
|y′′2 − z′′2|.
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Frenet formulas are obtained by

d

dx

 t
n
b

 =

 0 κ∗ 0
0 0 τ∗

0 τ∗ 0

 t
n
b

 (15)

where τ∗ =
1

κ∗2
det[m′(x),m′′(x),m′′′(x)].

The two moving coordinate systems {t,n,b} and {e1, e2, e3} are orthogonal coordinate systems in the pseudo-Galilean space which
represent the moving space H and the fixed space H ′, respectively.

CASE 1 Assume that spine curve γ(u) is an admissible spacelike curve with a timelike normal vector n. Therefore, the binormal b is a
spacelike vector.

Theorem 2.1. Let {t,n,b} and {e1, e2, e3} be two orthogonal coordinate systems along the ruled surface of type A. The distribution
parameter can be given by

d =
τ∗(x23 − x22) + κ∗x3
x22τ
∗2 − (κ∗ − x3τ∗)2

. (16)

Proof: The generator vector a(x) of the ruled surface of type A can be written in terms of Frenet frame base vectors {t,n,b} as follows

a = x1t + x2n + x3b (17)

where x1, x2, x3 ∈ R.
Using (1) and (17) it is easy to see that

〈a, t〉 = x1 = 1. (18)

Since n and b are isotropic vectors, it is convenient to rewrite (17) in the following form

a− t = x2n + x3b.

Then, using (2) gives

x2 = −〈a− t,n〉1 (19)

and

x3 = 〈a− t,b〉1 . (20)

In addition, differentiating (17) then, substituting (15) into the result gives

a′ = (κ∗ + x3τ
∗)n + x2τ

∗b. (21)

From (12), (17) and (21), we have the distribution parameter of the ruled surface of type A in the following form

d =
τ∗(x23 − x22) + κ∗x3
x22τ
∗2 − (κ∗ − x3τ∗)2

. (22)

A ruled surface is said to be developable if and only if the parameter of distribution d is zero. Hence, we state the following corollary:
Corollary 2.1. The ruled surface of type A is developable, if and only if the directrix curve is a helix with the following Frenet curvatures

κ∗

τ∗
=
x22 − x23
x3

. (23)

Theorem 2.2. Let {t,n,b} and {e1, e2, e3} be two orthogonal coordinate systems along the ruled surface of type A. The relation matrix
between the two moving coordinate systems {t,n,b} and {e1, e2, e3} are given by

 e1
e2
e3

 =

 1
κ sinφ

τ∗
κ∗ − κ cosφ

τ∗
0 cosφ sinφ
0 − sinφ cosφ


 t

n
b

 (24)

where φ is the pseudo-Euclidean angle between the vectors e2 and n.
Proof: It is easy to see that combining (21) and a′ = κe2 gives

e2 = (
κ∗ + x3τ

∗

κ
)n +

x2τ
∗

κ
b. (25)

This last equation implies that e2 is on the normal plane spanned by {n,b} . Since the isotropic vectors are on the pseudo-Euclidean planes
in the pseudo-Galilean space. we can define the hyperbolic angle between the isotropic vectors. In order to obtain the relationship between the
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natural and Frenet frames. Let φ be the hyperbolic angle between the timelike isotropic vectors e2 and n, we have

e2 = coshφn + sinhφb. (26)

It is easy to see that
e3 = sinhφn + coshφb. (27)

From (25), (26) and (27), we have

x2 =
κ sinhφ

τ∗
(28)

and

x3 =
−κ∗ + κ coshφ

τ∗
. (29)

Substituting (28) and (29) into (17) gives

a = t +
κ sinhφ

τ∗
n +
−κ∗ + κ coshφ

τ∗
b. (30)

We may express the results in the following matrix form as e1
e2
e3

 =

 1
κ sinhφ

τ∗
−κ∗ + κ coshφ

τ∗
0 coshφ sinhφ
0 sinhφ coshφ


 t

n
b

 . (31)

Combining (26) and a′ = κe2, we obtain
a′ = κ coshφn + κ sinhφb. (32)

Corollary 2.2. From (12), (30) and (32), the distribution parameter of the ruled surface of type A is obtained by

d =
κ− κ∗ coshφ

τ∗κ
. (33)

Corollary 2.3. The ruled surface of type A is developable, if and only if there is a relation between κ and κ∗ in the following form

κ = κ∗ coshφ. (34)

Theorem 2.3. The striction curve of the ruled surface of type A can be given by

s(x) = m(x) +
κ∗ sinφ

κτ∗
a(x). (35)

Proof: Substituting (28) and (29) into (17) gives

u(x) =
κ∗ sinhφ

κτ∗
(36)

and we obtain the equation (35).

3 Examples

Example 3.1. Let the ruled surface of type A be given by the parametrization

ΦA(x, u) = (x, 2 sinhx, 2 coshx) + u((1, 3 coshx+
√

3 sinhx, 3 sinhx+
√

3 coshx)). (37)

The natural frame is obtained by
e1 = (1, 3 coshx+

√
3 sinhx, 3 sinhx+

√
3 coshx)

e2 = (0, 3 sinhx+
√

3 coshx, 3 coshx+
√

3 sinhx)

e3 = (0, 3 coshx+
√

3 sinhx, 3 sinhx+
√

3 coshx)

. (38)

The Frenet frame is
t = (1, 2 coshx, 2 sinhx)

n = (0, sinhx, coshx)

b = (0, coshx, sinhx)

(39)

where κ∗ = 2, τ∗ = 1.
From (19) and (20), we have

x1 = 1, x2 =
√

3, x3 = 1

It follows that
κ∗

τ∗
=
x22 − x23
x3

= 2.

Thus this is a developable ruled surface of type A shown in Fig. 1.

c© CPOST 2019 151



Fig. 1: A developable ruled surface of type A
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