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Abstract

The aim of our study is prove that the presence of the internal state
variables in a thermoelastic dipolar body do not influence the unique-
ness of solution. After the mixed initial boundary value problem in
this context is formulated, we use the Gronwall’s inequality to prove
the uniqueness of solution of this problem.
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1. Introduction

Interest to consider the internal state variables as a means to estimate mechanical
properties has grown rapidly in recent years.

The theories of internal state variables in different kind of materials represent a ma-
terial length scale and are quite sufficient for a large number of the solid mechanics
applications.

The internal state variables are the smallest possible subset of system variables that
can represent the entire state of the system at any given time. The minimum number of
state variables required to represent a given system, n, is usually equal to the order of
the differential equations system’s defining. If the system is represented in the transfer
function form, the minimum number of state variables is equal to the order of the transfer
function’s denominator after it has been reduced to a proper fraction. It is important
to understand that converting a state space realization to a transfer function form may
lose some internal information about the system, and may provide a description of a
system which is stable, when the state-space realization is unstable at certain points.
For instance, in the electric circuits, the number of state variables is often, though not
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always, the same as the number of energy storage elements in the circuit such as capacitors
and inductors.

The theory of bodies with internal state variables has been first formulated for the
thermo-viscoelastic materials (see, for instance Chirita [3]). Then the internal state
variables has been considered for different kind of materials.

The study [9] of Nachlinger and Nunziato is dedicated to the internal state variables
approach of finite deformations without heat conduction in the one-dimensional case.

In the paper [12] the authors describe how the so-called Bammann internal state vari-
able constitutive approach, which has proven highly successful in modelling deformation
processes in metals, can be applied with great benefit to silicate rocks and other geolog-
ical materials in modelling their deformation dynamics. In its essence, the internal state
variables theory provides a constitutive framework to account for changing history states
that arise from inelastic dissipative microstructural evolution of a polycrystalline solid.

A thermodynamically consistent framework is proposed for modeling the hysteresis
of capillarity in partially saturated porous media in the paper [14]. Capillary hysteresis
is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of
internal state variables. The volume fractions of pore fluids are assumed to be additively
decomposed into a reversible part and an irreversible part. The irreversible part of the
volumetric moisture content is introduced as one of the internal variables. It is shown
that the pumping effect occurring in a porous medium experiencing a wetting/drying
cycle is thermodynamically admissible.

The paper [2] presents the formulation of a constitutive model for amorphous ther-
moplastics using a thermodynamic approach with physically motivated internal state
variables. The formulation follows current internal state variable methodologies used for
metals and departs from the spring-dashpot representation generally used to characterize
the mechanical behavior of polymers.

Anand and Gurtin develop in the paper [1] a continuum theory for the elastic-viscoplastic
deformation of amorphous solids such as polymeric and metallic glasses. Introducing
an internal-state variable that represents the local free-volume associated with certain
metastable states, the authors are able to capture the highly non-linear stress-strain
behavior that precedes the yield-peak and gives rise to post-yield strain softening.

In the study [13], is presented a formulation of state variable based gradient theory to
model damage evolution and alleviate numerical instability associated within the post-
bifurcation regime. This proposed theory is developed using basic microforce balance
laws and appropriate state variables within a consistent thermodynamic framework. The
proposed theory provides a strong coupling and consistent framework to prescribe energy
storage and dissipation associated with internal damage. For other paper in this topic,
see [10], [11].

Other results on some generalizations of thermoelastic bodies can be found in the
papers [4]-[8].

2. Basic equations

Let us consider B be an open region of three-dimensional Euclidean space R3 occupied,
at time t = 0, by the reference configuration of a thermoelastic dipolar body with internal
state variables.

We assume that the boundary of the domain B, denoted by ∂B, is a closed, bounded
and piece-wise smooth surface which allows us the application of the divergence theorem.
A fixed system of rectangular Cartesian axes is used and we adopt the Cartesian tensor
notations. The points in B are denoted by (xi) or (x). The variable t is the time
and t ∈ [0, t0). We shall employ the usual summation over repeated subscripts while
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subsripts preceded by a comma denote the partial differentiation with respect to the
spatial argument. Also, we use a superposed dot to denote the partial differentiation
with respect to t. The Latin indices are understood to range over the integers (1, 2, 3),
while the Greek subsripts have the range 1, 2, . . . , n.

In the following we designate by ni the components of the outward unit normal to the
surface ∂B. The closure of the domain B, denoted by B̄, means B̄ = B ∪ ∂B.

Also, the spatial argument and the time argument of a function will be ommited when
there is no likelihood of confusion.

The behaviour of a thermoelastic dipolar body is characterized by the following kine-
matic variables:

ui = ui(x, t), ϕjk = ϕjk(x, t), (x, t) ∈ B × [0, t0)

where ui are the components of the displacement field and ϕjk - the components of the
dipolar displacement field.

The fundamental system of field equations, in the theory of dipolar thermoelastic
bodies with internal state variables, consists of:

- the equations of motion:

(τij + ηij),j + %Fi = %üi,

µijk,i + σjk + %Gjk = Ikrϕ̈jr;(2.1)

- the energy equation:

T0η̇ = qi,i + %r;(2.2)

- the constitutive equations:

τij = Cijmn εmn +Gmnij γmn + Fmnrij κmnr −Bij θ +Bijα ωα,

σij = Gijmn εmn +Bijmn γmn +Dijmnr κmnr −Dij θ +Dijα ωα,

µijk = Fijkmn εmn +Dmnijk γmn +Amnrijk κmnr − Fijk θ + Fijkα ωα,(2.3)

η = Bij εij +Dij γij + Fijs κijs − a θ −Gα ωα,
qi = aijk εjk + bijk γjk + cijsm κjsm + di θ + fiα ωα +Kij θ, j ;

- the geometric equations:

εij =
1

2
(uj,i + ui,j) , γij = uj,i − ϕij ,

κijk = ϕjk,i.(2.4)

Usually, the internal state variables are denoted by ξα, α = 1, 2, . . . , n. In the
linear theory, we denote by ωα the internal state variables measured from the internal
state variables ξ0α of the initial state. Also, the temperature θ represents the difference
between the absolute temperature T and the temperature T0, T0 > 0, of the initial state.
Thus we have:

ξα = ξ0α + ωα, T = T0 + θ.(2.5)

Within the linear approximation, from the entropy production inequality, it follows
(see, for instance, [1]):

ω̇α = fα,(2.6)

where

fα = gijαεij + hijαγij + lijkακijk + pαθ + qαβωβ + riαθ, i.(2.7)

The other notations used in the above equations have the following meanings:
- % - the constant mass density;
- τij , σij , µijk - the components of the stress tensors;
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- Iij - the coefficients of inertia;
- Fi - the components of body force per unit mass;
- Gjk - the components of dipolar body force per unit mass;
- r - the heat supply per unit mass and unit time;
- η - the entropy per unit mass;
- qi - the components of the heat flux;
- εij , γij , κijk - the kinematic characteristics of the strain tensors.
The above coefficients Cijmn, Bijmn, . . . , Dijm, Eijm, . . . , aijk, . . . , gijα, . . . , riα are

functions of x and characterize the thermoelastic properties of the material with internal
state variable (the constitutive coefficients). For a homogeneous medium these quantities
are constants. The constitutive coefficients obey to the following symmetry relations

Cijmn = Cmnij = Cijnm, Bijmn = Bmnij ,

Gijmn = Gijnm, Fijkmn = Fijknm, Aijkmnr = Amnrijk,(2.8)

Bij = Bji, aijk = aikj , Kij = Kji, gijα = gjiα.

We supplement the above equations with the following initial conditions

ui (xs, 0) = u0i (xs) , u̇i (xs, 0) = u1i (xs) ,

ϕij (xs, 0) = ϕ0ij (xs) , ϕ̇ij (xs, 0) = ϕ1ij (xs) ,(2.9)

θ (xs, 0) = θ0 (xs) , ωα (xs, 0) = ω0α (xs) , (xs) ∈ B
and the prescribed boundary conditions

ui = ũi, on ∂B1 × [0, t0] , ti ≡ (τij + σij)nj = t̃i, on ∂B2 × [0, t0] ,

ϕij = ϕ̃ij , on ∂B3 × [0, t0] , µjk ≡ µijkni = µ̃jk, on ∂B4 × [0, t0] ,(2.10)

θ = θ̃, on ∂B5 × [0, t0] , q ≡ qini = q̃, on ∂B6 × [0, t0] .

Here ∂B1, ∂B3, ∂B5 and ∂B2, ∂B4, ∂B6 are subsets of the boundary ∂B which satisfay
the relations

∂B1 ∪ ∂B2 = ∂B3 ∪ ∂B4 = ∂B5 ∪ ∂B6 = ∂B

∂B1 ∩ ∂B2 = ∂B3 ∩ ∂B4 = ∂B5 ∩ ∂B6 = ∅

In the above conditions 2.9 and 2.10, the functions u0i, u1i, ϕ0ij , ϕ1ij , θ0 ω0α, ũi, t̃i,

ϕ̃ij , µ̃jk, θ̃ and q̃ are prescribed in their domain of definition.
In conclusion, the mixed initial boundary value problem of the thermoelasticity of

dipolar bodies with internal variables consists of the equations (2.1), (2.2) and (2.6), the
initial conditions (2.9) and the boundary conditions (2.10).

By a solution of this problem we mean a state of deformation (ui, ϕij , θ, ωα) satis-
fying the Eqns. (2.1), (2.2) and (2.6) and the conditions (2.9) and (2.10).

3. Main results

In the main section of our paper we will deduce some estimations and then, as a
consequence, we obtain in simple manner the uniqueness theorem of the solution of the
above problem.
In order to prove these results, we shall need the following assumptions

- (i) the mass density % is strictly positive, i.e.

% (xs) ≥ %0 > 0, on B;

- (ii) there exists a positive constant λ1 such that

Iijξiξj ≥ λ1ξiξi, ∀ ξi;
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- (iii) the specific heat a from (3)4 is strictly positive, i.e.

a (xs) ≥ a0 > 0, on B;

- (iv) the constitutive tensors Cijmn, Bijmn and Aijkmnr are positive definite:∫
B

Cijmn ξij ξmn dv ≥ λ2

∫
B

ξij ξij dv, ∀ ξij∫
B

Bijmn ξij ξmn dv ≥ λ3

∫
B

ξij ξij dv, ∀ ξij∫
B

Aijkmnr ξijk ξmnr dv ≥ λ4

∫
B

ξijk ξijk dv, ∀ ξijk

where λ2, λ3 and λ4 are positive constants;
- (v) the symmetric part K̃ij of the thermal conductivity tensor Kij is positive definite,

in the sense that there exists a positive constant µ such that∫
B

K̃ij ξi ξj dv ≥ µ
∫
B

ξi ξi dv, for all vectors ξi.

Let us consider(
u
(ν)
i , ϕ

(ν)
ij , θ

(ν), ω(ν)
α

)
, ν = 1, 2

two solutions of our initial boundary value problem.
Because of the linearity of the problem, their difference is also solution of the problem.

We denote by (vi, ψij , κ, wα) the differences,

vi = u
(2)
i − u

(1)
i , ψi = ϕ

(2)
ij − ϕ

(1)
ij , κ = θ(2) − θ(1), wα = ω(2)

α − ω(1)
α

In order to prove the desired uniquness theorem, it suffice to prove that the above
considered problem, consists of the equations (2.1), (2.2) and (2.6) and the conditions
(2.9) and (2.10), in which

Fi = Gjk = r = 0

u0i = u1i = ϕ0ij = ϕ1ij = θ0 = ω0α = 0

and

ũi = t̃iϕ̃ij = µ̃ij = θ̃ = q̃ = 0

imply that

ui = ϕij = θ = ωα = 0,

in B × [0, t0], provided that the hypotheses (i) - (v) hold.
Therefore, we consider the new problem P0 defined by the following equations

(τij + σij),j = %üi,

µijk,i + σjk = Ikrϕ̈jr(3.1)

T0η̇ = qi,i(3.2)

ω̇α = fα,(3.3)

with the initial conditions

ui (xs, 0) = 0, u̇i (xs, 0) = 0, ϕij (xs, 0) = 0,

ϕ̇ij (xs, 0) = 0, θ (xs, 0) = 0, ωα (xs, 0) = 0, (xs) ∈ B(3.4)
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and the boundary conditions

ui = 0, on ∂B1 × [0, t0] , ti ≡ (τij + σij)nj = 0, on ∂B2 × [0, t0] ,

ϕij = 0, on ∂B3 × [0, t0] , µjk ≡ µijkni = 0, on ∂B4 × [0, t0] ,(3.5)

θ = 0, on ∂B5 × [0, t0] , q ≡ qini = 0, on ∂B6 × [0, t0] .

To these equations and conditions we adjoin the constitutive relations (2.3) and (2.7).
In order to prove that the problem P0 admits the null solution, we will show that the
function y(t) defined by

y(t) =

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijrκijr + θ2 + ωαωα

)
dV

vanishes on [0, t0].
To this aim, we first prove some useful estimations.

3.1. Theorem. If the ordered array (ui, ϕij , θ, ωα) is a solution of the problem P0,
then the following relation hold

1

2

∫
B

(Cijmnεijεmn + 2Gijmnεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr + 2Bijαεijωα+

+2Dijαγijωα + 2Fijrακijrωα + aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)
dV =(3.6) ∫ t

0

∫
B

[
(Bijαεij +Dijαγij + Fijrακijr) ω̇α −

1

T0
qiθ,i

]
dV ds.

Proof. By using the constitutive equations (2.3) and the symmetry relations (2.8), we
obtain

τij u̇j,i + σij γ̇ij + µijsκ̇ijs =

1

2

∂

∂t
(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+(3.7)

+2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα + aθ2
)
−

−Bijαεijω̇α −Dijαγijω̇α − Fijsακijsω̇α −Gαθω̇α.

On the other hand, in view of (3.1) and (3.2) we deduce:

τij u̇j,i + σij γ̇ij + µijsκ̇ijs =

=

[
(τij + σij) u̇j + µijsϕ̇js +

1

T0
qiθ

]
,i

−(3.8)

−1

2

∂

∂t
(%u̇iu̇i + Ikrϕ̇jrϕ̇jk)− 1

T0
qiθ,i
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From the equalities (3.7) and (3.8) we have

1

2

∂

∂t
(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+

+2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα+

+aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)

=(3.9)

=

[
(τij + σij) u̇j + µijsϕ̇js +

1

T0
qiθ

]
, i

− 1

T0
qiθ, i+

+ (Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α

Now, we integrate relation (3.9) over the domain B. By using the divergence theorem
and the boundary conditions (3.5), we conclude that

1

2

∂

∂t

∫
B

(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+

2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα+(3.10)

+aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)
dV =∫

B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α −

1

T0
qiθ, i

]
dV.

Finally, we integrate the equality (20) from 0 to t and, by using the initial condition
(3.4), we arrive at the desired result (3.6). �

3.2. Theorem. Let (ui, ϕij , θ, ωα) be a solution of the problem P0. Then there exists
the positive constants m1 and m2 such that the following relation hold∫

B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α −

1

T0
qiθ, i

]
dV ≤

≤ −m1

∫
B

θ, iθ, jdV +m2

∫
B

(
εijεij + γijγij + κijsκijs + θ2 + ωαωα

)
dV.(3.11)

Proof. Taking into account the relations (2.6), (2.7) and (2.3)5, we can write:∫
B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α −

1

T0
qiθ, i

]
dV =∫

B

[(Bijαεij +Dijαγij + Fijsακijs +Gαθ) (gijαεij + hijαγij+

+lijsακijs + pαθ + qαβωβ + riαθ, i)−

− 1

T0
(aijkεjk + bijγjk + cijsmκjsm + diθ + fiαωα +Kijθ, j) θ, i

]
dV =

−
∫
B

1

T0
Kijθ, iθ, jdV +

∫
B

(Bijεijθ + Dijγijθ + Fijsκijsθ+(3.12)

Mθ2 + Lαωαθ + Diθθ, i + Cijmnεijεmn + Dijmnεijγmn+

Fijmnrεijκmnr + Bijαεijωα + Bijkεijθ, k + Bijmnγijγmn+

Dijmnrγijκmnr + Dijαγijωα + Dijkγijθ, k + Aijsmnrκijsκmnr+

+Fijsακijsωα + Fijsmκijsθ, m + Piαωαθ, i) dV,
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where we have used the following notations

Aijsmnr =
1

2
(Fijkαlmnrα + Fmnrαlijkα) , Cijmn =

1

2
(Bijαgmnα +Bmnαgijα) ,

Bij = Bijαpα +Gαgijα, Bijα = Bijβqβα, Bijk = Bijαγkα −
1

T0
akji

Dij = Dijαpα +Gαhijα, Di = Gαriα −
1

T0
di, Dijα = Dijβqβα,(3.13)

Dijk = Dijαrkα −
1

T0
bkij , Fijmnr = Dijαlmnrα + Fijkαhmnα,

Fijk = Gαlijkα + Fijkαpα, Fijkα = Fijkβqβα, Fijkm = Fijkαrmα −
1

T0
cmijk,

Dijmn = Bijαhmnα +Dmnαgijα, Lα = Gβqβα, M = Gαpα, Piα = − 1

T0
fiα.

By using the Schwarz’s inequality and the arithmetic - geometric mean inequality

ab ≤ 1

2

(
a2

π2
+ b2π2

)
(3.14)

to the last term in the relation (3.12), we are lead to∫
B

[
(Bijα εij +Dijα γij + Fijsα κijs +Gα θ) ω̇α −

1

T0
qi θ, i

]
dV ≤

≤
(
−2µ+ π2

1 + π2
2 + π2

3 + π2
4 + π2

5

) ∫
B

θ, i θ, idV+(
M2

2

π2
2

+M2
6 +M2

11 +M2
12 +M2

13 +M2
14

)∫
B

εij εijdV+(
M2

3

π2
3

+M2
7 +M2

15 +M2
16 +M2

17 + 1

)∫
B

γij γijdV+(3.15) (
M2

4

π2
4

+M2
8 +M2

18 +M2
19 + 2

)∫
B

κijs κijsdV+(
M2

5

π2
5

+M2
10 + 3

)∫
B

ωα ωαdV +

(
M2

1

π2
1

+M2
9 + 4

)∫
B

θ2dV,

where π1, π2, π3, π4 and π5 are arbitrary positive constants. Also, in the inequality
(3.15) we have used the notations

M2
1 = max (Di Di) (xs) , M

2
2 = max (Bijk Bijk) (xs) ,

M2
3 = max (Dijk Dijk) (xs) , M

2
4 = max (Fijkm Fijkm) (xs) ,

M2
5 = max (Piα Piα) (xs) , M

2
6 = max (Bij Bij) (xs) ,

M2
7 = max (Dij Dij) (xs) , M

2
8 = max (Fijk Fijk) (xs) ,

M2
9 = 2 max |M (xs)| , M2

10 = max (Lα Lα) (xs) ,(3.16)

M2
11 = 2 max [(CijmnCijmn) (xs)]

1/2 , M2
12 = max (Dijmn Dijmn) (xs) ,

M2
13 = max (Dijmnr Dijmnr) (xs) , M

2
14 = max (Bijα Bijα) (xs) ,

M2
15 = 2 max [(BijmnBijmn) (xs)]

1/2 ,M2
16 = max (Fijmnr Fijmnr) (xs) ,

M2
17 = max (Dijα Dijα) (xs) , M

2
18 = 2 max [(AijkmnrAijkmnr) (xs)]

1/2 ,

M2
19 = max (Fijkα Fijkα) (xs) .
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We choose the arbitrary constants π1, π2, π3, π4 and π5 so that the quantity m1 defined
by

m1 = µ− 1

2

(
π2
1 + π2

2 + π2
3 + π2

4 + π2
5

)
is strictly positive. Next, if we choose the constant m2 as follows

m2 =
1

2
max

{
M2

2

π2
2

+M2
6 +M2

11 +M2
12 +M2

13 +M2
14,

M2
3

π2
3

+M2
7 +M2

15 +M2
16 +M2

17 + 1,

M2
4

π2
4

+M2
8 +M2

18 +M2
19 + 2,

M2
5

π2
5

+M2
10 + 3,

M2
1

π2
1

+M2
9 + 4

}
then we arrive to the estimate (21) and this conclude the proof of Theorem 3.2. �

3.3. Theorem. Let (ui, ϕij , θ, ωα) be a solution of the problem P0 and suppose that
the assumptions (i) - (v) are satisfied. Then there exists a positive constant m3 such that
we have the following inequality∫

B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijkκijk + θ2 + ωαωα

)
dV ≤

m3

∫ t

0

∫
B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijkκijk + θ2 + ωαωα

)
dV ds(3.17)

for any t ∈ [0, t0].

Proof. First, taking into account the hypotheses (i) - (v), we have

m0

∫
B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijsκijs + θ2

)
dV ≤∫

B

(Cijmnεijεmn +Bijmnγijγmn +Aijsmnrκijsκmnr+(3.18)

a θ2 + % u̇i u̇i + Ikr ϕ̇jr ϕ̇jk
)
dV,

where we have used the notation

m0 = min {%, a, λ1, λ2, λ3, λ4}

Next, we use the Schwarz’s inequality and the arithmetic - geometric mean inequality
(3.14) to the left side of the relation (3.18). So, we are lead to the inequality

m0

∫
B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijsκijs + θ2

)
dV ≤

≤
(
π2
6 +N2

4 +N2
5

) ∫
B

εijεijdV +
(
π2
7 +N2

6 + 2
) ∫

B

γijγijdV+

+
(
π2
8 + 3

) ∫
B

κijsκijsdV +

(
N2

1

π2
6

+
N2

2

π2
7

+
N2

3

π2
8

)∫
B

ωαωαdV−(3.19)

+m2

∫ t

0

∫
B

(
εij εij + γijγij + κijsκijs + θ2 + ωαωα

)
dV ds

−m1

∫ t

0

∫
B

θ, iθ, idV ds
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where t ∈ [0, t0].
In this inequality we have used the notations

N2
1 = max (Bijα Bijα) (xs) , N

2
2 = max (Dijα Dijα) (xs) ,

N2
3 = max (Fijkα Fijkα) (xs) , N

2
4 = max (Gmnij Gmnij) (xs) ,(3.20)

N2
5 = max (Fmnrij Fmnrij) (xs) , N

2
6 = max (Dijmnr Dijmnr) (xs) ,

where (xs) ∈ B.
On the other hand, by using the initial conditions (3.4) and the consitutive relation

(2.7), we arrive to the conclusion that:∫
B

ωαωαdV =

∫ t

0

d

ds

(∫
B

ωαωαdV

)
ds = 2

∫ t

0

(∫
B

ωαω̇αdV

)
ds =

= 2

∫ t

0

∫
B

(gijαεijωα + hijαγijωα + lijsακijsωα+(3.21)

+pαθωα + qαβωαωβ + riωαθ, i) dV ds

Now, by using, again, the Schwarz’s inequality and the arithmetic - geometric mean
inequality (3.14) to the right side of the relation (3.21). So, we deduce that for an
arbitrary positive constant π9 the following inequality hold:∫

B

ωα ωα dV ≤ π2
9

∫ t

0

∫
B

θ, i θ, i dV ds+

+

(
Q2

1

π2
9

+Q2
5 +Q2

6 + 3

)∫ t

0

∫
B

ωα ωα dV ds+(3.22)

+Q2
2

∫ t

0

∫
B

εij εij dV ds+Q2
3

∫ t

0

∫
B

γij γij dV ds+

+Q2
4

∫ t

0

∫
B

κijs κijs dV ds+

∫ t

0

∫
B

θ2dV ds

where t ∈ [0, t0].
In this inequality we have used the notations

Q2
1 = max (riα riα) (xs) , Q

2
2 = max (gijα gijα) (xs) ,

Q2
3 = max (hijα hijα) (xs) , Q

2
4 = max (lijkα lijkα) (xs) ,(3.23)

Q2
5 = max (pα pα) (xs) , Q

2
6 = max [(qiα qiα) (xs)]

1/2 ,

where (xs) ∈ B.
If we denote by m4 the quantity

m4 = max

{
Q2

1

π2
9

+Q2
5 +Q2

6 + 3, Q2
2, Q

2
3, Q

2
4, 1

}
,

then, from (3.21) we obtain the following inequality∫
B

ωα ωα dV ≤ π2
9π

2
10

∫ t

0

∫
B

θ, i θ, i dV ds+

+m4π
2
10

∫ t

0

∫
B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds(3.24)
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which is satisfied for an arbitrary positive constant π10.
From (3.19) and (3.24) we obtain

m0

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + θ2

)
dV +

[
m0 −

(
π2
6 +N2

4 +N2
5

)] ∫
B

εij εij dV+

+
(
m0 − π2

7 −N2
6 − 2

) ∫
B

γij γij dV +
(
m0 − π2

8 − 3
) ∫

B

κijs κijs dV+(3.25)

+

(
π2
10−

N2
1

π2
6

−N
2
2

π2
7

−N
2
3

π2
8

)∫
B

ωαωαdV ≤
(
m1−π2

9−π2
10

) ∫ t

0

∫
B

θ, iθ, idV ds+

+
(
m2 +m4π

2
10

)∫ t

0

∫
B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds

We choose the arbitrary constants π6, π7, π8, π9 and π10 so that

m5 ≡ m0 − π2
6 −N2

4 −N2
5 > 0, m6 ≡ m0 − π2

7 −N2
6 − 2 > 0,

m7 ≡ m0 − π2
8 − 3 > 0, m8 ≡ π2

10 −
N2

1

π2
6

− N2
2

π2
7

− N2
3

π2
8

> 0,

m9 ≡ m1 − π2
9 π

2
10 > 0,

and thus we are lead to(
m2 +m4π

2
10

)∫ t

0

∫
B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds ≥

≥ m0

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + θ2

)
dV +m5

∫
B

εijεijdV +m6

∫
B

γijγijdV+

+m7

∫
B

κijsκijsdV +m8

∫
B

ωα ωαdV +m9

∫
B

θ, iθ, idV dV ≥(3.26)

≥ m10

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV,

where the signification of the constant m10 is

m10 = min {m0, m5, m6, m7, m8} .

It is easy to observe that∫ t

0

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εij εij + γij γij + κijs κijs + θ2 + ωα ωα

)
dV ds ≥

≥
∫ t

0

∫
B

(
εij εij + γij γij + κijs κijs + θ2 + ωα ωα

)
dV ds(3.27)

Finally, if we choose

m3 =

(
m2 +m4π

2
10

)
m10

then from (3.26) and (3.27) we arrive at the desired result (3.17) and Theorem 3.3 is
proved. �

Theorem 3.1, Theorem 3.2 and Theorem 3.3 form the basis of the main result of this
study: the uniqueness of mixed initial-boundary value problem for thermoelastic dipolar
body with internal state variables.

3.4. Theorem. Assume that the hypotheses (i) - (v) hold. Then there exists at most
one solution of the problem defined by the equations (2.1), (2.2) and (2.6) with the initial
conditions (2.9) and the boundary conditions (2.10).



26 M. Marin, S. R. Mahmoud, and G. Stan

Proof. Suppose that the mixed problem has two solutions. Then the difference of these
solutions is solution for the above mentioned problem P0. For our aim it is suffice to
show that the function y(t) defined by

y(t) =

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijrκijr + θ2 + ωαωα

)
dV

vanishes on [0, t0].
If we assume the contrary, i.e. y(t) 6= 0, this is absurdum because the inequality (3.17)

and Gronwall’s inequality imply that y(t) ≡ 0 on [0, t0] and Theorem 3.4 is concluded. �

Conclusion. The existence of internal state variables do not affect the uniqueness of
solution of the mixed problem for dipolar thermoelastic materials.
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