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Abstract

Nowadays, with the help of advanced imaging techniques the image or
shape of an organ or organism can be used as input data. Therefore,
the statistical analysis of shape has recently become more important
in the medical and biological sciences. Methods related to two-sample
tests have been developed for statistical shape analysis, giving rise to
considerable interest in research that evaluates the performance of these
tests. In this study, two sample procedures are used to compare the
mean shapes from the statistical shape analysis literature according to
type I error rate.
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1. Introduction

In the biological and medical sciences, morphometric methods are frequently preferred
for examining the morphologic structures of organs or organisms with regard to diseases
or environmental factors. Therefore, the statistical analysis of shapes has recently become
more important in the medical and biological sciences. Data sets include qualitative and
quantitative measurements for use in the statistical analyses associated with medical
research. Nowadays, with the help of advanced imaging techniques the image or shape
of an organ or organism can be used as input data [1].

Shape is defined as all the geometrical information that remains when location, scale
and rotational effects are filtered from an object [2], [3], [4], [5]. Statistical shape analysis
is a geometrical analysis of the statistics measured from sets of shapes that determines
the features of similar shapes or of different groups comprising similar shapes. Distance
between shapes, mean shape and shape variation can be predicted and obtained using
statistical shape analysis [3]. A comparison of shapes between groups can also be done
at a particular significance level.
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Inferential methods described in the shape analysis literature make use of landmark
configurations that are optimally superimposed via either a least-squares procedure or
an analysis of interlandmark distance matrices [6].

Methods concerning two-sample tests have been developed for statistical shape anal-
ysis, giving rise to considerable interest in research that evaluates the performance of
these tests. In this study, the Hotelling T 2, Goodall’s F and James Fj tests as well as
the λmin test statistic are used to compare the mean shapes of two samples from the
statistical shape analysis literature according to type I error rates derived from various
variance values in different sample sizes. This simulation study considers both isotropic
and anisotropic cases for which tangent space is used as shape space and considers meth-
ods that use complex arithmetic and exploit the geometry of the shape space.

2. Materials and Methods

2.1. Shape Space. The shape space is the set of all possible shapes [3]. For any set of
landmarks {Xi} in the original Euclidean plane, we can imagine the set of shapes derived
by holding all but one of the X’s at fixed position and varying that one in a circle about its
original position. We would like the metric assigned to shape space (the set of ”shapes”
of all such sets of X’s, correcting for centroid, orientation, and scale, all of which usually
change whenever one of the X’s moves) to be such that the shapes generated by circles
in the original landmark plane are all at the same distance from the original shape {Xi}
in the shape space. That is, to a circle around one landmark in data space should
correspond something very nearly a circle in shape space [7]. Although shape spaces
defined by superimposition methods have less dimensions than raw data or non-redundant
measurements, they are non-Euclidean and correspond to a curved surface. Nobody
will recommend applying traditional statistics directly in this space because traditional
statistics relies on the Euclidean metric, which is not the same as the Procrustes one
[8]. Special statistical methods (rather than the usual linear multivariate methods) are
required to take into account the non-Euclidean geometry of Kendall’s shape space for
both two and three-dimensional landmarks [4]. To perform usual statistical methods, one
must first project the surface of the hyperhemisphere onto a ”flat” tangent space where
the Euclidean metrics allows us to use Euclidean statistics. The data are projected
on a tangent shape space (also called Kendall tangent space or Kent tangent space).
The contact between spaces is chosen as the mean shape. Working on variation in the
tangent space is a rather perilous estimation since the projection can introduce distortion
for the largest distances. However, provided that variation is small, one can assume that
the portion of the shape hyperhemisphere and tangent space are nearly flat and nearly
confused [8].

The projection onto a Euclidean space can be orthogonal or stereographic. Note that
both projections will introduce biases for shapes being very different from the mean
shape: the orthogonal projection minimizes large differences while stereographic projec-
tion accentuates them. The stereographic projection is produced by adjusting the size
scale factor for the configuration to be projected onto the tangent space. To perform this
projection, we use simple trigonometric relationships and divide the coordinates of the
aligned configurations by the cosine of the Procrustes distance ρ between shapes and the
mean shape [8].

In this study the performances of two-sample test procedures that examine differences
in mean shape between two independent populations were evaluated in case of using
tangent shape space as a shape space. For these test procedures the case in terms of
using complex arithmetic and exploiting the geometry of the shape space which is an
alternative computational method was also considered for examining tests performances.
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2.2. Two-Sample Hotelling T 2 Test. The two-sample Hotelling T 2 test is used to test
an alternative hypothesis related to the differences of the mean shapes of two groups and
is accordingly applied to shape coordinates [9]. The Hotelling T 2 test assumes that the
samples have multivariate normal distributions and equal variance-covariance matrices
[10].

Consider two independent random samples X1, . . . , Xn1 and Y1, . . . , Yn2 from two
independent populations with mean shapes [µ1] and [µ2]. To test the hypothesis H0 :
[µ1] = [µ2], a two-sample Hotelling T 2 test can be performed in the Procrustes tangent
space where the pole corresponds to overall pooled full Procrustes mean shape µ̂. Let
v1, . . . , vn1 and w1, . . . , wn2 be the partial Procrustes tangent coordinates (with pole µ̂)
[3].

A multivariate normal model is proposed in the tangent space, where vi ∼ N(ξ1,
∑

1)
for i = 1, . . . , n1, wj ∼ N(ξ2,

∑
2) for j = 1, . . . , n2, and the vi and wj values are

all mutually independent. v̄ and w̄ and Sv, Sw represent the sample means and sample
covariance matrices respectively (with divisors n1 and n2) in each group. If the covariance
matrices are assumed to be equal (

∑
1 =

∑
2), then the squared Mahalanobis distance

between v̄ and w̄ is given by Equation-2.1.

(2.1) D2 = (v̄ − w̄)TS+
U (v̄ − w̄)

where SU = (n1S1 + n2S2)/(n1 + n2 − 2) and S+
U is the Moore-Penrose generalized

inverse of SU . Under the null hypothesis, we have ξ1 = ξ2 and the two-sample Hotelling
statistic, which is given by Equation 2.2

(2.2) FH =
n1n2(n1 + n2 −M − 1)

(n1 + n2)(n1 + n2 − 2)M
D2

where M = 2d− 2 is the dimension of the planar shape space. The test statistic has an
FM,n1+n2−M−1 distribution under the null hypothesis [2], [3].

2.3. James Fj Test. When covariances are not assumed to be equal, an alternative
method is to use the statistic proposed by James, which represents an effort to solve the
multivariate Behrens-Fisher problem [2], [6].

(2.3) Fj = (v̄ − w̄)T
(

1

n1
Sv +

1

n2
Sw

)+

(v̄ − w̄)

The J-statistic has an asymptotic χ2
M distribution under the null hypothesis regardless

of whether
∑

1 and
∑

2 are equal, and we reject the null hypothesis for large values of
this statistic [2].

2.4. Two-Sample Goodall’s F Test. Goodall presented a statistical framework for
analyzing Procrustes shape data and developed a possible F test. This test is based on
the Procrustes chord distance and should work under the assumption that variation is
isotropic and is equal for each landmark [8]. This assumption implies that the variances
of all landmarks (that is, the amount of dispersion) are expected to be the same. The
assumption also implies that the patterns of dispersion across landmarks are expected to
be uncorrelated [11].

If
∑

1 =
∑

2 =
∑

and we have isotropic covariance structure (
∑

= σ2I) [2].
In an isotropic variance structure, the diagonal elements and the variance values of

the covariance matrix are equal for each landmark, and all elements except the diagonal
elements are equal to zero. Perhaps the simplest type of covariance structure for the
perturbation distribution is one in which all landmarks are perturbed with the same
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variance irrespective of direction. This isotropic variance structure is easy to visualize,
but may not be biologically realistic in the study of certain biological structures or cer-
tain populations [12]. An isotropic normal model with mean µ and transformed by an
additional location, rotation and scale effects are given by Equation-2.4

(2.4) xi = βi(µ+ Ei)Γi + 1kγ
T
i vec(Ei) ∼ N(0, σ2Ikm)

where βi > 0 (scale), Γi ∈ SO(m) (rotation) and γi ∈ Rm (translation), and σ is small.
Consider independent random samples x1, x2, . . . , xn from a population modeled by

Equation-2.4 with µ1 and y1, y2, . . . , yn from Equation-2.4 with mean µ2. Both popula-
tions are assumed to have a common σ2 variance for each coordinate [3].

We wish to test H0 : [µ1] = [µ2](= [µ0]) against H1 : [µ1] 6= [µ2]. [µ̂1] and [µ̂2] are
the full Procrustes means of each sample. Under the H0 hypothesis, with a small σ the
Procrustes distances are approximately distributed as

(2.5)

n1∑
i=1

d2F (Xi, µ̂1) ∼ τ20χ2
(n1−1)M

(2.6)

n2∑
i=1

d2F (Yi, µ̂2) ∼ τ20χ2
(n2−1)M

(2.7) d2F (µ̂1, µ̂2) ∼ τ20
(

1

n1
+

1

n2

)
χ2
M

where τ = σ/δ, δ0 = S(µ0) and d2F represents the squared full Procrustes distance
between two configurations. In addition, these statistics are approximately mutually
independent [3]. Hence, under the null hypothesis, we have the approximate distribution
as given in equation-2.8.

(2.8) FG =
n1 + n2 − 2

n−1
1 + n−1

2

d2F (µ̂1, µ̂2)∑n1
i=1 d

2
F (Xi, µ̂1) +

∑n2
i=1 d

2
F (Yi, µ̂2)

∼ FM,(n1+n2−2)M

We reject the null hypothesis for large values of this test statistic. The Hotelling T 2

procedure is less powerful than Goodall’s F test, for which the isotropic normal model
holds [3], [13].

2.5. λmin Test Statistic. Amaral et al. [2] proposed a novel bootstrap approach to
k-sample testing problems in which each sample consists of a set of real or complex unit
vectors. The basic assumption is that the distribution of the sample mean shape (or
direction or axis) is highly concentrated [6]. Consider k samples of unit vectors in Cd (in
most traditional applications, d = 2; 3, but sometimes the case d ≥ 4 is also relevant),
and let µ̂i be the estimator of µ0 (i.e., the mean shape under the hypothesis) based on

sample i, for i = 1, . . . , k. Assume that n
1
2 M̂iµ0

D−→ CNd−1(0, Gi) for i = 1, . . . , k where

Gi denotes asymptotic covariance matrix has full rank and M̂i represents a projection
onto the tangent space at µ̂i [6].

Define Â0 = n
∑k
i=1 M̂

T
i Ĝi

−1
M̂i and T0(µ) = 2µT Â0µ, where T denotes the conjugate

transpose, µ is a complex unit vector and Ĝi is a consistent estimator of Gi. We thus
obtain

(2.9) λmin ≡ min
µ:‖µ‖=1

T0(µ) = T0(µ̂)
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where λmin is the smallest eigenvalue of Â0 and µ̂0 is the corresponding unit eigenvector

[2], [6]. It is proven that λmin
D−→ χ2

2(k−1)(d−1) as n → ∞ under the null hypothesis of

equality of means across populations [6].

2.6. A Simulation Study. In this study we aim to compare type I error rates of the
tabular, bootstrap and permutation adaptations of Hotelling T 2, Goodall’s F and James
Fj tests as well as the λmin test statistic. A mean vector and a variance-covariance matrix
are computed from a data set obtained from the landmark markings of the nose in the
anterior views of the faces of 50 subjects. Eleven landmarks (Figure 1) are applied to
the images in the manner described by Ercan et al. [14]. In the present study, the data
are simulated from a multivariate normal distribution under isotropic and anisotropic
models.

Figure 1. Landmark markings for the source data set used in
the simulation study.

The samples for which type I error rates are examined in the simulation study are
n1 = n2 = 20, 50, 100 and 500.

A mean vector that computed from a data set obtained from the landmark markings
as mentioned above is (x̄1, . . . , x̄11, ȳ1, . . . , ȳ11) = (501, 590, 546, 522, 568, 546, 521, 570,
532, 563, 547, 399, 398, 384, 398, 397, 409, 425, 426, 469, 469, 500).

Variance values are determined to be 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 737, 1703 and 2949
in the isotropic case. The values 737, 1703 and 2949 values are the minimum, maximum
and mean variance values of the variance-covariance matrix, which contains real values
from the sample data set.
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Isotropic structures are used in studies and when comparing the methods; however
it is not the case as in real-world applications; therefore, in our study we also compare
methods by simulating with anisotropic structures. The real variance-covariance matrix
computed from the sample data set is used as input for the simulation of the anisotropic
case.

In the examination of type I error rate in the simulation study, it is assumed that
related tests use tangent space as shape space, that they use complex arithmetic and
that they exploit the geometry of shape space.

The simulation study has been conducted with 1000 replications, and the number of
bootstrap and permutation resamples is set to 100.

We used TPSDIG 2.04 software to mark the landmarks on the images. The simulation
study and analyses were performed using R 2.12.0 software [15].

3. Results and Discussion

In Table 1, we give type I error rates as determined for both cases according to the
exploitation of shape space, according to various variance values for the isotropic model
and according to the variance-covariance matrix computed from the real data set for the
anisotropic model in different sample sizes.

It has been observed that applications of statistical shape analysis have recently been
used more than ever before in medical and biological sciences to compare the structures
of shapes [14], [16], [17], [18]. For example, forensics analyses [19], computer-assisted
neurosurgery methods [20] anthropological studies [14], [17], [18], [21] and MRI-based
morphological analyses of the brain [22], [23], [24] make use of statistical shape analysis.
Therefore, it is of great importance that shape objects be recognized, measured and
compared.

Newly developed methods utilize two-sample tests in statistical shape analysis, which
is a geometric morphometric concept. However, more emphasis has been placed on studies
of the comparative performance of related tests. In this study, we aim to compare the
type I error rates of the Hotelling T 2, Goodall’s F and James Fj tests as well as the
λmin test statistic, which are all used in the shape analysis literature to compare mean
shapes. In this simulation study, the performance of tabular, bootstrap and permutation
adaptations of the related procedures are examined in terms of type I error rate. We
also consider isotropic and anisotropic cases for different variance values and sample sizes
using the tangent space as the shape space. Finally, we consider related procedures that
use complex arithmetic and exploit the geometry of the shape space.

We examined the procedures of bootstrap adaptations through simulation results, con-
sidered isotropic covariance structure, exploited tangent space and used complex arith-
metic with the geometry of the shape space, thus evaluating small samples. In light of
these findings, the application of the Hotelling T 2, James Fj and Goodall’s F tests in
tangent space put the type I error rate under the determined nominal level. Additionally,
we observe that the type I error rates remained under the nominal level following the
application of λmin test statistic with the Hotelling T 2, Goodall’s F and James Fj tests
when complex arithmetic was applied and the geometry of the shape space was exploited.
In a similar study of small samples, Brombin and Salmaso [6] conducted the Hotelling T 2,
Goodall’s F and James Fj tests and generally found that the type I error rate was under
the nominal level in the isotropic covariance structure when using complex arithmetic
with the geometry of the shape space. Brombin and Salmaso [6] also observed a value
close to the determined nominal level when using the λmin test statistic. Amaral et al.
[2] carried out a similar study with small samples and observed a value close to



Table-1: Type I error rates for  n1=n2=20, 50, 100, 500  and σ
2
= 0.001, 0.01, 0.05, 0.1 in the case of using shape space as tangent space and exploiting complex arithmetic  

with geometry of  shape space. 

                                  

  n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 
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H_bootstrap 0.000 0.024 0.051 0.049 0.000 0.033 0.037 0.055 0.000 0.021 0.036 0.066 0.000 0.027 0.040 0.048 
H_permutation 0.047 0.042 0.057 0.048 0.037 0.045 0.054 0.056 0.048 0.040 0.046 0.057 0.062 0.046 0.042 0.050 
H_tabular 0.018 0.024 0.044 0.044 0.032 0.041 0.037 0.056 0.047 0.042 0.044 0.061 0.052 0.052 0.043 0.043 
G_ bootstrap 0.017 0.020 0.047 0.041 0.019 0.036 0.033 0.058 0.019 0.038 0.036 0.053 0.028 0.041 0.038 0.041 
G_ permutation 0.046 0.032 0.050 0.041 0.051 0.050 0.043 0.057 0.045 0.047 0.045 0.063 0.060 0.053 0.057 0.051 
G _ tabular 0.044 0.030 0.044 0.035 0.053 0.048 0.037 0.059 0.054 0.049 0.041 0.056 0.059 0.052 0.052 0.042 
J_ bootstrap 0.000 0.024 0.051 0.049 0.000 0.033 0.037 0.055 0.000 0.021 0.036 0.066 0.000 0.027 0.040 0.048 
J_ permutation 0.047 0.032 0.057 0.048 0.037 0.045 0.054 0.056 0.048 0.040 0.046 0.057 0.062 0.046 0.042 0.050 
J_ tabular 0.120 0.035 0.053 0.044 0.167 0.051 0.042 0.056 0.191 0.062 0.046 0.062 0.228 0.066 0.052 0.045 
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H_ bootstrap 0.000 0.012 0.047 0.049 0.000 0.032 0.038 0.059 0.000 0.022 0.039 0.054 0.000 0.031 0.041 0.046 
H_ permutation 0.050 0.034 0.043 0.042 0.043 0.051 0.044 0.056 0.047 0.048 0.038 0.061 0.051 0.054 0.046 0.046 
H_ tabular 0.044 0.033 0.059 0.045 0.041 0.048 0.042 0.060 0.047 0.042 0.044 0.061 0.052 0.052 0.043 0.043 
G_ bootstrap 0.020 0.017 0.040 0.039 0.030 0.042 0.036 0.056 0.019 0.036 0.042 0.050 0.026 0.042 0.042 0.043 
G_ permutation 0.050 0.037 0.053 0.039 0.050 0.050 0.043 0.060 0.047 0.044 0.044 0.058 0.048 0.050 0.055 0.047 
G _ tabular 0.054 0.032 0.051 0.039 0.055 0.049 0.042 0.060 0.053 0.049 0.041 0.056 0.059 0.052 0.052 0.042 
J_ bootstrap 0.000 0.012 0.047 0.049 0.000 0.032 0.038 0.059 0.000 0.022 0.039 0.054 0.000 0.031 0.041 0.046 
J_ permutation 0.050 0.034 0.043 0.042 0.043 0.051 0.044 0.056 0.047 0.048 0.038 0.061 0.051 0.054 0.046 0.046 
J_ tabular 0.197 0.066 0.063 0.046 0.198 0.067 0.049 0.060 0.191 0.062 0.046 0.062 0.228 0.066 0.052 0.045 
λmin_ bootstrap 0.045 0.029 0.044 0.041 0.056 0.058 0.043 0.059 0.049 0.046 0.038 0.053 0.072 0.038 0.045 0.043 
λmin_ permutation 0.052 0.033 0.051 0.037 0.050 0.057 0.038 0.058 0.044 0.051 0.052 0.060 0.056 0.050 0.051 0.049 
λmin_ tabular 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.108 0.112 0.076 0.066 0.286 0.106 0.076 0.047 
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Table-1 (continued): Type I error rates for  n1=n2=20, 50, 100, 500  and σ
2
= 0.5, 1, 5, 737  in the case of using shape space as tangent space and exploiting complex arithmetic 

with geometry of  shape space. 

                            

   n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 
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H_bootstrap 0.000 0.023 0.041 0.043 0.000 0.028 0.045 0.052 0.000 0.024 0.039 0.054 0.000 0.023 0.040 0.047 
H_permutation 0.045 0.054 0.047 0.048 0.049 0.045 0.055 0.045 0.054 0.044 0.045 0.048 0.047 0.049 0.043 0.046 
H_tabular 0.049 0.046 0.055 0.051 0.047 0.049 0.058 0.048 0.052 0.041 0.045 0.054 0.046 0.049 0.047 0.048 
G_ bootstrap 0.022 0.028 0.042 0.046 0.019 0.040 0.044 0.047 0.020 0.034 0.044 0.054 0.021 0.035 0.038 0.048 
G_ permutation 0.054 0.047 0.046 0.046 0.060 0.050 0.055 0.042 0.049 0.047 0.049 0.050 0.047 0.045 0.037 0.052 
G _ tabular 0.046 0.045 0.048 0.049 0.057 0.050 0.058 0.044 0.046 0.046 0.049 0.053 0.046 0.051 0.041 0.049 
J_ bootstrap 0.000 0.023 0.041 0.043 0.000 0.028 0.045 0.052 0.000 0.024 0.039 0.054 0.000 0.023 0.040 0.047 
J_ permutation 0.045 0.054 0.047 0.048 0.049 0.045 0.055 0.045 0.054 0.044 0.045 0.048 0.047 0.049 0.043 0.046 
J_ tabular 0.222 0.066 0.056 0.053 0.207 0.066 0.065 0.050 0.232 0.048 0.051 0.055 0.188 0.070 0.053 0.048 
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H_ bootstrap 0.000 0.023 0.051 0.047 0.000 0.022 0.045 0.047 0.000 0.028 0.042 0.059 0.000 0.031 0.045 0.044 
H_ permutation 0.052 0.045 0.055 0.053 0.051 0.046 0.059 0.050 0.056 0.041 0.047 0.054 0.050 0.054 0.048 0.053 
H_ tabular 0.049 0.046 0.055 0.051 0.047 0.049 0.058 0.048 0.052 0.041 0.045 0.054 0.047 0.052 0.048 0.047 
G_ bootstrap 0.022 0.029 0.046 0.044 0.024 0.029 0.048 0.045 0.023 0.038 0.038 0.048 0.008 0.039 0.035 0.044 
G_ permutation 0.049 0.042 0.058 0.050 0.053 0.044 0.054 0.045 0.042 0.051 0.048 0.053 0.053 0.052 0.046 0.051 
G _ tabular 0.046 0.045 0.048 0.049 0.057 0.050 0.059 0.044 0.048 0.048 0.049 0.053 0.486 0.524 0.548 0.568 
J_ bootstrap 0.000 0.023 0.051 0.047 0.000 0.022 0.045 0.047 0.000 0.028 0.042 0.059 0.000 0.031 0.045 0.044 
J_ permutation 0.052 0.045 0.055 0.053 0.051 0.046 0.059 0.050 0.056 0.041 0.047 0.054 0.050 0.054 0.048 0.053 
J_ tabular 0.222 0.066 0.056 0.053 0.207 0.066 0.065 0.050 0.232 0.058 0.051 0.055 0.185 0.071 0.053 0.047 
λmin_ bootstrap 0.009 0.026 0.047 0.048 0.013 0.036 0.046 0.046 0.010 0.029 0.038 0.054 0.004 0.039 0.042 0.041 
λmin_ permutation 0.042 0.038 0.052 0.059 0.057 0.045 0.044 0.048 0.049 0.048 0.043 0.053 0.047 0.050 0.043 0.049 
λmin_ tabular 0.281 0.117 0.078 0.055 0.264 0.110 0.087 0.054 0.294 0.109 0.075 0.057 0.240 0.109 0.073 0.048 
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Table-1 (continued): Type I error rates for n1=n2=20, 50, 100, 500  and σ
2
= 1703, 2949  and anisotropic covariance structure in the case of using shape space as tangent space 

and exploiting complex arithmetic with geometry of  shape space. 

                    Anisotropic covariance structure 

    n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 

U
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n
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H_bootstrap 0.000 0.034 0.037 0.050 0.000 0.022 0.034 0.046 0.000 0.016 0.038 0.045 
H_permutation 0.053 0.052 0.043 0.050 0.049 0.042 0.044 0.052 0.060 0.048 0.050 0.047 
H_tabular 0.054 0.054 0.047 0.054 0.053 0.042 0.041 0.053 0.046 0.049 0.050 0.045 
G_ bootstrap 0.030 0.040 0.033 0.047 0.024 0.041 0.027 0.043 0.052 0.041 0.051 0.051 
G_ permutation 0.057 0.055 0.041 0.053 0.051 0.052 0.038 0.055 0.061 0.046 0.051 0.050 
G _ tabular 0.057 0.054 0.044 0.054 0.053 0.047 0.033 0.048 0.169 0.140 0.122 0.154 
J_ bootstrap 0.000 0.034 0.037 0.050 0.000 0.022 0.034 0.046 0.000 0.016 0.038 0.045 
J_ permutation 0.053 0.052 0.043 0.050 0.049 0.042 0.044 0.052 0.060 0.048 0.050 0.047 
J_ tabular 0.214 0.073 0.055 0.055 0.212 0.066 0.046 0.054 0.207 0.064 0.055 0.050 
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H_ bootstrap 0.000 0.033 0.031 0.036 0.000 0.016 0.018 0.028 0.000 0.022 0.039 0.005 
H_ permutation 0.054 0.059 0.045 0.053 0.051 0.046 0.037 0.046 0.051 0.056 0.050 0.042 
H_ tabular 0.053 0.055 0.050 0.051 0.056 0.043 0.041 0.053 0.046 0.049 0.050 0.045 
G_ bootstrap 0.011 0.038 0.033 0.054 0.004 0.021 0.027 0.047 0.047 0.042 0.050 0.049 
G_ permutation 0.093 0.065 0.059 0.050 0.146 0.077 0.046 0.051 0.069 0.047 0.053 0.054 
G _ tabular 0.914 0.931 0.927 0.936 0.988 0.992 0.995 0.997 0.168 0.145 0.122 0.151 
J_ bootstrap 0.000 0.033 0.031 0.036 0.000 0.016 0.018 0.028 0.000 0.022 0.039 0.045 
J_ permutation 0.054 0.059 0.045 0.053 0.051 0.046 0.037 0.046 0.051 0.056 0.050 0.042 
J_ tabular 0.218 0.075 0.053 0.054 0.216 0.067 0.044 0.055 0.207 0.064 0.055 0.047 
λmin_ bootstrap 0.006 0.040 0.036 0.051 0.003 0.023 0.028 0.048 0.016 0.040 0.048 0.040 
λmin_ permutation 0.059 0.055 0.037 0.044 0.050 0.051 0.035 0.045 0.061 0.055 0.051 0.051 
λmin_ tabular 0.243 0.110 0.062 0.058 0.239 0.116 0.064 0.056 0.315 0.146 0.117 0.093 

In Table-1, H indicates Hotelling T
2
 test,  G indicates Goodall’s F test and J indicates James FJ test respectively. 
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the determined level in terms of type I error rates in related procedures. As for large
samples, while the type I error rates converged to the nominal level in both usages of
shape space, we found results under the nominal level in the simulation study of high
variance values.

In the simulation study in which we exploited the variance-covariance matrix of real
landmark values, the anisotropic covariance structure and the procedures of bootstrap
adaptations, we found that type I error rates stayed under the nominal level according
to the Hotelling T 2, Goodall’s F and James Fj tests as well as the λmin test statistic
for both usages of shape space in small samples. When large samples were evaluated,
we found that the type I error rates remained under the determined nominal level only
when the Hotelling T 2 test was applied in the case of exploiting complex arithmetic with
the geometry of the shape space.

Following the examination of the permutation adaptation of procedures through the
simulation results and considering the isotropic covariance structure, the tests showed
an overall performance in all sample sizes in both usages of shape space. However, the
Goodall’s F test tends to overestimate the nominal level in small samples in the case of
exploiting complex arithmetic with the geometry of the shape space. In a similar study
of small samples, Amaral et al. [2] found an overall results that were close the nominal
level for the type I error rates; however, Amaral et al. [2] reported that as the variance
values in the Goodall’s F test increased, the related procedure tended to overestimate
the nominal level of the type I error rate. Compared to the variance values in Amaral et
al. [2], the variance values of the Goodall’s F test are close to the values of the nominal
level of the type I error rate. Brombin and Salmaso [6] stated that the Hotelling T 2

and James Fj tests showed similar values but that the Goodall’s F test and the λmin

test statistic tended to underestimate the nominal level. In the anisotropic covariance
structure, the examined procedures showed similar results to the nominal type I error
rate in small and large sample sizes.

When tabular versions of procedures were analyzed through simulation results, the
James Fj test tended to overestimate the nominal level in small samples in both usages
of shape space in the case of isotropic covariance structure. The Hotelling T 2 test un-
derestimated the nominal level in small samples in tangent space with reference to type
I error rate in low variance values, but the Goodall’s F test overestimated the nominal
level in the case of exploiting complex arithmetic with the geometry of the shape space
in high variance values. We found that comparison with the λmin test statistic generally
underestimated and overestimated the nominal level. We found that the James Fj and
Goodall’s F tests as well as the λmin test statistic underestimated and overestimated
the nominal level; on the other hand, the Hotelling T 2 test revealed values close to the
nominal level, which Brombin and Salmaso [6] also observed in a similar study of small
samples in the case of exploiting isotropic covariance structure and in the cases of related
procedures that use complex arithmetic and exploit the geometry of the shape space.
Amaral et al. [2] also found that the Goodall’s F test and the λmin test statistic over-
estimated the nominal level; however, the Hotelling T 2 and James Fj tests resulted in
values close to the nominal level in a similar study of small samples. The Goodall’s F
test overestimated the nominal level in large samples when exploiting complex arithmetic
with the geometry of the shape space and in the case of high variance values. It was
observed that the Goodall’s F test and λmin test statistic overestimated the nominal level
in both usages of shape space in anisotropic covariance structure.

When the present study is compared with the similar studies [2], [6] in the literature,
performances of two-sample test procedures used in this study were examined in terms
of both using tangent space as a shape space and using complex arithmetic with exploit-
ing the geometry of shape space. This study also differs from other literatures in terms
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of using variance-covariance matrix of real-life data set to examine the performances of
related procedures in anisotropic case. In addition, it has been observed that the vari-
ance values given in simulation scenarios in similar studies are smaller than the variance
values of real-life data sets. For this reason, in this study two-sample test procedures’
performances were also examined for large variance values computed from a real-life data
set. Present study also differs in terms of including large sample size values.

4. Conclusions

As predicted, the results of the present study indicate that tests perform better with
large samples than with small samples. For small samples, permutation test adaptations
gave the most favorable results in all isotropic and anisotropic covariance structures. For
large samples, permutation test adaptations gave the most favorable results with regard
to type I error rate in all low and high variance values and in all isotropic and anisotropic
covariance structures. It was concluded that bootstrap adaptations of tests gave the
most unfavorable results in all isotropic and anisotropic covariance structures in small
samples.
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