# SOME APPLICATIONS OF AUGMENTATION QUOTIENTS 

Deepak Gumber*

Received 27:09:2011 : Accepted 13:09:2012


#### Abstract

We give some applications of augmentation quotients of free group rings in group theory.


Keywords: integral group ring, augmentation quotient, subgroups determined by ideals.

2000 AMS Classification: 16S34, 20C07.

## 1. Introduction

Let $\mathbb{Z} G$ denote the integral group ring of a group $G$ and $\Delta(G)$ its augmentation ideal. Let $\left\{\gamma_{n}(G)\right\}_{n \geq 1}$ be the lower central series of $G$. We also write $G^{\prime}$ for $\gamma_{2}(G)=[G, G]$, the derived group of $G$. When $G$ is free, then integral group ring is known as free group ring. Let $\Delta^{n}(G)$ denote the $n$-th associative power of $\Delta(G)$ with $\Delta^{0}(G)=\mathbb{Z} G$. The additive abelian group $\Delta^{n}(G) / \Delta^{n+1}(G)$ is known as the $n$-th augmentation quotient and has been intensively studied during the last forty years. Vermani[7] has given a notable survey article about work done on augmentation quotients. In this short note we are interested in the applications of augmentation quotients in group theory. Henceforth, unless or otherwise stated, $F$ is a free group and $R$ is a normal subgroup of $F$. Hurley and Sehgal[4] identified the subgroup $F \cap\left(1+\Delta^{2}(F) \Delta^{n}(R)\right)$ for all $n \geq 1$ and then using the fact that $\Delta(F) \Delta^{n}(R) / \Delta^{2}(F) \Delta^{n}(R)$ is free abelian for all $n \geq 1$ [1], they showed that the group $\gamma_{n+1}(R) / \gamma_{n+2}(R) \gamma_{n+1}\left(R \cap F^{\prime}\right)$ is a free abelian group for all $n \geq 1$. Gruenberg [1, Lemma III.5] proved that $\Delta^{n}(F) \Delta^{m}(R) / \Delta^{n+1}(F) \Delta^{m}(R)$ is a free abelian group for all $m, n \geq 1$. When $R$ is an arbitrary subgroup of $F$, Karan and Kumar [5] proved that the groups $\Delta^{n}(F) \Delta^{m}(R) / \Delta^{n+1}(F) \Delta^{m}(R), \Delta^{n}(F) \Delta^{m}(R) / \Delta^{n-1}(F) \Delta^{m+1}(R)$ and $\Delta^{n}(F) \Delta^{m}(R) / \Delta^{n}(F) \Delta^{m+1}(R)$ are free abelian for all $m, n \geq 1$. They gave the complete description of all these groups and explicit bases of first two groups. As a consequence of their results they proved that $R^{\prime} /\left[R^{\prime}, R \cap F^{\prime}\right]$ is a free abelian group. Gumber et. al. [2] proved that $\Delta^{p}(R) \Delta^{n}(F) \Delta^{q}(R) / \Delta^{p}(R) \Delta^{n+1}(F) \Delta^{q}(R)$ is free abelian for all $p, q, n \geq 1$

[^0]and as a consequence showed that $\gamma_{3}(R) / \gamma_{4}(R)\left[R \cap F^{\prime}, R \cap F^{\prime}, R\right]$ is a free abelian group. In section 3 , we identify the subgroup
$$
R \cap\left(1+\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)
$$
for $m=0,1$, and 2 , and then prove
Theorem A. The groups
(1) $R^{\prime} /\left[R, R \cap F^{\prime}\right]$,
(2) $\gamma_{3}(R) / \gamma_{4}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right]$, and
(3) $\gamma_{4}(R) / \gamma_{5}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right]\left[\left[R, R \cap F^{\prime}\right],\left[R, R \cap F^{\prime}\right]\right]$
are free abelian.

## 2. Preliminaries

Let $G$ be a group and $H$ be a normal subgroup of $G$ such that $G / H$ is free-abelian. Let $\left\{x_{\delta} H \mid \delta \in \Delta\right\}$ be a basis for $G / H$. We may suppose that the index set $\Delta$ is well ordered. As $G^{\prime} \subset H, S$, the set consisting of elements of the form $x_{\delta_{1}}^{t_{1}} x_{\delta_{2}}^{t_{2}} \ldots x_{\delta_{n}}^{t_{n}}, t_{i} \in$ $Z, n \geq 1, \delta_{1}<\delta_{2}<\ldots<\delta_{n}$, is a transversal of $H$ in $G$. Let $L_{n}$ be the $Z$-submodule of $\Delta(G)$ generated by elements of the form

$$
\left(x_{\delta_{1}}^{\epsilon_{1}}-1\right) \ldots\left(x_{\delta_{n}}^{\epsilon_{n}}-1\right), \epsilon_{i}=1 \text { or }-1 \text { for every } i \text { and } \delta_{1} \leq \delta_{2} \leq \ldots \leq \delta_{n}
$$

For $m \geq 2$, let $L^{(m)}=\sum_{n \geq m} L_{n}$.
2.1. Theorem. [8] For $n \geq 2, \Delta^{n}(G)$ is equal to

$$
\Delta^{n-1}(G) \Delta(H)+\Delta^{n-2}(G) \Delta\left(G^{\prime}\right)+\cdots+\Delta(G) \Delta\left(\gamma_{n-1}(G)\right)+\Delta\left(\gamma_{n}(G)\right) \oplus L^{(n)}
$$

Let $U$ be a group and $W$ be a left transversal of a subgroup $V$ of $U$ in $U$ with $1 \in W$. Then every element of $U$ can be uniquely written as $w v, w \in W, v \in V$. Let $\phi: Z U \rightarrow Z V$ be the onto homomorphism of right $Z V$-modules which on the elements of $U$ is given by $\phi(w v)=v, w \in W, v \in V$. The homomorphism $\phi$ maps $\Delta(U) J$ onto $\Delta(V) J$ for every ideal $J$ of $Z V$. In particular, by the choice of the transversal $S$ of $H$ in $G$, we have $\left.\phi\right|_{L^{(n)}}=0$. The homomorphism $\phi$ is usually called the filtration map.

We shall also need the following results:
2.2. Lemma. [9] Let $G$ be a group, $K$ a subgroup of $G$, and $J$ an ideal of $\mathbb{Z} G$ containing $\Delta^{2}(K)$. Then $G \cap(1+J+\Delta(K))=(G \cap(1+J)) K$.
2.3. Theorem. [8] Let $G$ be a group with a normal subgroup $H$ such that $G / H$ is free abelian. Then $G \cap\left(1+\Delta^{n}(G)+\Delta(G) \Delta(H)\right)=\gamma_{n}(G) H^{\prime}$ for all $n \geq 1$.

## 3. Proof of Theorem A

To avoid repeated and prolonged expressions, we write

$$
\begin{aligned}
& A=\Delta^{4}(R)+\Delta^{2}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right) \\
& B=\Delta^{5}(R)+\Delta^{3}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{2}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)
\end{aligned}
$$

3.1. Proposition. The group

$$
\frac{\gamma_{m+2}(R)}{\gamma_{m+2}(R) \cap\left(1+\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)}
$$

is free-abelian for all $m \geq 0$.

Proof. It follows from the proof of Theorem 1.1 and Corollary 2.4 of [6] that

$$
\Delta^{3}(F) \cap \Delta^{2}(R)=\Delta^{3}(R)+\Delta(R) \Delta\left(R \cap F^{\prime}\right)+\Delta\left(\left[R, R \cap F^{\prime}\right]\right)
$$

and since $\Delta(R) \mathbb{Z} F$ is a free right $\mathbb{Z} F$-module [3, Proposition I.1.12], we have

$$
\Delta^{m}(R) \Delta^{3}(F) \cap \Delta^{m+2}(R)=\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)
$$

for all $m \geq 0$. The natural homomorphism

$$
\eta: \Delta^{m+2}(R) \rightarrow \Delta^{m}(R) \Delta^{2}(F) / \Delta^{m}(R) \Delta^{3}(F)
$$

has $\operatorname{ker} \phi=\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)$ in view of the above intersection. Thus $\Delta^{m+2}(R) /\left(\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)$ is free-abelian. Again, the homomorphism

$$
\theta: \gamma_{m+2}(R) \rightarrow \frac{\Delta^{m+2}(R)}{\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)}
$$

defined as $x \rightarrow \overline{(x-1)}, x \in \gamma_{m+2}(R)$ has $\operatorname{ker} \theta$ equal to

$$
\gamma_{m+2}(R) \cap\left(1+\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)
$$

Therefore

$$
\frac{\gamma_{m+2}(R)}{\gamma_{m+2}(R) \cap\left(1+\Delta^{m+3}(R)+\Delta^{m+1}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{m}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)}
$$

is free-abelian for all $m \geq 0$.
3.2. Proposition. $R \cap\left(1+\Delta^{3}(R)+\Delta(R) \Delta\left(R \cap F^{\prime}\right)+\Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right)=\left[R, R \cap F^{\prime}\right]$.

Proof. Proof is easy and follows by Lemma 2.2 and Theorem 2.3.
3.3. Proposition. $R^{\prime} /\left[R, R \cap F^{\prime}\right]$ is free-abelian.

Proof. The proof follows by putting $m=0$ in Proposition 3.1 and then using Proposition 3.2.
3.4. Proposition. $R \cap(1+A)=\gamma_{4}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right]$.

Proof. Since $\gamma_{4}(R)-1 \subset \Delta^{4}(R)$ and $\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right]-1 \subset \Delta^{2}(R) \Delta\left(R \cap F^{\prime}\right)+$ $\Delta(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)$, it follows that $\gamma_{4}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right] \subset R \cap(1+A)$. For the reverse inequality, we let $w \in R$ such that $w-1 \in A$ and proceed to show that $w \equiv$ $1\left(\bmod \gamma_{4}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right]\right)$. Since $R / R \cap F^{\prime}$ is free-abelian, using Theorem 2.1 repeatedly we have

$$
\begin{aligned}
A=\Delta\left(\gamma_{4}(R)\right) & +L^{(4)}+\Delta(R) \Delta^{2}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta\left(R \cap F^{\prime}\right) \\
& +L^{(2)} \Delta\left(R \cap F^{\prime}\right)+\Delta(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)
\end{aligned}
$$

Now since $R \cap(1+A) \subset R \cap F^{\prime}$, using the filtration map $\phi: Z R \rightarrow Z\left(R \cap F^{\prime}\right)$, it follows that

$$
\begin{array}{rlc}
R \cap(1+A) & \subset & \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{3}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta\left(R \cap F^{\prime}\right)\right. \\
& \left.+\Delta\left(R \cap F^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)+\Delta\left(\gamma_{4}(R)\right)\right) \\
\subset & \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{3}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta\left(R \cap F^{\prime}\right)\right. \\
& \left.+\Delta\left(\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right]\right)+\Delta\left(\gamma_{4}(R)\right)\right) \\
= & \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{3}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta\left(R \cap F^{\prime}\right)\right) \\
= & {\left[R, R \cap F^{\prime}, R \cap F^{\prime}\right] \gamma_{4}(R),}
\end{array}
$$

where last equality follows by Theorem 2.4 and second last equality follws by Lemma 2.3.

### 3.5. Proposition.

$$
R \cap(1+B)=\gamma_{5}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right]\left[\left[R, R \cap F^{\prime}\right],\left[R, R \cap F^{\prime}\right]\right]
$$

Proof. As in the above proposition, it is sufficient to prove that if $w \in R$ is such that $w-1 \in B$, then

$$
w \equiv 1 \quad\left(\bmod \gamma_{5}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right]\left[\left[R, R \cap F^{\prime}\right],\left[R, R \cap F^{\prime}\right]\right]\right)
$$

Using Theorem 2.1 repeatedly, we have

$$
\begin{aligned}
& \quad \Delta^{5}(R)+\Delta^{3}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{2}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right) \\
& =\Delta(R) \Delta\left(\gamma_{4}(R)\right)+\Delta\left(\gamma_{5}(R)+L^{(5)}+\Delta(R) \Delta^{3}\left(R \cap F^{\prime}\right)\right. \\
& \quad+\Delta\left(R^{\prime}\right) \Delta^{2}\left(R \cap F^{\prime}\right)+L^{(2)} \Delta^{2}\left(R \cap F^{\prime}\right)+\Delta(R) \Delta\left(R^{\prime}\right) \Delta\left(R \cap F^{\prime}\right) \\
& \quad+\Delta\left(\gamma_{3}(R)\right) \Delta\left(R \cap F^{\prime}\right)+L^{(3)} \Delta\left(R \cap F^{\prime}\right)+\Delta(R) \Delta\left(R \cap F^{\prime}\right) \\
& \\
& \quad \Delta\left(\left[R, R \cap F^{\prime}\right]\right)+\Delta\left(R^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)+L^{(2)} \Delta\left(\left[R, R \cap F^{\prime}\right]\right) .
\end{aligned}
$$

Applying filtration map $\phi: Z R \rightarrow Z\left(R \cap F^{\prime}\right)$, we have

$$
\begin{array}{ll} 
& R \cap\left(1+\Delta^{5}(R)+\Delta^{3}(R) \Delta\left(R \cap F^{\prime}\right)+\Delta^{2}(R) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right) \\
=\quad & \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{4}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta^{2}\left(R \cap F^{\prime}\right)+\Delta\left(\gamma_{3}(R)\right) \Delta\left(R \cap F^{\prime}\right)\right. \\
& \left.\quad+\Delta^{2}\left(R \cap F^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)+\Delta\left(R^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right) \gamma_{5}(R) \\
\subset \quad & \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{4}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta^{2}\left(R \cap F^{\prime}\right)+\Delta\left(\gamma_{3}(R)\right) \Delta\left(R \cap F^{\prime}\right)\right. \\
& \left.\quad+\Delta\left(R^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right) \gamma_{5}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right] .
\end{array}
$$

Now since $R \cap F^{\prime} / R^{\prime}$ is free-abelian, a use of similar arguments with left replaced by right and the left $Z R^{\prime}$-homomorphism $\phi: Z\left(R \cap F^{\prime}\right) \rightarrow Z R^{\prime}$ implies that

$$
\begin{aligned}
& \left(R \cap F^{\prime}\right) \cap\left(1+\Delta^{4}\left(R \cap F^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta^{2}\left(R \cap F^{\prime}\right)+\Delta\left(\gamma_{3}(R)\right) \Delta\left(R \cap F^{\prime}\right)\right. \\
& \left.+\Delta\left(R^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right) \gamma_{5}(R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right] \\
=\quad & R^{\prime} \cap\left(1+\Delta^{3}\left(R^{\prime}\right)+\Delta\left(R^{\prime}\right) \Delta\left(\left[R, R \cap F^{\prime}\right]\right)\right) \gamma_{5}(R) \\
=\quad & \quad\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right] \\
=\quad & (R)\left[R, R \cap F^{\prime}, R \cap F^{\prime}, R \cap F^{\prime}\right]\left[\left[R, R \cap F^{\prime}\right],\left[R, R \cap F^{\prime}\right]\right],
\end{aligned}
$$

since $R^{\prime} /\left[R, R \cap F^{\prime}\right]$ is free-abelian by Proposition 3.3.

Proof. (Proof of Theorem A:) The proof of (1) follows by Proposition 3.3 and the proofs of (2) and (3) follow by putting $m=1,2$ in Proposition 3.1 and using Propositions 3.4 and 3.5 respectively.

## References

[1] Gruenberg K.W., Cohomological Topics in Group Theory, Lecture Notes in Mathematics, Springer, Berlin, 143 (1970).
[2] D.K. Gumber, R. Karan and I. Pal, Some augmentation quotients of integral group rings, Proc. Indian Acad. Sci. (Math. Sci.) 118 (2010), 537-546.
[3] N. Gupta, Free group rings, Contemporary Math., Amer. Math. Soc. 66 (1987).
[4] T. Hurley and S. Sehgal, Groups related to fox subgroups, Comm. Algebra 28 (2000) 10511059.
[5] R. Karan and D. Kumar, Augmentation quotients of free group rings, Algebra Colloq. 12 (2005) 597-606.
[6] R. Karan, D. Kumar and L.R. Vermani, Some intersection theorems and subgroups determined by certain ideals in integral group rings-II, Algebra Colloq. 9 (2002), 135-142.
[7] L.R. Vermani, Augmentation quotients of integral group rings, Groups-Koria'94 (Pusan), de Gruyter, Berlin (1995) 303-15.
[8] L.R. Vermani, A. Razdan and R. Karan, Some remarks on subgroups determined by certain ideals in integral group rings, Proc. Indian Acad. Sci. (Math. Sci.) 103 (1993), 249-256.
[9] K.I. Tahara, L.R. Vermani and Atul Razdan, On generalized third dimension subgroups, Canad. Math. Bull. 41 (1998), 109-117.


[^0]:    *School of Mathematics and Computer Applications, Thapar University, Patiala - 147 004, India, Email: dkgumber@yahoo.com

