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Abstract

In this paper we extend the notion of rough convergence using the
concept of ideals which automatically extends the earlier notions of
rough convergence and rough statistical convergence. We define the set
of rough ideal limit points and prove several results associated with this
set.
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1. Introduction

Since 1951 when Steinhaus [23] and Fast [8] (also Schoenberg [22]) defined statistical
convergence for sequences of real numbers, several generalizations and applications of this
notion have been investigated. In particular two interesting generalizations of statistical
convergence were introduced by Kostyrko et. al. [11], using the notion of ideals of N,
the set of positive integers who named them as I and I∗-convergence. A lot of work has
been done on ideal convergence since then as can be seen from [4, 5, 7, 12, 13, 14] where
more references can be found.

The idea of rough convergence was introduced by Phu [16] who also introduced the
concepts of rough limit points and roughness degree. The basic properties of this inter-
esting concept were studied by Phu [16, 17] in finite dimensional normed linear spaces
who later extended the results into infinite dimensional spaces [18]. It should be men-
tioned that the idea of rough convergence occurs very naturally in numerical analysis
and has interesting applications there. Recently Aytar [1] extended the idea of rough
convergence into rough statistical convergence using the notion of natural density just
as usual convergence was extended to statistical convergence. So in view of the recent
applications of ideals in the theory of convergence of sequences, it seems very natural
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to extend the interesting concept of rough convergence further by using ideals which we
mainly do here.

We primarily introduce the notion of rough ideal convergence using the concept of
ideals which automatically extends the earlier notions of rough convergence and rough
statistical convergence. We define the set of rough ideal limit points and prove several
results regarding this set.

It is to be noted that our results and methods of proofs are ideal analogues of the
parallel results of [16] and [2] and present those results in the most general possible form.
This also enhances the applicability of these concepts.

2. Preliminaries

A family I ⊂ 2Y subsets of a non-empty set Y is said to be an ideal in Y if (i) A,B ∈ I

implies A ∪ B ∈ I (ii) A ∈ I, B ⊂ A implies B ∈ I, while an admissible ideal I of Y
further satisfies {x} ∈ I for each x ∈ Y. Let I be a non-trivial ideal in Y (i.e. Y /∈ I),
Y 6= ∅. Then the family of sets F(I) = {M ⊂ Y : there exists A ∈ I, M = Y \ A} is
a filter in Y (recall that a non empty class F of subsets of Y is said to be a filter in Y
provided (i) ∅ /∈ F, (ii) A,B ∈ F implies A ∩ B ∈ F, (iii) A ∈ F, A ⊂ B implies B ∈ F).
It is called the filter associated with the ideal I.

Throughout the paper I will stand for a non-trivial admissible ideal of N, set of all
positive integers.

A sequence {xn}n∈N in a normed linear space (X, ‖.‖) is said to be I-convergent to
x ∈ X, if for each ε > 0 the set A(ε) = {n ∈ N : ‖xn − x‖ ≥ ε} belongs to I [11] (see [14]
for the definition in more general form in topological spaces).

Throughout the paper let r be a non-negative real number and (X, ‖.‖) be a normed
linear space. The sequence x = {xi}i∈N in X is said to be rough convergent (or in short r-

convergent) to x∗ [16] and is denoted by xi
r−→ x∗, provided that for any ε > 0 there exists

iε ∈ N such that i ≥ iε implies ‖xi − x∗‖ < r + ε. The set LIMr
x = {x∗ ∈ X : xi

r−→ x∗}
is called the r-limit set of the sequence x = {xi}i∈N. A sequence {xi}i∈N is said to be
r-convergent if LIMr

x 6= ∅. In this case r is called the convergence degree of the sequence
{xi}i∈N. For r = 0 we get the notion of ordinary convergence.

We now introduce the following definition.

2.1. Definition. A sequence x = {xi}i∈N in X is said to be r-I-convergent to x∗, denoted

by xi
rI−→ x∗, provided that the set {i ∈ N : ‖xi − x∗‖ ≥ r + ε} ∈ I, for any ε > 0.

Here r is called the roughness degree. If we take r = 0, we obtain the notion of
I-convergence.

The motivation behind introducing this notion is same as in [16] and [2]. For instance
assume that the sequence y = {yi}i∈N is I-convergent and can not be measured or
calculated exactly and one has to do with an approximated (or I-approximated) sequence
x = {xi}i∈N satisfying ‖xi−yi‖ ≤ r for all i (or for almost all i that is {i ∈ N : ‖xi−yi‖ >
r} ∈ I). Then I-convergence of the sequence x is not assured, but as the inclusion
{i ∈ N : ‖yi − y∗‖ ≥ ε} ⊇ {i ∈ N : ‖xi − y∗‖ ≥ r + ε} holds so the sequence {xi}i∈N is
r-I-convergent.

In general the rough I-limit of a sequence may not be unique for the roughness de-

gree r > 0. We define I-LIMr
x = {x∗ ∈ X : xi

rI−→ x∗}. The sequence x is said to be
r-I-convergent provided that I-LIMr

x 6= ∅. In [16] (see also [2]) it was observed that for
a sequence x = {xi}i∈N of real numbers, LIMr

x = [lim sup x− r, lim inf x+ r]. Similarly
here we can have I-LIMr

x = [I-lim sup x− r, I-lim inf x+ r].
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3. Main Results

It is known that there exists unbounded sequences x = {xi}i∈N for which LIMr
x = ∅

(see [16]). But such a sequence might be rough I-convergent. Let I be a non-trivial
admissible ideal of N. Choose an infinite subset A of N such that A ∈ I. Define

xi =

{
(−1)i if i /∈ A
i if i ∈ A.

Then

I-LIMr
x =

{
∅ if r < 1
[1-r,r-1] otherwise.

Clearly LIMr
x = ∅ for all r ≥ 0. The above example shows that I-LIMr

x 6= ∅ does not
imply that LIMr

x 6= ∅. But the converse is always true if I is admissible i.e. LIMr
x ⊆ I-

LIMr
x .

3.1. Theorem. For a sequence x = {xi}i∈N we have diam(I-LIMr
x) ≤ 2r. In general

diam(I-LIMr
x) has no smaller bound.

Proof. Assume that diam(I-LIMr
x) > 2r. Then there exists y, z ∈ I-LIMr

x such that

‖y − z‖ > 2r. Choose 0 < ε < ‖y−z‖
2
− r. Put A1 = {i ∈ N : ‖xi − y‖ ≥ r + ε} and

A2 = {i ∈ N : ‖xi − z‖ ≥ r + ε}. Then A1, A2 ∈ I and hence M = N \ (A1 ∪ A2) ∈
F(I) and so M 6= ∅. Let i ∈M. Now ‖y− z‖ ≤ ‖xi − y‖+ ‖xi − z‖ < 2(r+ ε) < ‖y− z‖,
which is a contradiction. Thus diam(I-LIMr

x) ≤ 2r.
To prove the converse part, consider a sequence x = {xi}i∈N such that I-lim x = x∗.

Let ε > 0 be given. Then A = {i ∈ N : ‖xi − x∗‖ ≥ ε} ∈ I. Now for each y ∈ B̄r(x∗) =
{y ∈ X : ‖y − x∗‖ ≤ r} we have

‖xi − y‖ ≤ ‖xi − x∗‖+ ‖x∗ − y‖ < r + ε, whenever i /∈ A.

Which shows that y ∈ I-LIMr
x and consequently we can write I-LIMr

x = B̄r(x∗). This
shows that in general upper bound 2r of the diameter of the set I-LIMr

x can not be
decreased anymore. �

In [16] it was established that there exists a non-negative real number r such that
LIMr

x 6= ∅ for a bounded sequence x. As LIMr
x 6= ∅ implies I-LIMr

x 6= ∅, this result is
also true for I-LIMr

x for any admissible ideal I. The converse implication is not generally
true. For this we have the following result.

3.2. Theorem. A sequence x = {xi}i∈N is I-bounded if and only if there exists a non-
negative real number r such that I-LIMr

x 6= ∅. (A sequence {xi}i∈N is said to be I-bounded
if there exists a positive real number G such that the set A = {i ∈ N : ‖xi‖ ≥ G} ∈ I)[7].

Proof. Let x = {xi}i∈N be an I-bounded sequence. Then there exists a positive real
number G such that A = {i ∈ N : ‖xi‖ ≥ G} ∈ I. Let r̄ = sup{‖xi‖ : i ∈ M = N \ A}.
The set I-LIM r̄

x contains the origin of X and so I-LIMr
x 6= ∅.

Conversely suppose that I-LIMr
x 6= ∅ for some r > 0, then there exists x∗ ∈ I-LIMr

x

i.e. {i ∈ N : ‖xi − x∗‖ ≥ r + ε} ∈ I for each ε > 0. This in turn implies that {xi}i∈N is
I-bounded. �
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Next we present some topological and geometrical properties of the r-I-limit set of a
sequence.

3.3. Theorem. The r-I-limit set I-LIMr
x of a sequence x = {xi}i∈N is a closed set.

Proof. If I-LIMr
x = ∅, then there is nothing to prove. So assume that I-LIMr

x 6= ∅.
Suppose that {yi}i∈N ⊆ I-LIMr

x and yi → y∗ as i → ∞. Let ε > 0 be given. Then
there exists i ε

2
∈ N such that ‖yi − y∗‖ < ε

2
for all i > i ε

2
. Let i0 ∈ N such that

yi0 ∈ {yi}i∈N ⊆ I-LIMr
x . Consequently we have A = {i ∈ N : ‖xi − yi0‖ ≥ r + ε

2
} ∈ I.

Clearly M = N \ A ∈ F(I) and so M 6= ∅. Choose k ∈ M. Choose an i0 > i ε
2
. We have

‖xk − y∗‖ ≤ ‖xk − yi0‖+ ‖yi0 − y∗‖ < r + ε. Hence

M = {i ∈ N : ‖xi − yi0‖ < r +
ε

2
} ⊆ {i ∈ N : ‖xi − y∗‖ < r + ε}

where {i ∈ N : ‖xi−yi0‖ < r+ ε
2
} ∈ F(I). Consequently {i ∈ N : ‖xi−y∗‖ < r+ε} ∈ F(I)

and so {i ∈ N : ‖xi − y∗‖ ≥ r + ε} ∈ I. This completes the proof.
�

3.4. Theorem. The r-I-limit set I-LIMr
x of a sequence x = {xi}i∈N is convex.

Proof. Consider y0, y1 ∈ I-LIMr
x . Let ε > 0 be given. Put A1 = {i ∈ N : ‖xi−y0‖ ≥ r+ε}

and A2 = {i ∈ N : ‖xi−y1‖ ≥ r+ε}. Then A1, A2 ∈ I which implies M = N\(A1∪A2) ∈
F(I) and so M is non-empty. Now for each i ∈M and λ ∈ [0, 1] we have

‖xi − [(1− λ)y0 + λy1]‖ = ‖(1− λ)(xi − y0) + λ(xi − y1)‖ < r + ε.

Consequently {i ∈ N : ‖xi− [(1−λ)y0 +λy1]‖ ≥ r+ ε} ∈ I, which shows that (1−λ)y0 +
λy1 ∈ I-LIMr

x .
�

3.5. Theorem. Let r > 0. Then a sequence x = {xi}i∈N is r-I-convergent to x∗ if and
only if there exists a sequence y = {yi}i∈N such that I-lim y = x∗ and ‖xi − yi‖ ≤ r for
i ∈ N.

Proof. Let xi
rI−→ x∗. Then we have

I-lim sup‖xi − x∗‖ ≤ r......(1).

Now we define

yi =

{
x∗ if ‖xi − x∗‖ ≤ r
xi + r x∗−xi

‖xi−x∗‖ otherwise.

Then

‖yi − x∗‖ =

{
0 if ‖xi − x∗‖ ≤ r
‖xi − x∗‖ − r otherwise.

Thus ‖xi− yi‖ ≤ ‖xi−x∗‖+ ‖x∗− yi‖ ≤ r for all i ∈ F(I). Also from (1) I-lim sup ‖yi−
x∗‖ = 0. Thus I-lim y = x∗.

Conversely suppose that the given condition holds. For any ε > 0, the set A = {i ∈
N : ‖yi − x∗‖ ≥ ε} ∈ I. Here we note that

‖xi − x∗‖ ≤ ‖xi − yi‖+ ‖yi − x∗‖ < r + ε, if i ∈M = N \A.
This shows that

{i ∈ N : ‖xi − x∗‖ ≥ r + ε} ⊆ {i ∈ N : ‖yi − x∗‖ ≥ ε}

and so xi
rI−→ x∗.

�



Rough ideal convergence 637

We now recall the following definitions from ([11, 14]).

3.6. Definition. A point ξ ∈ X is called an I-limit point of a sequence x = {xi}i∈N if
there exists a set K = {k1, k2, ...} ∈ F(I) such that lim

n→∞
xkn = ξ. The set of all I-limit

points of the sequence x will be denoted by λx(I).

3.7. Definition. A point ξ ∈ X is called an I-cluster point of a sequence x = {xi}i∈N if
for any ε > 0, {n ∈ N : ‖xn − ξ‖ < ε} /∈ I. The set of all I-cluster points of x will be
denoted by Λx(I).

It was known that λx(I) ⊆ Λx(I) (see [11]).

3.1. Proposition. For an arbitrary c ∈ Λx(I) where x = {xi}i∈N, we have ‖x∗ − c‖ ≤ r
for all x∗ ∈ I-LIMr

x .

Proof. If possible suppose that there exists c ∈ Λx(I) and x∗ ∈ I-LIMr
x such that ‖x∗ −

c‖ > r. Put ε = ‖x∗−c‖−r
2

. We have A = {i ∈ N : ‖xi−c‖ < ε} /∈ I. Let us write B = {i ∈
N : ‖xi−x∗‖ ≥ r+ε}. Now for i ∈ A, ‖x∗−xi‖ ≥ ‖x∗−c‖−‖xi−c‖ > 2ε+r−ε = r+ε.
Then A ⊂ B implies that B /∈ I which contradicts the fact that x∗ ∈ I-LIMr

x . Thus
‖x∗ − c‖ ≤ r for all x∗ ∈ I-LIMr

x and c ∈ Λx(I). �

3.8. Theorem. A sequence x = {xi}i∈N is I-convergent to x∗ if and only if I-LIMr
x =

B̄r(x∗).

Proof. In Theorem 3.1 we have already proved the necessity part. For the sufficiency, let
I-LIMr

x = B̄r(x∗)( 6= ∅). Thus the sequence x = {xi}i∈N is I-bounded. Suppose that x has
another I-cluster point x′∗ different from x∗. The point x̄∗ = x∗+

r
‖x∗−x′∗‖

(x∗−x′∗) satisfies

‖x̄∗−x′∗‖ = ( r
‖x∗−x′∗‖

+1)(‖x∗−x′∗‖) = r+‖x∗−x′∗‖ > r. Since x′∗ ∈ Λx(I), by Proposition

3.1 x̄∗ /∈ I-LIMr
x . But this is impossible as ‖x̄∗ − x∗‖ = r and I-LIMr

x = B̄r(x∗). Since
x∗ is the unique I-cluster point of x, it follows that x is I-convergent to x∗. �

3.1. Corollary. If (X, ‖.‖) is a strictly convex space and x = {xi}i∈N is a sequence in
X. Also if there exists y1, y2 ∈ I-LIMr

x such that ‖y1 − y2‖ = 2r, then this sequence is
I-convergent to y1+y2

2
.

The proof is straightforward and so is omitted.

3.9. Theorem. (i) If c ∈ Λx(I) then I-LIMr
x ⊆ B̄r(c).

(ii) I-LIMr
x =

⋂
c∈Λx(I)

B̄r(c) = {x∗ ∈ Rn : Λx(I) ⊆ B̄r(x∗)}.

Proof. (i) If x∗ ∈ I-LIMr
x and c ∈ Λx(I) then ‖x∗ − c‖ ≤ r. Hence the result follows.

(ii) By (i) we can write I-LIMr
x ⊆

⋂
c∈Λx(I)

B̄r(c). Assume that y ∈
⋂

c∈Λx(I)

B̄r(c). We

have ‖y − c‖ ≤ r for all c ∈ Λx(I) and so Λx(I) ⊆ B̄r(y). Then clearly
⋂

c∈Λx(I)

B̄r(c) ⊆

{x∗ ∈ X : Λx(I) ⊆ B̄r(x∗)}. If possible let y /∈ I-LIMr
x . Then there exists an ε > 0

such that the set A = {i ∈ N : ‖xi − y‖ ≥ r + ε} /∈ I, which implies the existence of
an I-cluster point c of the sequence x with ‖y − c‖ ≥ r + ε. Hence Λx(I) ⊆ B̄r(y) and
y /∈ {x∗ ∈ X : Λx(I) ⊆ B̄r(x∗)}. Finally the fact that y ∈ I-LIMr

x follows from the
observation that y ∈ {x∗ ∈ X : Λx(I) ⊆ B̄r(x∗)}. �

3.2. Proposition. Let x = {xi}i∈N be an I-bounded sequence. If r = diam(Λx(I)), then
we have Λx(I) ⊆ I-LIMr

x .
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Proof. Let c /∈ I-LIMr
x . Then there exists an ε′ > 0 such that the set A = {i ∈ N :

‖xi − c‖ ≥ r+ ε′} /∈ I. Since the sequence is I-bounded, there exists an I-cluster point c′

such that ‖c− c′‖ > r + ε′

2
. Consequently c /∈ Λx(I) and the result follows. �

We now recall the definitions of I-lim sup x and I-lim inf x and I-core{x} from [7] (see
also [12]).

Let {xn}n∈N be a sequence of real numbers. We put for t ∈ R, Mt = {n : xn > t},
M t = {n : xn < t}.

3.10. Definition. (a) If there is a t ∈ R such that Mt /∈ I, we put I-lim sup x = sup{t ∈
R : Mt /∈ I}.

If Mt ∈ I holds for each t ∈ R then we put I-lim sup x = −∞.
(b) If there is a t ∈ R such that M t /∈ I, we put I-lim inf x = inf{t ∈ R : M t /∈ I}.
If M t ∈ I holds for each t ∈ R then we put I-lim inf x = +∞.

3.11. Definition. For a sequence x = {xi}i∈N of real numbers, I-core{x} is defined to
be the closed interval [I-lim inf x, I-lim sup x].

3.12. Theorem. If I-LIMr
x 6= ∅, then I-lim sup x and I-lim inf x belong to the set

I-LIM2r
x .

Proof. Since I-LIMr
x 6= ∅, x = {xi}i∈N is I-bounded. The number I-lim inf x is an

I-cluster point of x and consequently we have ‖x∗ − I-lim inf x‖ ≤ r for all x∗ ∈ I-
LIMr

x . Put A = {i ∈ N : ‖x∗ − xi‖ ≥ r + ε}. Now if i /∈ A, then ‖xi − (I-lim inf x)‖ ≤
‖xi − x∗‖ + ‖x∗ − (I-lim inf x)‖ < 2r + ε. Thus I-lim inf x ∈ I-LIM2r

x . Similarly it can
be shown that I-lim sup x ∈ I-LIM2r

x . �

3.2. Corollary. Let x = {xi}i∈N be a sequence of real numbers. If I-LIMr
x 6= ∅, then

I-core{x} ⊆ I-LIM2r
x .

Proof. We have I-LIMr
x = [I-lim sup x − 2r, I-lim inf x + 2r]. Then the result follows

from Theorem 3.12. �

3.3. Proposition. Let x = {xi}i∈N be a sequence of real numbers. Then the diameter
diam(I-core{x}) of the set I-core{x} is equal to the number r if and only if I-core{x} = I-
LIMr

x .

Proof. diam(I−core{x}) = r ⇔ (I-lim sup x) − (I-lim inf x) = r ⇔ I-core{x} = [I-
lim inf x, I-lim sup x] = [I-lim sup x− r, I-lim inf x+ r] = I-LIMr

x .
Also it is easy to see that
(a) r > diam(I-core{x}) if and only if I-core{x} ⊂ I-LIMr

x ,
(b) r < diam(I-core{x}) if and only if I-LIMr

x ⊂ I-core{x}. �

3.4. Proposition. If r̄ = inf{r ≥ 0 : I-LIMr
x 6= ∅}, then r̄ = radius(I-core{x}).

Proof. If the set I-core{x} is a singleton, then radius(I-core{x}) = 0 and the sequence is
I-convergent i.e. I-LIM0

x 6= ∅. Hence we get r̄ = radius(I-core{x}) = 0.
Now assume that the set I-core{x} is not a singleton. We can write I-core{x} = [a, b],

where a = I-lim inf x and b = I-lim sup x. Now let us assume that r̄ 6= radius(I-core{x}).
If r̄ < radius(I-core{x}), then define ε̄ =

b−a
2
−r̄

3
. Now from the definition of r̄ it easily

follows that I-LIM r̄+ε̄
x 6= ∅. Then there exists x∗ ∈ R such that for all ε > 0 the set

A = {i ∈ N : ‖xi − x∗‖ ≥ (r̄ + ε̄) + ε} ∈ I. Since r̄ + ε̄ < b−a
2

this in turn contradicts the
definitions of a and b.
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If r̄ > radius(I-core{x}), then define ε̄ =
r̄− b−a

2
3

and r′ = r̄ − 2ε̄. It is clear that

0 ≤ r′ < r̄, and by definitions of a and b, the number b−a
2

is in I-LIMr′
x . Then we get

r′ ∈ {r ≥ 0 : I-LIMr
x 6= ∅}, which contradicts the equality r̄ = inf{r ≥ 0 : I-LIMr

x 6= ∅}
as r′ < r̄. �

From Proposition 3.3 and Proposition 3.4 we can conclude that,

3.3. Corollary. For a sequence x = {xi}i∈N we have I-core{x} = I-LIM2r̄
x .
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