hacettepe Journal of Mathematics and Statistics Volume 42(6)(2013), 641-651

JORDAN TRIPLE $(\alpha, \beta)^*$ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION

Nadeem ur Rehman ^a[†]

Abstract

Let R be a 2-torsion free semiprime *-ring. The aim of this paper is to show that every Jordan triple $(\alpha, \beta)^*$ -derivation on R is a Jordan $(\alpha, \beta)^*$ -derivation. Furthermore, every Jordan triple left α^* -centralizer on R is a Jordan left α^* -centralizer. Consequently, every generalized Jordan triple $(\alpha, \beta)^*$ -derivation on R is a Jordan $(\alpha, \beta)^*$ -derivation.

Keywords: ring, *-ring, $(\alpha, \beta)^*$ - derivation, Jordan $(\alpha, \beta)^*$ -derivation, Jordan triple $(\alpha, \beta)^*$ -derivation, generalized Jordan triple $(\alpha, \beta)^*$ -derivation.

2000 AMS Classification: 16W25, 16N60, 16U80

1. Introduction

Throughout this paper all rings will be associative. A ring R is n-torsion free, where n > 1 is an integer, in case nx = 0, $x \in R$, implies x = 0. As usual, commutator ab - ba will be denoted by [a, b] and anti-commutator ab + ba will be denoted by $a \circ b$. Recall that a ring R is prime if for $a, b \in R$, aRb = (0) implies a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. The center of a ring R will be denoted by Z(R). A *-ring is a ring R equipped with an involution, that is an additive mapping $* : R \to R$ such that $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all $a, b \in R$. An involution * on a *-ring R is said to be positive definite if $a^*a = 0$ (with $a \in R$) implies a = 0.

An additive mapping $\delta: R \longrightarrow R$ is called a derivation (resp. a Jordan derivation) if $\delta(xy) = \delta(x)y + x\delta(y)$ (resp. $\delta(x^2) = \delta(x)x + x\delta(x)$) holds for all $x, y \in R$. If $\delta: R \to R$ is additive and if α and β are endomorphisms of R, then δ is said to be an (α, β) -derivation of R when for all $x, y \in R$, $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$. Note that for I, the identity mapping on R, an (I, I)-derivation is just a derivation. An example of an (α, β) -derivation when R has a nontrivial central idempotent eis obtained if we let $\delta(x) = ex$, $\alpha(x) = x - ex$, and $\beta = I$ (or δ). Here, δ is not a derivation because $\delta(ee) = eee \neq 2eee = (ee)e + e(ee) = \delta(e)e + e\delta(e)$. In any ring

 $^{^{\}mathrm{a}}\mathrm{Department}$ of Mathematics, Aligarh Muslim University, Aligarh -202002, India.

[†]Email: rehman1000gmail.com

with an endomorphism α , if we let $\delta = I - \alpha$, then δ is an (α, I) -derivation, but not a derivation when R is semiprime, unless $\alpha = I$. A famous result due to Herstein [12, Theorem 3.3], states that a Jordan derivation of a prime ring of characteristic not equal to 2 must be a derivation. A brief proof of Herstein's result can also be found in [6]. This result was extended to 2-torsion free semiprime rings by Cusack [8] and subsequently, by Brešar [3].

Following [4], an additive mapping $\delta : R \to R$ is called a Jordan triple derivation if $\delta(xyx) = \delta(x)yx + x\delta(y)x + xy\delta(x)$ holds for all $x, y \in R$. One can easily prove that any Jordan derivation on an arbitrary 2-torsion free ring is a Jordan triple derivation (see [12, Lemma 3.5]). The famous result of Brešar in [4, Theorem 4.3] states that, if R is a 2-torsion free semiprime ring, any Jordan triple derivation $\delta : R \to R$ is a derivation.

Let R be a *-ring. An additive mapping $\delta:R\to R$ is called a Jordan *-derivation if

$$\delta(a \circ b) = \delta(a)b^* + a\delta(b) + \delta(b)a^* + b\delta(a) \text{ holds for all } a, b \in R.$$

When R is 2-torsion free, we define a Jordan *-derivation by merely insisting that

 $\delta(a^2) = \delta(a)a^* + a\delta(a)$ holds for all $a \in R$.

These mappings are closely connected with the problem of the representability of quadratic functionals by sesquilinear forms. In 1989 Brešar and Vukman [5] studied some algebraic properties of Jordan *-derivations. An additive mapping $\delta : R \to R$ is said to be a Jordan triple *-derivation if $\delta(aba) = \delta(a)b^*a^* + a\delta(b)a^* + ab\delta(a)$ for all $a, b \in R$. Let α, β be endomorphisms of a *-ring R. An additive mapping $\delta : R \to R$ is called an $(\alpha, \beta)^*$ -derivation if $\delta(ab) = \delta(a)\alpha(b^*) + \beta(a)\delta(b)$ for all $a, b \in R$. An additive mapping $\delta : R \to R$ is called a Jordan $(\alpha, \beta)^*$ -derivation if

$$\delta(a \circ b) = \delta(a)\alpha(b^*) + \beta(a)\delta(b) + \delta(b)\alpha(a^*) + \beta(b)\delta(a) \text{ for all } a, b \in R.$$

If R is 2-torsion free, the definition of a Jordan $(\alpha, \beta)^*$ -derivation is equivalent to the following condition

 $\delta(a^2) = \delta(a)\alpha(a^*) + \beta(a)\delta(a)$ for all $a \in R$.

An additive mapping $\delta : R \to R$ is called a Jordan triple $(\alpha, \beta)^*$ -derivation if $\delta(aba) = \delta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a)$ for all $a, b \in R$.

Obviously, every $(\alpha, \beta)^*$ -derivation on a 2-torsion free *-ring is a Jordan triple $(\alpha, \beta)^*$ -derivation, but converse need not be true in general. In [1] Shakir and Fošner, shows that the converse is true for 6-torsion free semiprime *-ring R. In Section 2 we remove the assumption that R is a 3-torsion free if the involution is positive definite and prove that every Jordan triple $(\alpha, \beta)^*$ -derivation on a 2-torsion free semiprime *-ring with a positive definite involution is a Jordan $(\alpha, \beta)^*$ -derivation.

An additive mapping $\Theta: R \longrightarrow R$ is said to be a generalized derivation (resp. a generalized Jordan derivation) on R if there exists a derivation $\delta: R \longrightarrow R$

such that $\Theta(xy) = \Theta(x)y + x\delta(y)$ (resp. $\Theta(x^2) = \Theta(x)x + x\delta(x)$) holds for all $x, y \in R$. An additive mapping $\Theta : R \longrightarrow R$ is said to be a generalized Jordan triple derivation on R if there exists a Jordan triple derivation $\delta : R \longrightarrow R$ such that $\Theta(xyx) = \Theta(x)yx + x\delta(y)x + xy\delta(x)$ holds for all $x, y \in R$. In 2003, Jing and Lu [20, Theorem 3.5] proved that every generalized Jordan triple derivation on a 2-torsion free prime ring R is a generalized derivation. Very recently, Vukman [24] extended Jing and Lu [20] result for 2-torsion free semiprime rings. The result was independently obtained by Fošner and Ilišević [10, Corollary 4.2]

An additive mapping $\Theta: R \to R$ is called a generalized (α, β) -derivation, for α and β endomorphisms of R, if there exists an (α, β) -derivation $\delta: R \to R$ such that $\Theta(xy) = \Theta(x)\alpha(y) + \beta(x)\delta(y)$ holds for all $x, y \in R$. Clearly, this notion include those of (α, β) -derivation when $\Theta = \delta$, of derivation when $\Theta = \delta$ and $\alpha = \beta = I$. and of generalized derivation, which is the case when $\alpha = \beta = I$. mappings of the form $\Theta(x) = ax + xb$ for $a, b \in R$ with $\delta(x) = xb - bx$ and $\alpha = \beta = I$ are generalized derivations, and more generally, mappings $\Theta(x) = a\alpha(x) + \beta(x)b$ are generalized (α,β) -derivations. To see this observe that $\Theta(xy) = a\alpha(x)\alpha(y) + \beta(x)\beta(y)b =$ $(a\alpha(x) + \beta(x)b)\alpha(y) + \beta(x)(\beta(y)b - b\alpha(y))$, and as we have just seen above, $\delta(x) = b\alpha(x) - \beta(x)b$ is an (α, β) -derivation of R. As for derivation, a generalized Jordan (α, β) -derivation Θ assumes x = y in the definition above; that is, we assume only that $\Theta(x^2) = \Theta(x)\alpha(x) + \beta(x)\delta(x)$, holds for all $x \in R$. An addivide mapping $\Theta: R \to R$ is called a generalized Jordan triple (α, β) -derivation, for α and β endomorphisms of R, if there exists a Jordan triple (α, β) -derivation $\delta: R \to R$ such that $\Theta(xyx) = \Theta(x)\alpha(yx) + \beta(x)\delta(y)\alpha(x) + \beta(xy)\delta(x)$ holds for all $x, y \in R$. Clearly, this notion includes those of triple (α, β) -derivation when $\Theta = \delta$, of triple derivation when $\Theta = \delta$ and $\alpha = \beta = I$, and of generalized triple derivation which is the case $\alpha = \beta = I$. In 2007, Liu and Shiue [15] shows that on a 2-torsion free semiprime ring every Jordan triple (α, β) -derivation is an (α, β) derivation and every generalized Jordan triple (α, β) -derivation is a generalized (α, β) -derivation.

Let R be a *-ring. An additive mapping $\Theta : R \to R$ is called a generalized *-derivation, for α, β endomorphisms of R, if there exists a *-derivation $\delta : R \to R$ such that $\Theta(ab) = \Theta(a)b^* + a\delta(b)$ for all $a, b \in R$. An additive mapping $\Theta : R \to R$ is called a generalized Jordan *-derivation if there exists a Jordan *-derivation δ such that

 $\Theta(a \circ b) = \Theta(a)b^* + a\delta(b) + \Theta(b)a^* + b\delta(a) \text{ holds for all } a, b \in R.$

When R is 2-torsion free, we define a generalized Jordan *-derivation by

 $\Theta(a^2) = \Theta(a)a^* + a\delta(a)$ holds for all $a \in R$.

An additive mapping $\Theta : R \to R$ is called a generalized Jordan triple *derivation if there exists a Jordan triple *-derivation $\delta : R \to R$ such that

$$\Theta(aba) = \Theta(a)(b^*a^*) + a\delta(b)a^* + ab\delta(a) \text{ holds for all } a, b \in R.$$

An additive mapping $\Theta : R \to R$ is called a generalized $(\alpha, \beta)^*$ -derivation if there exists an $(\alpha, \beta)^*$ -derivation $\delta : R \to R$ such that $\Theta(ab) = \Theta(a)\alpha(b^*) +$

 $\beta(a)\delta(b)$ for all $a, b \in R$. An additive mapping $\Theta: R \to R$ is called a generalized Jordan $(\alpha, \beta)^*$ -derivation if there exists a Jordan $(\alpha, \beta)^*$ -derivation δ such that

 $\Theta(a \circ b) = \Theta(a)\alpha(b^*) + \beta(a)\delta(b) + \Theta(b)\alpha(a^*) + \beta(b)\delta(a) \text{ holds for all } a, b \in R.$

When R is 2-torsion free, the definition of a generalized Jordan $(\alpha, \beta)^*$ -derivation is equivalent to the following condition

 $\Theta(a^2) = \Theta(a)\alpha(a^*) + \beta(a)\delta(a)$ holds for all $a \in R$.

An additive mapping $\Theta: R \to R$ is called a generalized Jordan triple $(\alpha, \beta)^*$ derivation if there exists a Jordan triple $(\alpha, \beta)^*$ -derivation $\delta: R \to R$ such that

 $\Theta(aba) = \Theta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a) \text{ holds for all } a, b \in R.$

A generalized Jordan triple $(I, I)^*$ -derivation is just a generalized triple *derivation. It can be easily seen that on a 2-torsion free *-ring every generalized Jordan *-derivation is a generalized Jordan triple *-derivation. But converse need not be true in general. Thus, the concept of a generalized Jordan triple $(\alpha, \beta)^*$ -derivation covers the concepts of a Jordan triple $(\alpha, \beta)^*$ -derivation and a Jordan triple left α^* -centralizer, that is an additive mapping $\Psi: R \to R$ satisfying $\Psi(aba) = \Psi(a)\alpha(b^*a^*)$ for all $a, b \in R$. In Section 3, we show that every Jordan triple left α^* -centralizer on a 2-torsion free semiprime *-ring is a Jordan α^* -centralizer. Daif and Tamman [9] established that on a 6-torsion free semiprime *-ring every generalized Jordan triple *-derivation is a generalized Jordan *-derivation. In 2008, Fošner and Ilišević [10] obtained the above mention result without the assumption of 3-torsion free. In Section 4, we extend Fošner and Ilišević result for a generalized Jordan triple $(\alpha, \beta)^*$ -derivation.

2. Jordan Triple $(\alpha, \beta)^*$ -Derivations

One can easily prove that every Jordan *-derivation on a 2-torsion free *-ring is a Jordan triple *-derivation. However, the converse is not true in general. The following example due to Shakir and Fošner [1] justifies this fact:

2.1. Example. Let S be any commutative ring, and let $R = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \mid x, y, z \in S \right\}.$ Define mappings $\delta: R \to R$ and $\alpha, \beta, *: R \to R$ as follows: $\delta \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} =$ $\begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \alpha \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -x & y \\ 0 & 0 & -z \\ 0 & 0 & 0 \end{pmatrix}, \beta \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -x & -y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$ and $* \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & z & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}$. Then it is straightforward to check that δ is a lordon triple $(\alpha, \beta)^*$ derivating the test of the last $(\alpha, \beta)^*$ derivating the set of the last $(\alpha, \beta)^*$ derivating the last $(\alpha, \beta)^*$ deriva

is a Jordan triple $(\alpha, \beta)^*$ -derivation, but not a Jordan $(\alpha, \beta)^*$ -derivation.

In [23] Vukman established the converse for a 6-torsion free semiprime ring. Recently, Fošner and Ilišević [10] prove that any Jordan triple *-derivation on a 2-torsion free semiprime ring is a Jordan *-derivation. In 2010, Shakir and

Fošner [1] obtained the Vukman [23] result for Jordan triple $(\alpha, \beta)^*$ -derivation. In the present section, we obtained an analogue of the result due to Fošner and Ilišević [10, Theorem 5.2] for Jordan triple $(\alpha, \beta)^*$ -derivation. In fact we obtain the following result:

2.2. Theorem. Let R be a 2-torsion free semiprime *-ring with a positive definite involution. Let α , β be *-automorphisms of R, and let $\delta : R \to R$ be an additive mapping. Then the following conditions are mutually equivalent:

- (i) δ is a Jordan $(\alpha, \beta)^*$ -derivation;
- (*ii*) $\delta(aba) = \delta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a)$ for all $a, b \in \mathbb{R}$.

We begin our discussion with the following lemma which is a generalization of the result due to Ilišević [14].

2.3. Lemma. Let R be a semiprime *-ring with a positive definite involution, and let α , β be *-automorphisms of R. If there exists an element $r \in R$ such that $\beta(a)r\alpha(a^*) = 0$ for all $a \in R$, then r = 0.

Proof. By linearization we get

 $\beta(a)r\alpha(b^*) = -\beta(b)r\alpha(a^*)$ for all $a, b \in R$.

Notice that $\beta(a)r\alpha(a^*) = 0$, since α and β are *-automorphisms, implies $\alpha(a)r^*\beta(a^*) = 0$ for all $a \in R$, thus $\alpha(a^*)r^*\beta(a) = 0$ for all $a \in R$. Now we have, for all $a, b \in R$,

$$(r^*\beta(a)r)\alpha(b)(r^*\beta(a)r) = r^*(\beta(a)r\alpha(b))(r^*\beta(a)r) = = r^*(-\beta(b^*)r\alpha(a^*))(r^*\beta(a)r) = -r^*\beta(b^*)r(\alpha(a^*)r^*\beta(a))r = 0.$$

Since α is surjective, we have

 $(r^*\beta(a)r)R(r^*\beta(a)r) = 0$ for all $a \in R$.

Semiprimeness of R yields $r^*\beta(a)r = 0$ for all $a \in R$. Since β is surjective, we have $r^*Rr = 0$. This implies $r^*r = 0$. Since R is a *-ring with a positive definite involution, this implies r = 0.

2.4. Lemma. Let R be a 2-torsion free *-ring, and let α, β be endomorphisms of R. If $\delta : R \to R$ is a Jordan $(\alpha, \beta)^*$ -derivation, then for arbitrary $a, b, c \in R$, we have

Proof. (I) Since δ is a Jordan $(\alpha, \beta)^*$ -derivation, we have

(2.1)
$$\delta(ab+ba) = \delta(a)\alpha(b^*) + \beta(a)\delta(b) + \delta(b)\alpha(a^*) + \beta(b)\delta(a)$$
 for all $a, b \in R$.
Replacing b by $ab + ba$ in (2.1) we get

$$\delta(a(ab+ba) + (ab+ba)a) = \delta(a)\alpha(a^*b^*) + \delta(a)\alpha(b^*a^*) + \beta(a)\delta(a)\alpha(b^*) + \beta(a^2)\delta(b) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a) + \delta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \delta(b)\alpha(a^{*2}) \beta(b)\delta(a)\alpha(a^*) + \beta(ab)\delta(a) + \beta(ba)\delta(a).$$

On the other hand, we have

(2.3)

$$\delta(a(ab+ba) + (ab+ba)a) = \delta(a^{2}b + ba^{2}) + 2\delta(aba)$$

$$= \delta(a)\alpha(a^{*}b^{*}) + \beta(a)\delta(a)\alpha(b^{*}) + \beta(a^{2})\delta(b)$$

$$\delta(b)\alpha(a^{*2}) + \beta(b)\delta(a)\alpha(a^{*}) + \beta(ba)\delta(a) + 2\delta(aba).$$

Comparing (2.2) & (2.3), and using the fact that R is 2-torsion free, we get the required result.

(II) We compute $W = \delta((a+c)b(a+c))$ in two different ways. On one hand, we find that $W = \delta(a+c)\alpha(b^*a^*+b^*c^*) + \beta(a+c)\delta(b)\alpha(a^*+c^*) + \beta(ab+cb)\delta(a)$, and on the other hand $W = \delta(aba) + \delta(abc+cba) + \delta(cbc)$. Comparing two expressions, we obtain the required result.

Proof of the Theorem 2.2. The implication $(i) \implies (ii)$ is clear by Lemma 2.4 (I). $(ii) \implies (i)$. We use the ideal of [10, Theorem 5.2]. By Lemma 2.4, for any $a, b \in \mathbb{R}$, we have

$$\begin{split} \delta((ab)^2) &= \delta(abab) = \delta(ab(ab) + (ab)ba) - \delta(ab^2a) \\ &= (\delta(a)\alpha(b^*)\alpha((ab)^*) + \beta(a)\delta(b)\alpha(ab)^*) + \beta(ab)\delta(ab) \\ &+ \delta(ab)\alpha(b^*)\alpha(a^*) + \beta(ab)\delta(b)\alpha(a^*) + \beta(ab^2)\delta(a)) \\ &- (\delta(a)\alpha(b^*)^2\alpha(a^*) + \beta(a)\delta(b^2)\alpha(a^*) + \beta(ab^2)\delta(a)) \\ &= \beta(a)\delta(b)\alpha(b^*)\alpha(a^*) + \beta(ab)\delta(ab) \\ &+ \delta(ab)\alpha(b^*)\alpha(a^*) + \beta(ab)\delta(b)\alpha(a^*) - \beta(a)\delta(b^2)\alpha(a^*), \end{split}$$

that is,

$$\left(\delta((ab)^2) - \delta(ab)\alpha(b^*a^*) - \beta(ab)\delta(ab)\right) + \beta(a)\left(\delta(b^2) - \delta(b)\alpha(b^*) - \beta(b)\delta(b)\right)\alpha(a^*) = 0$$

Let us define a mapping $\Lambda: R \to R$ by

$$\Lambda(a) = \delta(a^2) - \delta(a)\alpha(a^*) - \beta(a)\delta(a).$$

Thus, we find that

$$\Lambda(ab) + \beta(a)\Lambda(b)\alpha(a^*) = 0.$$

Now using the above identities three times for all $a, b, c \in R$, we find that

$$2\beta(cb)\Lambda(a)\alpha(b^*c^*) = \beta(c)(\beta(b)\Lambda(a)\alpha(b^*))\alpha(c^*) + \beta(cb)\Lambda(a)\alpha(cb)^*$$

= $\beta(c)(-\Lambda(ba))\alpha(c^*) - \Lambda((cb)a)$
= $-\beta(c)\Lambda(ba)\alpha(c^*) - \Lambda(cba)$
= $\Lambda(cba) - \Lambda(cba)$
= 0.

Since R is 2-torsion free *-ring, we find that $\beta(c)\beta(b)\Lambda(a)\alpha(b^*)\beta(c^*) = 0$. Therefore, using Lemma 2.3 two times, we get $\Lambda(a) = 0$. Hence δ is a Jordan $(\alpha, \beta)^*$ derivation on R. This completes the proof of our theorem.

646

3. Jordan triple left α^* - centralizer

According to Zalar [25], an additive mapping $\Psi : R \to R$ is called a left (resp. right) centralizer of R if $\Psi(ab) = \Psi(a)b$ (resp. $\Psi(ab) = a\Psi(b)$) holds for all $a, b \in R$. If $a \in R$, then $L_x(a) = xa$ is a left centralizer and $R_x(a) = ax$ is a right centralizer. If Ψ is both left and right centralizer, then Ψ is called a centralizer. An additive mapping $\Psi : R \to R$ is called a left (resp. right) Jordan centralizer in case $\Psi(a^2) = \Psi(a)a$ (resp. $\Psi(a^2) = a\Psi(a)$) holds for all $a \in R$. For an endomorphism α of R, an additive mapping $\Psi : R \to R$ is called a left α -centralizer (resp. Jordan right α -centralizer) if $\Psi(a^2) = \Psi(a)\alpha(a)$ (resp. $\Psi(a^2) = \alpha(a)\Psi(a)$) holds for all $a \in R$.

Let R be a *-ring and let α be an endomorphism of R. An additive mapping $\Psi: R \to R$ is called a Jordan left α^* -centralizer if $\Psi(a^2) = \Psi(a)\alpha(a^*)$ for all $a \in R$. For $\alpha = I$, identity mapping on R, then we have usual definition of a Jordan left *-centralizer. An additive mapping $\Psi: R \to R$ is called a Jordan triple left α^* -centralizer if $\Psi(aba) = \Psi(a)\alpha(b^*a^*)$ holds for all $a, b \in R$. It is easy to see that every Jordan left α^* -centralizer on a 2-torsion free *-ring is a Jordan triple left α^* -centralizer. But the converse need not to be true in general. In 2010, Shakir and Fošner [1] shows that the converse is true if the underlying ring is 6-torsion free. In the present section we prove the result of Shakir and Fošner [1] without the restriction of 3-torsion free. In fact we obtain the following result:

3.1. Theorem. Let R be a 2-torsion free semiprime *-ring with a positive definite involution, and let α be a *-automorphism of R. Let $\Psi : R \to R$ be an additive mapping. Then the following conditions are equivalent:

- (i) Ψ is a Jordan left α^* -centralizer;
- (*ii*) $\Psi(aba) = \Psi(a)\alpha(b^*)\alpha(a^*)$ for all $a, b \in R$.

Proof. It is easy to prove that $(i) \implies (ii)$. Now we have to prove $(ii) \implies (i)$. We have

(3.1)
$$\Psi(aba) = \Psi(a)\alpha(b^*)\alpha(a^*)$$
 for all $a, b \in R$.

A straightforward linearization on a yields that

(3.2) $\Psi(abc + cba) = \Psi(a)\alpha(b^*)\alpha(c^*) + \Psi(c)\alpha(b^*)\alpha(a^*).$

Replacing c by a^2 in (3.2), we get

(3.3)
$$\Psi(aba^2 + a^2ba) = \Psi(a)\alpha(a^*b^*a^{2^*}) + \Psi(a^2)\alpha(b^*a^*).$$

Now, replace b by ab + ba in the relation (3.1), to get

(3.4) $\Psi(a^2ba + aba^2) = \Psi(a)\alpha(b^*a^*) + \Psi(a)\alpha(b^*a^{*2}).$

From (3.3) and (3.4), we obtain

$$\{\Psi(a^2) - \Psi(a)\alpha(a^*)\}\alpha(b^*a^*) = 0 \text{ for all } a, b \in R$$

Let us define $\Delta : R \to R$ by

(3.5) $\Delta(a) = \Psi(a^2) - \Psi(a)\alpha(a^*).$

We have

 $(3.6) \quad \Delta(a)\alpha(b^*a^*) = 0.$

Again replace b by b^* in (3.6), to get

(3.7) $\Delta(a)\alpha(b)\alpha(a^*) = 0.$

Now, replacing b by $a^*b\alpha^{-1}(\Delta(a))$ in (3.7) we get $\Delta(a)\alpha(a^*)\alpha(b)\Delta(a)\alpha(a^*) = 0$ for all $a, b \in R$, that is, $\Delta(a)\alpha(a^*)R\Delta(a)\alpha(a^*) = (0)$, and semiprimeness of R yields that

(3.8) $\Delta(a)\alpha(a^*) = 0$ for all $a \in R$.

Now, multiplying the relation (3.7) from the left side by $\alpha(a^*)$ and from right by $\Delta(a)$, we obtain $\alpha(a^*)\Delta(a)R\alpha(a^*)\Delta(a) = (0)$. Thus, again by semiprimeness of R, it follows that

(3.9) $\alpha(a^*)\Delta(a) = 0$ for all $a \in R$.

The linearization of (3.8) gives that

$$\{\Psi(a+b)^2 - \Psi(a+b)\alpha((a+b)^*)\}\alpha((a+b)^*) = 0.$$

Now, we define $\lambda : R \times R \to R$ by

$$\lambda(a,b) = \Psi(ab + ba) - \Psi(a)\alpha(b^*) - \Psi(b)\alpha(a^*).$$

Thus, above equation can be rewritten as

 $(3.10) \quad \Delta(a)\alpha(b^*) + \lambda(a,b)\alpha(a^*) + \Delta(b)\alpha(a^*) + \lambda(a,b)\alpha(b^*) = 0.$

Now, replacing a by -a in (3.10) we get

 $(3.11) \quad \Delta(a)\alpha(b^*) + \lambda(a,b)\alpha(a^*) - \Delta(b)\alpha(a^*) - \lambda(a,b)\alpha(b^*) = 0.$

Adding (3.10) and (3.11) and using the fact that R is 2-torsion free, we find that

$$\Delta(a)\alpha(b^*) + \lambda(a,b)\alpha(a^*) = 0 \text{ for all } a, b \in R.$$

Now, multiply the above equation by $\Delta(a)$ from the right and use (3.9) to get $\Delta(a)\alpha(b^*)\Delta(a) = 0$. Again replacing b by b^* and using the fact that α is automorphism, we find that $\Delta(a)R\Delta(a) = (0)$ for all $a \in R$. Since R is semiprime, we find that $\Delta(a) = 0$ for all $a \in R$. This proves that $\Psi(a^2) = \Psi(a)\alpha(a^*)$ holds for all $a \in R$. In other words, Ψ is a Jordan left α^* centralizer.

4. Generalized Jordan triple *-derivations

It is obvious to see that if R is 2-torsion free, then any generalized Jordan $(\alpha, \beta)^*$ -derivation $\Theta : R \to R$ with related Jordan $(\alpha, \beta)^*$ -derivation $\delta : R \to R$, is a generalized Jordan triple $(\alpha, \beta)^*$ -derivation, but the converse need not to be true in general. The following example shows that:

4.1. Example. Consider the rings S, R and $\alpha, \beta, *$ as in Example 2.1. Define mapping $\Theta : R \to R$ such that $\Theta \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then we can find an associated Jordan triple $(\alpha, \beta)^*$ -derivation $d : R \to R$ such that

648

 $\delta \left(\begin{array}{ccc} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & y & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$ It can be easily seen that Θ is a generalized

Jordan triple $(\alpha, \beta)^*$ -derivation associated with a Jordan triple $(\alpha, \beta)^*$ -derivation δ , but not a generalized Jordan $(\alpha, \beta)^*$ -derivation.

Motivated by Theorem 2.2, in the present section we show that on a 2-torsion free semiprime *-ring R, every generalized Jordan triple $(\alpha, \beta)^*$ -derivation associated with a Jordan triple $(\alpha, \beta)^*$ -derivation is a generalized Jordan $(\alpha, \beta)^*$ -derivation.

We begin our discussion with the following lemma.

4.2. Lemma. Let R be a 2-torsion free *-ring, and let α, β be endomorphisms of R. If $\Theta : R \to R$ is a generalized Jordan $(\alpha, \beta)^*$ -derivation associated with a Jordan $(\alpha, \beta)^*$ -derivation $\delta : R \to R$. Then for arbitrary $a, b, c \in R$, we have

$$\begin{array}{lll} (I) & \Theta(aba) & = & \Theta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a). \\ (II) & \Theta(abc+cba) & = & \Theta(a)\alpha(b^*c^*) + \beta(a)\delta(b)\alpha(c^*) + \beta(ab)\delta(c) + \Theta(c)\alpha(b^*a^*) \\ & +\beta(c)\delta(b)\alpha(a^*) + \beta(cb)\delta(a). \end{array}$$

Proof. Using similar arguments as used in the proof of Lemma 2.4, we obtain the assertion of the lemma. \Box

Now we are well equipped to prove the main theorem of this section.

4.3. Theorem. Let R be a 2-torsion free semiprime *-ring with a positive definite involution, and let α , β be *-automorphisms of R. Let $\Theta, \delta : R \to R$ be additive mappings. Then the following conditions are equivalent:

(i) Θ is a generalized Jordan $(\alpha, \beta)^*$ -derivation;

(*ii*)
$$\Theta(aba) = \Theta(a)\alpha(b^*a^*) + \beta(a)\delta(a)\alpha(a^*) + \beta(ab)\delta(a)$$
 for all $a, b \in \mathbb{R}$.

Proof. In view of Lemma 4.2, it is clear that $(i) \implies (ii)$. Let us prove the reverse. If $\delta = 0$, then Θ is a Jordan triple left α^* -centralizer on R. Thus, by Theorem 3.1, Θ is a Jordan left α^* -centralizer. Hence, for $\delta = 0$, Θ is a generalized Jordan $(\alpha, \beta)^*$ -derivation.

Now assume that the associated Jordan triple $(\alpha, \beta)^*$ -derivation δ is nonzero. Therefore by Theorem 2.2, δ is a Jordan $(\alpha, \beta)^*$ -derivation on R. Now set $\Psi = \Theta - \delta$. Thus, we find that

$$\begin{split} \Psi(aba) &= \Theta(aba) - \delta(aba) \\ &= \Theta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a) \\ &- \delta(a)\alpha(b^*a^*) - \beta(a)\delta(b)\alpha(a^*) - \beta(ab)\delta(a) \\ &= (\Theta(a) - \delta(a))\alpha(b^*a^*) \\ &= \Psi(a)\alpha(b^*a^*). \end{split}$$

This implies that Ψ is a Jordan triple left α^* -centralizer on R. Hence, by Theorem 3.1, one can conclude that Ψ is a Jordan left α^* -centralizer on R. Therefore

$$\Theta(a^2) = \Psi(a^2) + \delta(a^2)$$

= $\Psi(a)\alpha(a^*) + \delta(a)\alpha(a^*) + \beta(a)\delta(a)$
= $(\Psi(a) + \delta(a))\alpha(a^*) + \beta(a)\delta(a)$
= $\Theta(a)\alpha(a^*) + \beta(a)\delta(a).$

This shows that Θ is a generalized Jordan $(\alpha, \beta)^*$ -derivation associated with a Jordan $(\alpha, \beta)^*$ -derivation δ on R. This completes the proof of the theorem. \Box

Combining Theorem 2.2 and Theorem 4.3, we get the following result:

4.4. Theorem. Let R be a 2-torsion free semiprime *-ring with a positive definite involution and let α, β be automorphisms of R. Let $\Theta, \delta : R \to R$ be additive mappings. Then the following conditions are mutually equivalent:

(i) for all $a, b \in R$,

$$\Theta(aba) = \Theta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a)$$

$$\delta(aba) = \delta(a)\alpha(b^*a^*) + \beta(a)\delta(b)\alpha(a^*) + \beta(ab)\delta(a)$$

(*ii*) for all $a, b \in R$,

$$\Theta(a^2) = \Theta(a)\alpha(a^*) + \beta(a)\delta(b)$$

$$\delta(a^2) = \delta(a)\alpha(a^*) + \beta(a)\delta(b).$$

Acknowledgment. The author would like to thank Professor Dijana Ilišević for useful discussion and careful reading of the paper.

References

- Ali, Shakir and Fošner, A., On Jordan (α, β)*-derivations in semiprime *-rings, International J. Algebra 4, 99–108, 2010.
- Brešar M., On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 No.1, 89–93, 1991.
- [3] Brešar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104, 1003–1006, 1988.
- [4] Brešar M., Jordan mappings of semiprime rings, J. Algebra 127, 218-228, 1989.
- [5] Brešar M. and Vukman J., On some additive mappings in rings with involution, Aequ. Math. 38, 178–185, 1989.
- [6] Brešar M. and Vukman J., Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321–322, 1988.
- [7] Brešar, M. and Zalar, B., On the structure of Jordan *-derivation, Colloq. Math. 63, 163– 171, 1992.
- [8] Cusack J. M., Jordan derivations on rings. Proc. Amer. Math. Soc. 53, 321-324, 1975.
- [9] Daif, M. N. and Tammam El-Sayiad, M. S., On Jordan and Jordan *-generalized derivations in semiprime rings with involution, Int. J. Contemp. Math. Scie. 2, 1487–1492, 2007.
- [10] Fošner, M. and Ilišević, D., On Jordan triple derivations and related mappings, Mediterr. J. Math 5, 415–425, 2008.
- [11] Fošner, M. and Ilišević, D., On a class of projections on *-rings, Comm. Algebra 33, 3293– 3310, 2005.
- [12] Herstein I. N., Topics in Ring Theory, (Chicago Univ Press, Chicago, 1969).

650

- [13] Hongan, M., Rehman, N. and Al-Omary, R. M., Lie ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova, 125, 147–156, 2011.
- [14] Ilišević, D., Quadratic functionals on modules over *-rings, Studia Sci. Math. Hungar. 42, 95–105, 2005.
- [15] Liu, C. K. and Shiue, Q. K., Generalized Jordan triple (θ, φ)-derivations of semiprime rings, Taiwanese J. Math. 11, 1397–1406, 2007.
- [16] Najati, Abbas, Jordan θ -derivation on Lie triple systems, Bull. Korean Math. Soc. 46 No. 3, 435–437, 2009.
- [17] Najati, Abbas, On generalized Jordan derivations of Lie triple systems, Czechoslovak Mathematical Journal, 60 No. 135, 541–547, 2010.
- [18] Šemrl, P., Quadratic functionls and Jordan *-derivations, Studia Math. 97, 157–165, 1991.
- [19] Hvala B., Generalized derivations in rings, Comm. Algebra 26, 1149-1166, 1998.
- [20] Jing W. and Lu S., Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7, 605–613, 2003.
- [21] Lanski C., Generalized derivations and nth power mappings in rings, Comm Algebra 35, 3660–3672, 2007.
- [22] Molnar L., On centralizers of an H*-algebra, Publ. Math. Debrecen 46 No. 1-2, 89-95, 1995.
- [23] Vukman, J., A note on Jordan *-derivations in semiprime rings with involution, Int. math. Forum 13, 617–622, 2006.
- [24] Vukman J., A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11, 367–370, 2007.
- [25] Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32, 609–614, 1991.