ON BP-ALGEBRAS

Sun Shin Ahn *, Jeong Soon Han †

Received 06 : 05 : 2011 : Accepted 25 : 11 : 2012

Abstract

In this paper, we introduce the notion of a BP-algebra, and discuss some relations with several algebras. Moreover, we discuss a quadratic BP-algebra and show that the quadratic BP-algebra is equivalent to several quadratic algebras.

Keywords: B-algebra, 0-commutative, BF-algebra, BP-algebra, BH-algebra, (normal) subalgebra.

2000 AMS Classification: 06F35, 03G25.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([11]) introduced the notion of d-algebras which is another generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Also they introduced the notion of B-algebras ([9, 12, 13]), i.e., (I) $x \ast x = e$; (II) $x \ast e = x$; (III) $(x \ast y) \ast z = x \ast (z \ast (e \ast y))$, for any $x, y, z \in X$. A. Walendziak ([14]) obtained another axiomatization of B-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new notion, called a BH-algebra which is a generalization of $BCH/BC1/BCK$-algebras. A. Walendziak ([15]) introduced a new notion, called an BF-algebra, i.e., (I); (II) and (IV) $e \ast (x \ast y) = y \ast x$ for any $x, y \in X$. In ([15]) it was shown that a BF-algebra is a generalizations of a B-algebra. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic BF-algebra, and obtained that quadratic BF-algebras, quadratic Q-algebras, BG-algebras and B-algebras are equivalent nations on a field X with $|X| \geq 3$, and hence every quadratic BF-algebra is a BCI-algebra. In this paper, we introduce the notion of

*Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea, Email: sunshine@dongguk.edu
†Corresponding author.
Department of Applied Mathematics, Hanyang University, Ansan, 426-791, Korea, Email: han@hanyang.ac.kr