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Abstract

Inspired by a result of Saalschütz, we prove a recurrence relation for
Bernoulli numbers. This recurrence relation has an interesting connec-
tion with real cyclotomic fields.
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1. Introduction

The Bernoulli numbers Bn, which can be defined by the Laurent series expansion

x

ex − 1
=

∞∑

j=0

Bj
j!
xj ,

have several applications in different fields of mathematics, such as number theory, com-
binatorics, numerical analysis.

A classical problem in elementary number theory is to find formulas for summing the
m-th powers of the first n− 1 integers. The following result is obtained by Bernoulli [7,
Chap. 15] and it is one of the most historical formula including Bernoulli numbers

(1.1)

n−1∑

j=1

jm =
1

m+ 1

m∑

j=0

(
m+ 1

j

)
Bjn

m+1−j .

Another historical formula including Bernoulli numbers is the Euler-Maclaurin sum-
mation formula which was found by Euler and Maclaurin independently in 1730s and
used for computations in numerical analysis [2], [9]. A breakthrough in algebraic num-
ber theory is the Kummer’s criterion, proved in 1850, which relates the numerator of
Bernoulli numbers to the existence of integer solutions of Fermat’s equation [8].

It is a powerful method to investigate Bernoulli numbers by recurrence relations. For
example, in order to prove von Staudt-Clausen theorem, concerning the denominator of
the Bernoulli numbers, it is important to write Bj in terms of previous Bernoulli numbers
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[12, pp. 56]. There is a vast literature concerning the recurrence relations of Bernoulli
numbers. For a brief historical discussion, see Gould [5].

In this paper we prove a recurrence relation, inspired by a result of Saalschütz [10].
We achieve this by adapting his computations for the trigonometric function csc(x) =
1/ sin(x) to the function

f(x) =
ex

(ex − 1)2
.

As an application, we consider the relation between f(x) and the real cyclotomic fields

and prove a formula for odd integers n which gives the sum
∑n−1
j=1 f(2jπi/n)m as a

polynomial in n. This formula is an analogue of (1.1) and produces interesting recurrence
relations for Bernoulli numbers via Newton’s identities. Moreover it enables us to write
some discrete sums in terms of residues.

2. A recurrence relation for Bernoulli Numbers

The trigonometric function csc(x) = 1/ sin(x) has a Laurent expansion at x = 0 whose
coefficients are multiples of Bernoulli numbers. Moreover csc(x) satisfies the differential
equation

csc(x)m+2 =
D2
x(csc(x)m) +m2 csc(x)m

m(m+ 1)
.

Saalschütz [10] uses this identity and obtains a recurrence relation for Bernoulli numbers.
This is done by comparing the coefficients in the Laurent expansions of each function.
See Agoh and Dilcher [1] for a modern revision of Saalschütz’s paper.

Adapting computations of Saalschütz to our case require an identity for f(x) that is
similar to the differential equation of csc(x) above.

2.1. Lemma. For any integer m ≥ 1,

fm+1 =
D2
x(fm)−m2fm

(2m)(2m+ 1)
.

Proof. The chain and product rules of derivative give

D2
x(fm) = Dx(mfm−1Dx(f))

= m(m− 1)fm−2Dx(f)2 +mfm−1D2
x(f).

In order to simplify our computations, we define

g(x) =
ex + 1

2(ex − 1)
.

Note that Dx(g) = −f , Dx(f) = −2fg and g2 = f + 1/4. Using these identities, it is
easy to establish Dx(f)2 = 4f3 + f2 and D2

x(f) = 6f2 + f . Taking these polynomial
expressions into account, we obtain

D2
x(fm) = m(m− 1)fm−2(4f3 + f2) +mfk−1(6f2 + f)

= (4m(m− 1) + 6m)fm+1 + (m(m− 1) +m)fm

= (2m)(2m+ 1)fm+1 +m2fm.

This finishes the proof. �
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Bernoulli numbers with odd index are zero except B1. To see this observe that the
function x/(ex − 1) + x/2 is even. Therefore it is more natural to write

x

ex − 1
+
x

2
=
x(ex + 1)

2(ex − 1)
=

∞∑

j=0

B2j

(2j)!
x2j .

In order to compute the Laurent expansion of f(x) at x = 0, we first consider

g(x) =
ex + 1

2(ex − 1)
=

∞∑

j=0

B2j

(2j)!
x2j−1.

Using the equality Dx(g) = −f , we obtain

f(x) =
ex

(ex − 1)2
= −

∞∑

j=0

(2j − 1)
B2j

(2j)!
x2j−2.

We will use the lemma above in order to find a recurrence relation for Bernoulli
numbers. This will be done by comparing the coefficients in the Laurent expansions of
each function. For this purpose, let us define cm2j as follows

fm =

∞∑

j=0

cm2jx
2j−2m.

This definition is possible thanks to fact that fm is an even function with a pole of order
2m at x = 0. Note that (x2f)m =

∑∞
j=0 c

m
2jx

2j . Using the lemma above, we see that

(x2f)m+1 = − x2m2(x2f)m

(2m)(2m+ 1)
+
x2m+2D2(fm)

(2m)(2m+ 1)
.

Comparing the coefficients of x2j , we get

(2.1) cm+1
2j = − m2

(2m)(2m+ 1)
cm2j−2 +

(2j − 2m)(2j − 2m− 1)

(2m)(2m+ 1)
cm2j

for any integer m ≥ 1. In particular setting m = j cancels the last term in this relation
and we are left with

cm+1
2m = − m2

(2m)(2m+ 1)
cm2m−2.

We have c10 = 1. Thus c22 = −1/3! and in general

2.2. Lemma. For any integer m ≥ 0,

cm+1
2m =

(−1)mm!2

(2m+ 1)!
.

In order work with the recurrence relation (2.1) above, it is extremely helpful to use
a normalization. Following Agoh and Dilcher [1], we define

(2.2) C(m, k) =
(2m− 1)!

(2k − 1)!
cm2m−2k

for m ≥ k ≥ 1. We set C(m, k) = 0 if m < k or k < 1. Observe that C(1, 1) = 1. If we
put 2j = 2m− 2k, then this normalization transforms (2.1) as follows

(2.3) C(m+ 1, k + 1) = −m2C(m, k + 1) + C(m, k).

Using the initial values C(1, 1) = 1 and C(1, 0) = 0, one can compute C(m, k) for all
m ≥ k ≥ 1. On the other hand the numbers C(m, k) can be easily generated by a product
as well.
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2.3. Lemma. For any integer m ≥ 1,
m∑

k=0

C(m, k)xk =

m∏

j=1

(x− (j − 1)2).

Proof. This proof is adapted from its csc(x) analogue [1, Lemma 2.1]. Note that the
statement is true for m = 1 since C(1, 1) = 1 and C(1, 0) = 0. Applying the recurrence
relation (2.3) and doing further manipulations, we obtain

m∑

k=0

C(m, k)xk = −(m− 1)2
m−1∑

k=0

C(m− 1, k)xk +

m∑

k=1

C(m− 1, k − 1)xk

= −(m− 1)2
m−1∑

k=0

C(m− 1, k)xk + x

m−1∑

k=0

C(m− 1, k)xk

= (x− (m− 1)2)

m−1∑

k=0

C(m− 1, k)xk.

The lemma follows by induction on m. �

If n = m(m − 1)/2 + k, then C(m, k) is the n-th term of the sequence A204579 in
the On-Line Encyclopedia of Integer Sequences [11]. Before we prove our main result,
we need one more fact. The following lemma enables us to write a certain coefficient in
the Laurent expansion of fm as a sum of multiples of Bernoulli numbers.

2.4. Lemma. For any integer m ≥ 1,

cm2m = − 1

(2m− 1)!

m∑

j=1

C(m, j)
B2j

2j
.

Proof. Recall that Dx(f) = −2gf . In general Dx(fm) = −2mgfm for all integers m ≥ 1.
Thus the coefficient of x−1 in the product

gfm =

( ∞∑

j=0

B2j

(2j)!
x2j−1

)( ∞∑

j=0

cm2jx
2j−2m

)

is zero. It follows that
∑m
j=0

B2j

(2j)!
cm2m−2j = 0 and therefore

cm2m = −
m∑

j=1

B2j

(2j)!
cm2m−2j .

Recall that cm2m−2j = (2j−1)!
(2m−1)!

C(m, j) for m ≥ j ≥ 1 by (2.2). This finishes the proof. �

We are ready to prove our main result. This is an analogue of Saalschütz’s result
[10]. Note that the terms in the sum is either all positive or all negative since the sign of
Bernoulli numbers B2j and C(m, j) are both alternating.

2.5. Theorem. For any integer m ≥ 1,
m∑

j=1

C(m, j)B2j =
(−1)m+1m!2

(2m+ 1)(2m)
.

Proof. Using the product f · fm, we can write

cm+1
2m =

m∑

j=0

c12jc
m
2m−2j .
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Separating the term with j = 0 and using the fact c12j = −(2j − 1)
B2j

(2j)!
, we obtain

cm+1
2m = cm2m −

1

(2m− 1)!

m∑

j=1

(2j − 1)
B2j

2j
C(m, j).

Using Lemma 2.4, we surprisingly see that

cm+1
2m = − 1

(2m− 1)!

m∑

j=1

B2jC(m, j).

Now our theorem follows easily from Lemma 2.2. �

Applying the recurrence relation (2.3) for C(m, j), we will obtain variations of our
theorem. For this purpose set

hk(m) =

m∑

j=1

C(m, j)B2j+2k.

It is easy to see that h0(m) = (−1)m+1m!2/((2m+ 1)(2m)) by the theorem above. Now
we will find a recurrence relation satisfied by hk(m)’s. Since C(m+ 1,m+ 1) is equal to
1 for all integer m ≥ 0, we see that

B2m+2k+2 = hk(m+ 1)−
m∑

j=1

C(m+ 1, j)B2j+2k.

Applying the recurrence relation (2.3), we obtain

B2m+2k+2 = hk(m+ 1) +m2
m∑

j=1

C(m, j)B2j+2k −
m∑

j=1

C(m, j − 1)B2j+2k.

The first sum is equal to m2hk(m) and the second sum is equal to hk+1(m)−B2m+2k+2.
Therefore for all integer k ≥ 0, we have

(2.4) hk+1(m) = hk(m+ 1) +m2hk(m).

Using this new recurrence relation, we can compute

h1(m) =
(−1)m(m+ 1)!2

(2m+ 3)(2m+ 2)
+m2 (−1)m+1m!2

(2m+ 1)(2m)
=

(−1)mm!2

2(2m+ 1)(2m+ 3)
.

In order to find a pattern for hk(m) in general, let us use the recurrence relation (2.4)
one more time and write

h2(m) =
(−1)m+1(m+ 1)!2

2(2m+ 3)(2m+ 5)
+m2 (−1)mm!2

2(2m+ 1)(2m+ 3)
.

We see that each time we use the recurrence relation (2.4) from now on, there will be one
new factor in the denominator of hk(m), namely (2m+ 2k+ 1). Moreover the numerator
of hk(m) can be obtained suitably as well. To formalize the numerator, we set r1(m) = 1,
a constant polynomial, and define rk(m) recursively for k ≥ 1 by

(2.5) rk+1(m) = (m+ 1)2(2m+ 1)rk(m+ 1)−m2(2m+ 2k + 3)rk(m).

We now state our corollary.

2.6. Corollary. For all integers m, k ≥ 1,

hk(m) =

m∑

j=1

C(m, j)B2j+2k =
(−1)m+k+1m!2rk(m)

2(2m+ 1)(2m+ 3) · · · (2m+ 2k + 1)
.
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A few examples of the polynomials rk(m) are

r1(m) = 1,

r2(m) = 4m+ 1,

r3(m) = 34m2 + 24m+ 5,

r4(m) = 496m3 + 672m2 + 344m+ 63,

r5(m) = 11056m4 + 24256m3 + 22046m2 + 9476m+ 1575.

As a special case, we can consider this corollary with m = 1, and obtain

(2.6) B2k+2 =
(−1)krk(1)

2 · 3 · 5 · · · (2k + 3)
.

In order to find the Bernoulli number B2k+2, we might compute rk(1) by applying the
recurrence relation (2.5) (k2−k)/2 times (without actually finding rk(m)). For example,
in order to find

B10 =
5

66
=

(−1)4r4(1)

2 · 3 · 5 · 7 · 9 · 11

the recurrence relation (2.5) should be applied 6 times.

r1(1) = 1 r1(2) = 1 r1(3) = 1 r1(4) = 1
↓ ↙ ↓ ↙ ↓ ↙

r2(1) = 5 r2(2) = 9 r2(3)13
↓ ↙ ↓ ↙

r3(1) = 63 r3(2) = 189
↓ ↙

r4(1) = 1575

Even though it is theoretically possible to compute all Bernoulli numbers described
as above, this is not the fastest way. One of the biggest handicap of this recursion is
that it accumulates a lot of unnecessary terms which could be canceled. If we write
B2j = N2j/D2j as a rational number in its lowest terms, then

D2j =
∏

p prime
p−1|2j

p

by the theorem of von Staudt-Clausen [12, pp. 56]. Note that D2j has fewer terms than
the denominator of (2.6).

The von Staudt-Clausen theorem makes it possible to use analytic methods efficiently
in order to compute the Bernoulli numbers. For instance, the classical formula

(2.7) ζ(2j) = −1

2

(2πi)2j

(2j)!
B2j , for j ≥ 1.

has been used extensively for this purpose. For a brief history of such zeta-function
algorithms and a significantly better method, see [6].

3. A connection with real cyclotomic fields

The function f(x) = ex/(ex − 1)2 is closely related with real cyclotomic extensions.

Let n be a positive odd integer. Denote by ζn = e2πi/n, a primitive n-th root of unity.
Set

αj = f(2jπi/n) =
ζjn

(ζjn − 1)2
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for integers j not divisible by n. Observe that αj = (2 cos(2jπ/n) − 2)−1 and it is an
element of the n-th real cyclotomic field Q(ζn) ∩R. Consider

pm =

(n−1)/2∑

j=1

αmj ,

which can be regarded as a sum of consecutive powers. It is easy to see that pm ∈ Q since
it is invariant under conjugation. Note that it is the trace of αm1 if n is an odd prime. In
order to compute pm explicitly as a polynomial in n, we use the following expansion

(3.1) f(x) =
∑

k∈Z

1

(x− 2kπi)2
.

To justify this equality, we first observe that f(x) = ex/(ex − 1)2 is a meromorphic
function with double poles at points x = 2kπi for integers k. Moreover we can use the
Laurent expansion of f(x) together with (2.7), and write

f(x) =
1

x2
+ 2

∞∑

j=1

(2j − 1)
ζ(2j)

(2πi)2j
x2j−2

Putting ζ(2j) =
∑∞
k=1 1/(k2j), we see that

f(x) =
1

x2
+ 2

∞∑

k=1

1

(2kπi)2

∞∑

j=1

(2j − 1)
( x

2kπi

)2j−2

.

The sum on the right hand side is similar to the power series expansion of the function
(2kπi)2/(x− 2kπi)2 but the odd terms are missing. Therefore we have

2

∞∑

j=1

(2j − 1)
( x

2kπi

)2j−2

=
(2kπi)2

(x− 2kπi)2
+

(2kπi)2

(−x− 2kπi)2
.

This finishes the proof of the equation (3.1). Now we are ready to prove our main result
in this section.

3.1. Theorem. For any integer m ≥ 1,

2pm = − 1

(2m− 1)!

m∑

j=1

C(m, j)
B2j

2j
(n2j − 1).

Proof. Applying Lemma 2.1 recursively we see that

fm(x) =
1

(2m− 1)!

m∑

j=1

C(m, j)f (2j−2)(x).

for any integer m ≥ 1. On the other hand, we have

f (2j−2)(x) =
∑

k∈Z

(2j − 1)!

(x− 2kπi)2j

by equation (3.1). Observe that we can write 2pm =
∑n−1
l=1 α

m
l since αl = αn−l for every

integer l in our range. The problem of computing pm is now reduced to evaluate the
following sum explicitly

n−1∑

l=1

f (2j−2)(2lπi/n) =

n−1∑

l=1

∑

k∈Z

(2j − 1)!

(2lπi/n− 2kπi)2j
.
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We claim that the double sum above is equal to −B2j

2j
(n2j − 1). To see this, note that

2ζ(2j) +

n−1∑

l=1

∑

k∈Z

1

(l/n− k)2j
= 2

∑

k∈Z−{0}

1

(k/n)2j
= 2n2jζ(2j).

As a result, the double sum is equal to

(2j − 1)!

(2πi)2j
2ζ(2j)(n2j − 1).

Applying (2.7), we see that our claim is true and this finishes the proof of the theorem. �

3.1. Symmetric polynomials and Newton’s identities. Now we will use Theo-
rem 3.1 together with the n-th division polynomial of sin(θ) to obtain other interesting
relations of Bernoulli numbers. For an odd integer n, we have

sin(nθ)

n
= sin(θ)− (n2 − 1)

3!
sin(θ)3 +

(n2 − 1)(n2 − 9)

5!
sin(θ)5 + . . .

where the sum on the right hand side has (n + 1)/2 terms. A proof of this formula can
be found in [3]. Observe that αj = −1/(4 sin(jπ/n)2). Putting θ = jπ/n in the equation
above we see that both sides vanish for each integer j. Set ñ = (n− 1)/2 to ease up the
notation. We have

ñ∏

j=1

(x− αj) = xñ +
(n2 − 1)

3!4
xñ−1 +

(n2 − 1)(n2 − 9)

5!42
xñ−2 + . . . .

The coefficients in this polynomial are given by symmetric sums

s1 = α1 + α2 + . . .+ αñ,

s2 = α1α2 + α1α3 + . . .+ α2α3 + α2α4 + . . .+ αñ−1αñ,

...

sñ = α1α2 · · ·αñ.

For simplicity set s0 = 1. Then
∏ñ
j=1(x − αj) =

∑ñ
j=0(−1)jsjx

ñ−j . Thus each sj can

be written as a polynomial in n. Moreover Newton’s identities [4, Chap. 7] enable us to
obtain each sj recursively from pj ’s. We have

s1 = s0p1,

2s2 = s1p1 − s0p2,
3s3 = s2p1 − s1p2 + s0p3,

...

msm = sm−1p1 − sm−2p2 + . . .+ (−1)m−1s0pm.(3.2)

Since each pj is a sum of multiples of Bernoulli numbers and each sj is a polynomial
in n, we can obtain several recurrence relations for Bernoulli numbers by comparing the
coefficients of n2j in the general equation (3.2) for 0 ≤ j ≤ m. For example if we compare
the coefficients of n2m, we obtain

m

(2m+ 1)!4m
=

1

2

m∑

j=1

B2j

(2j)!(2m− 2j + 1)!4m−j
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for all integer m ≥ 1. From this equality, it is easy to establish that

2m∑

j=0

(
2m+ 1

j

)
2jBj = 0

for any integer m ≥ 1.
We can plug in values for n to obtain other relations as well. For example regarding

pj = pj(n), a function of n, and putting n = 3 in the general equation (3.2) annihilates
all terms but two and gives

pm(3) = (−1/3)pm−1(3)

for m ≥ 2. It is easy to compute that p1(3) = −1/3. Thus pm(3) = (−1/3)m. As a
result, we get

m∑

j=1

C(m, j)
B2j

2j
(32j − 1) =

2(−1)m+1(2m− 1)!

3m

for every integer m ≥ 1.

3.2. Formulas for discrete sums via residues. Consider the sum of m-th powers of
the first n− 1 integers

Pm(n) = 1m + 2m + . . .+ (n− 1)m.

Bernoulli discovered an explicit polynomial in n of degree m+1 which is equal to Pm(n).
See equation (1.1). It turns out that this polynomial can be obtained by a generating
function. For this purpose, consider the Bernoulli polynomials Bn(x) defined by

xenx

ex − 1
=

∞∑

j=0

Bj(n)
xj

j!
.

It is a classical fact that Pm(n) = (Bm+1(n)−Bm+1)/(m+1). For a proof of this identity,
see [7, pp. 231]. In order to express the analogy between the integer and real cyclotomic
cases, we observe that Pm(n) can be obtained alternatively as follows

Pm(n) = Res

(
(enx − 1)m!

(ex − 1)xm+1

)
.

Similar to Pm(n), the sum 2pm =
∑n−1
j=1 α

m
j consists of n − 1 consecutive powers and

equals to a polynomial in n, see Theorem 3.1. Another similarity is that the sum 2pm
can be obtained via the residue of a function.

3.2. Corollary. For any integer m ≥ 1,

2pm = Res(−g(x)f(x/n)m).

Proof. Recall that g(x) =
∑ B2j

(2j)!
x2j−1 and f(x)m =

∑
cm2jx

2j−2m where sums run from

j = 0 to infinity. Thus

Res(−g(x)f(x/n)m) = −
m∑

j=0

B2j

(2j)!
cm2m−2jn

2j .

In order to use the normalization (2.2), we separate the term with j = 0 and obtain

Res(−g(x)f(x/n)m) = −cm2m −
1

(2m− 1)!

m∑

j=1

C(m, j)
B2j

2j
n2j .

Now the result follows from Lemma 2.4 and Theorem 3.1. �
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This corollary (together with Theorem 3.1) enables us to see Res(−g(x)f(x/n)m)
as a polynomial in n. Differentiating with respect to n would annihilate the 2j-term
appearing in the polynomial expression of 2pm. Using this idea, we prove a stronger
version of Theorem 2.5 now.

3.3. Corollary. Let n be an odd positive integer. For any integer m ≥ 1, we have

1

(2m− 1)!

m∑

j=1

C(m, j)B2jn
2j = Res((g(x)− xf(x))f(x/n)m).

Proof. Using Theorem 3.1, we define the polynomial Q(n) = 2pm which is of degree 2m.
Differentiating the equation of Theorem 3.1 with respect to n, we obtain

Dn(Q(n)) = − 1

(2m− 1)!

m∑

j=1

C(m, j)B2jn
2j−1.

Our purpose is to find a formula for −nDn(Q(n)). Recall that we have

Q(n) = Res(−g(x)f(x/n)m)

by the corollary above. Since Dx(f(x)) = −2f(x)g(x), we obtain

Res(−nDn(−g(x)f(x/n)m)) = Res(xg(x)2mg(x/n)f(x/n)m/n).

Set u = xg(x) and v = f(x/n)m. Note that −nDn(Q(n)) = Res(−uDx(v)) by the
equation above. Now observe that both u and v are even functions of x and it follows
that Res(uDx(v) +Dx(u)v) = 0. Therefore

−nDn(Q(n)) = Res(Dx(u)v).

Since Dx(u) = g(x)− xf(x), the corollary is proved. �

Observe that Theorem 2.5 is a corollary of the result above with n = 1. It easily
follows from Lemma 2.2 together with the fact that Res(gfm) = 0 for every integer
m ≥ 1.
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