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Abstract

The inverse spectral problem of recovering for a quadratic pencil of
Sturm-Liouville operators with the interaction point and the eigenvalue
parameter linearly contained in the boundary conditions are studied.
The uniqueness theorem for the solution of the inverse problem accord-
ing to the Weyl function is proved and a constructive procedure for
finding its solution is obtained.

Keywords: Inverse spectral problem; Quadratic pencil of Sturm-Liouville operators;
Eigenvalue-dependent boundary conditions; Interaction point.

2000 AMS Classification: 34A55; 34B24; 47E05

1. Introduction

We consider the boundary value problem (BVP) L = L(q(x), α, hj , Hj , j = 0, 1) :

(1.1) ly := y′′ + (λ2 − q(x))y = 0, x ∈
(

0,
π

2

)
∪
(π

2
, π
)
,

(1.2) U(y) := y′(0)− (h1λ+ h0)y(0) = 0,

(1.3) V (y) := y′(π) + (H1λ+H0)y(π) = 0,

(1.4) I(y) :=

{
y
(
π
2

+ 0
)

= y
(
π
2
− 0
)

= y
(
π
2

)
,

y′
(
π
2

+ 0
)
− y′

(
π
2
− 0
)

= 2αλy
(
π
2

)
,

where the potential q(x) ∈ L1(0, π) is a complex-valued function, α, hj , Hj ∈ C, j = 0, 1;
h1H1 = −1 and α(h1 +H1)− 2 6= ±i(h1 +H1 + 2α), λ is a spectral parameter.

Notice that, we can understand problem (1.1),(1.4) as one of the treatments of the
equation
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(1.5) y′′ + (λ2 − 2λp(x)− q(x))y = 0, x ∈ (0, π),

when p(x) = αδ
(
x− π

2

)
(see[1]), where δ(x) is the Dirac function.

Differential equations with linear or non-linearly dependence on the spectral parameter
arise in various problems of mathematics as well as in applications. In particular, several
examples of spectral problems arising in mechanical engineering and having differential
equations and boundary conditions depending on the spectral parameter are provided in
[18, 21, 22].

Inverse problems for differential pensils are more diffucult to investigate and nowadays
there exists only a small number of papers in this direction. In particular, in the case
p(x) ≡ 0, the inverse problems for equation (1.5) with λ-dependent boundary conditions
were investigated in [3, 4, 8, 12]. Such problems play an important role in mathematics
and have many applications in natural sciences and engineering (see[11, 16, 17, 19] and the
references therein). Some aspects of inverse spectral problems for second order differential
pensils (p(x) ∈ W 1

1 (0, π), h1 = H1 = 0) were investigated in [6, 13, 14, 15, 20, 24]. For
this inverse problem, which in the case p(x) ∈W 1

1 (0, π) is proved in [7, 23].
In this paper uniqueness theorem is proved and a constructive procedure for solving

the half inverse problem is given. As the basic spectral characteristic we introduce and
investigate the so-called Weyl function, which is an analogue of the classical Weyl function
for the Sturm-Liouville operators (see[12]).

2. Properties Of The Spectral Characteristics

Let y(x) and z(x) be continuously differentiable functions on
(
0, π

2

)
and

(
π
2
, π
)
. De-

note 〈y, z〉 := yz′ − y′z. If y(x) and z(x) satisfy the matching conditions (1.4), then

(2.1) 〈y, z〉x=π
2
−0 = 〈y, z〉x=π

2
+0 ,

i.e. the function 〈y, z〉 is continuous on (0, π).
Let ϕ(x, λ), ψ(x, λ), C(x, λ), S(x, λ) be solutions of equation (1.1) under the conditions

C(0, λ) = S′(0, λ) = ϕ(0, λ) = ψ(π, λ) = 1,

C′(0, λ) = S(0, λ) = U(ϕ) = V (ψ) = 0.

Denote

∆(λ) = 〈ϕ(x, λ), ψ(x, λ)〉 .

By virtue of (2.1) and the Ostrogradskii-Liouville theorem (see[9]), ∆(λ) does not depend
on x. The function ∆(λ) is called characteristic function of L. Clearly,

(2.2) ∆(λ) = −V (ϕ) = U(ψ).

Let C0(x, λ) and S0(x, λ) be smooth solutioons of (1.1) on the interval [0, π] under the
initial conditions

C0(x, λ) = S′0(x, λ) = 1, C′0(x, λ) = S0(x, λ) = 0.

(2.3) C(x, λ) = C0(x, λ), S(x, λ) = S0(x, λ), x <
π

2
,

(2.4)
C(x, λ) = A1C0(x, λ) +B1S0(x, λ),
S(x, λ) = A2C0(x, λ) +B2S0(x, λ),

, x >
π

2
,

where

(2.5)

{
A1 = 1− 2αλC0

(
π
2
, λ
)
S0

(
π
2
, λ
)
, B1 = 2αλC2

0

(
π
2
, λ
)

A2 = −2αλS2
0

(
π
2
, λ
)
, B2 = 1 + 2αλC0

(
π
2
, λ
)
S0

(
π
2
, λ
)
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It is easy to verify that the function C0(x, λ) satisfies the following integral equation

(2.6) C0(x, λ) = cosλx+

x∫
0

sinλ(x− t)
λ

q(t)C0(t, λ)dt

It follows from (2.6) that

(2.7)
C0(x, λ) = cosλx+ sinλx

2λ

x∫
0

q(t)dt+ 1
2λ

x∫
0

q(t) sinλ(x− 2t)dt

+©
(

1
λ2 exp(|τ |x)

)
,

(2.8)
C′0(x, λ) = −λ sinλx+ cosλx

2

x∫
0

q(t)dt+ 1
2

x∫
0

q(t) cosλ(x− 2t)dt

+©
(

1
λ

exp(|τ |x)
)
,

Analogously,

(2.9)
S0(x, λ) = sinλx

λ
− cosλx

2λ2

x∫
0

q(t)dt+ 1
2λ2

x∫
0

q(t) cosλ(x− 2t)dt

+© ( 1
λ3 exp(|τ |x)),

(2.10)
S′0(x, λ) = cosλx+ sinλx

2λ

x∫
0

q(t)dt− 1
2λ

x∫
0

q(t) sinλ(x− 2t)dt

+©
(

1
λ2 exp(|τ |x)

)
where τ = Imλ.

By virtue of (2.5) and (2.7)-(2.10)

A1 = 1− α sinλπ +©
(

1

λ

)
, B1 = αλ(1 + cosλπ) + α sinλπ

π
2∫

0

q(t)dt+©
(

1

λ

)
,

A2 = α
cosλπ − 1

λ
+©

(
1

λ2

)
, B2 = 1 + α sinλπ − αcosλπ

λ

π
2∫

0

q(t)dt+©
(

1

λ2

)
.

Since ϕ(x, λ) = C(x, λ) + (h1λ+ h0)S(x, λ), we calculate using (2.3)-(2.10)

(2.11) ϕ(x, λ) = cosλx+ h1 sinλx+©
(

1

λ
exp(|τ |x)

)
, x <

π

2
,

(2.12)
ϕ(x, λ) = (1− h1α) cosλx+ (h1 + α) sinλx+ h1α cosλ(π − x)

−α sinλ(π − x) +©
(

1
λ

exp(|τ |x)
) , x >

π

2
,

(2.13) ϕ′(x, λ) = λ(− sinλx+ h1 cosλx) +© (exp(|τ |x)) , x <
π

2
,

(2.14)
ϕ′(x, λ) = λ((h1α− 1) sinλx+ (h1 + α) cosλx+ h1α sinλ(π − x)

+α cosλ(π − x)) +© (exp(|τ |x))
, x >

π

2
,

Can be obtained analogously

(2.15) ψ(x, λ) = cosλ(π − x) +H1 sinλ(π − x) +©
(

1

λ
exp(|τ | (π − x))

)
, x >

π

2
,

(2.16)
ψ(x, λ) = (1−H1α) cosλ(π − x) + (H1 + α) sinλ(π − x)

+H1α cosλx− α sinλx+©
(

1
λ

exp(|τ | (π − x))
) , x <

π

2
,

(2.17) ψ′(x, λ) = λ(sinλ(π − x)−H1 cosλ(π − x)) +© (exp(|τ | (π − x))) , x >
π

2
,

(2.18)
ψ′(x, λ) = λ((1−H1α) sinλ(π − x)− (H1 + α) cosλ(π − x)

−H1α sinλx− α cosλx) +© (exp(|τ | (π − x))) .
, x <

π

2
,
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It follows from (2.2), (2.12) and (2.14) that

(2.19) ∆(λ) = λD sin(λ− w)π +© (exp(|τ |π)) ,

where

D =
√

(h1 +H1 + 2α)2 + (2− αh1 − αH1)2

(2.20) w =
1

2πi
ln
i(h1 +H1 + 2α) + α(h1 +H1)− 2

i(h1 +H1 + 2α)− α(h1 +H1) + 2

By the standard method using (2.19) and Rouche’s theorem (see, for example,[2]) one
can show that the eigenvalues λn, n ∈ Z := {n : n = 0,±1,±2, ...} have the form

(2.21) λn = n+ w +©
(

1

n

)
, |n| → ∞

According to (2.21) for sufficiently large |n| the eigenvalues λn are simple. By virtue of
(2.20), (2.21) the specification of the spectrum determines the value w up to an integer
summand.

Using Hadamard’s factorization theorem [10, p.289] and the asymptotics (2.19) one
can expand the characteristic function ∆(λ) into an infinite product. We have

(2.22) ∆(λ) = c exp(c1λ)λm
∏
λn 6=0

(
1− λ

λn

)
exp

(
λ

λn

)
, c, c1 − const,

where m ≥ 0 is the multiplicity of the zero eigenvalue. Consider the function ∆0(λ) =
λ sin(λ− w)π, whose expansionhas the form

(2.23) ∆0(λ) = c0 exp(c01λ)

∞∏
n=−∞

(
1− λ

λn0

)
exp

(
λ

λn0

)
,

where

(2.24)
c0 = limλ→0

∆0(λ)
λ

= − sinwπ,

c01 = limλ→0
d
dλ

ln ∆0(λ)
λ

= −π cotwπ, λn0 = n+ w

According to (2.19) we have

∆(λ)

∆0(λ)
= D+©

(
1

λ

)
, λ ∈ Gwδ := {λ : |λ− n− w| ≥ δ > 0, n ∈ Z} , |λ| → ∞.

3. Half Inverse Problem

Let Φ(x, λ) be the solution of (1.1) under the conditions U(Φ) = 1, V (Φ) = 0 and
under the matching conditions (1.4). We set M(λ) := Φ(0, λ). The functions Φ(x, λ) and
M(λ) are called the Weyl solution and the Weyl function for the BVP L, respectively.
Clearly,

(3.1) Φ(x, λ) =
ψ(x, λ)

∆(λ)
= S(x, λ) +M(λ)ϕ(x, λ),

(3.2) 〈ϕ(x, λ),Φ(x, λ)〉 = 1,

(3.3) M(λ) =
∆0(λ)

∆(λ)
,

where ∆0(λ) := ψ(0, λ) is the characteristic function of the BVP L1 for equation (1.1)
with the boundary conditions y(0) = 0, V (y) = 0 and with the matching conditions (1.4).
Let {λn,1} be zeros of ∆0(λ), i.e. the eigenvalues of L1. Clearly, {λn} ∩ {λn,1} = ∅.

Consider the following inverse problem
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Problem: Let the spectrum {λn}n∈Z of L be given. Find L, provided the numbers

h0, h1 and the function q(x) on
(
0, π

2

)
are known a priori.

3.1. Theorem. The specification of the spectrum {λn}n∈Z determines L uniquely, pro-

vided the numbers h0, h1 and the function q(x) on
(
0, π

2

)
are known a priori.

Proof. The formula (3.1) give

(3.4) ψ(x, λ) = ∆(λ)S(x, λ) + ∆0(λ)ϕ(x, λ).

Denote

(3.5) ∆1(λ) := −ψ′(π
2
, λ), ∆0

1(λ) := ψ(
π

2
, λ),

(3.6) ∆2(λ) := ϕ′(
π

2
, λ), ∆3(λ) := −ϕ(

π

2
, λ),

We note that ∆1(λ) is a characteristic function of the BVP

(3.7) ly = 0,
π

2
< x < π, y′

(π
2

)
= V (y) = 0

The function

(3.8) M1(λ) =
∆0

1(λ)

∆1(λ)
,

is the Weyl function for (3.7).
The functions ∆2(λ) and ∆3(λ) are the characteristic functions of the BVPs

(3.9) ly = 0, 0 < x <
π

2
, U(y) = y′

(π
2

)
= 0

(3.10) ly = 0, 0 < x <
π

2
, U(y) = y

(π
2

)
= 0

respectively. According to (3.4) - (3.6) we have

(3.11)

{
∆0

1(λ) := ∆(λ)S(π
2
, λ)− ∆0(λ)∆3(λ),

−∆1(λ) := ∆(λ)S′(π
2

+ 0, λ) + ∆0(λ)∆2(λ).

According to (2.15) - (2.17) we get

(3.12)

{
b0(λ) := ∆0

1(λ)−
√

1 +H2
1 cos π

2
(λ− 2ω0) =©

(
exp(|τ | π

2
)
)
,

b1(λ) := ∆1(λ) + λ
√

1 +H2
1 sin π

2
(λ− 2ω0) =©

(
exp(|τ | π

2
)
)
,

where

ω0 :=
1

2πi
ln
i−H1

i+H1
.

Let {λn,2}n∈Z and {λn,3}n∈Z be the spectra of the BVPs (3.9) and (3.10). Thus, we have

(3.13)
λn,2 = 2n+ ω1 +©

(
1
n

)
,

λn,3 = 2n+ ω2 +©
(

1
n

)
,
, n→∞

where

ω1 :=
1

2πi
ln
i− h1

i+ h1
, ω2 := ω1 −

1

2

Let m
(1)
n and m

(2)
n be the multiplicities of the zeros λn,2 and λn,3 respectively. By virtue

of (3.13) we have m
(1)
n = m

(2)
n = 1 for sufficiently large |n| . Using the known method

(see[12]) one can prove the following estimates for sufficiently large |λ|:

|∆2(λ)| ≥ cδ exp(|τ | π
2

), λ ∈ {λ : |λ− 2n− ω1| ≥ δ > 0, n ∈ Z}
|∆3(λ)| ≥ cδ exp(|τ | π

2
), λ ∈ {λ : |λ− 2n− ω2| ≥ δ > 0, n ∈ Z}
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The specification of the numbers {λn,2}n∈Z , {λn,3}n∈Z ,
{
b
(υ)
1 (λn,3)

}
υ=0,m

(2)
n −1,n∈Z

,{
b
(υ)
0 (λn,2)

}
υ=0,m

(1)
n −1,n∈Z

and the value ω0 uniquely determines the functions ∆1(λ),

∆0
1(λ) by the formula

(3.14) ∆1(λ) = −λ
√

1 +H2
1 sin

π

2
(λ− 2ω0) + b1(λ),

(3.15) ∆0
1(λ) =

√
1 +H2

1 cos
π

2
(λ− 2ω0) + b0(λ),

where

b1(λ) =
∑
n∈Z

b1(λn,3) ∆2(λ)
(λ−λn,3)∆′2(λn,3)

,

b0(λ) =
∑
n∈Z

b0(λn,2) ∆3(λ)
(λ−λn,2)∆′3(λn,2)

,

if all zeros of the functions ∆2(λ),∆3(λ) are simple (∆′2(λn,3) 6= 0,∆′3(λn,2) 6= 0). The
case of multiple zeros requires minor modifications.

Using the given numbers h0, h1 and the function q(x), x ∈
(
0, π

2

)
, we find the number

α, the functions S(π
2

+0, λ) = S(π
2
−0, λ), S′(π

2
+0, λ) = S′(π

2
−0, λ)+2αλS(π

2
−0, λ) and

the functions ∆2(λ),∆3(λ) by formula (3.6). Then using the given spectrum {λn}n∈Z
we find the number ω from the asymptotics (2.21) by the formula ω = lim

n→∞
(λn−ω) and

construct the function ∆(λ) by formula (2.22). Find the number α by formula (2.20).
According to (3.11), (3.12)we have

b
(υ)
1 (λn,3) =

dυ

dλυ

(
−∆(λ)S′(

π

2
+ 0, λ) + λ

√
1 +H2

1 sin
π

2
(λ− 2ω0)

)
|λ=λn,3 ,

b
(υ)
0 (λn,2) =

dυ

dλυ

(
∆(λ)S(

π

2
, λ)− λ

√
1 +H2

1 cos
π

2
(λ− 2ω0)

)
|λ=λn,2 ,

According to formula (3.8) the function M1(λ) is uniquely determined by specifying
the given data. According to the uniqueness theorem in [5] the specification of M1(λ)
uniquely determines the number H0 and the function q(x) on

(
π
2
, π
)
. �

The proof of Theorem is constructive for solving the half inverse problem.
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