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Abstract

We make a little survey and also present some new results on the topo-
logical K-theory of the classfying spaces of cyclic and dihedral groups.
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1. Introduction

The K-ring of a CW -complex X, denoted by K(X), is defined by the ring completion
of the semi-ring of the isomorphism classes of complex vector bundles over X. The KO-
ring of X, denoted by KO(X), is defined similarly, by means of real vector bundles over
X. Similar rings can be constructed for the other fields like the field of quaternions or
the finite fields. One of the most interesting questions of the topological K-theory is
to determine these rings when X is the classifying space BG of a group, in particular
a finite group, G. See, for example, the description given in [5] for the KO-ring of the
skeletons of the classifying space of the cyclic group of order 2n.

In this note, we will make a brief survey and also present some new results for the
K-rings and KO-rings of the classifying space of the cyclic and the dihedral groups.

Before starting the presentation, we should mention two important theorems in topo-
logical K-theory. Firstly, there is the Atiyah-Segal completion theorem (ASCT) which
states that K(BG) is isomorphic to the completion of the complex representation ring
of G at the augmentation ideal, that is,

K(BG) = R(G)ˆI

Basically, this theorem says that K(BG) is another way of writing the elements of R(G),
as formal sums of their reductions and what we are doing here is not more than represen-
tation theory with a little geometry added. A similar theorem holds for KO-rings and
the real representation ring RO(G).
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Secondly, there is a spectral sequence called the Atiyah-Hirzebruch spectral sequence
(AHSS) which is schematically described by

Ek,−k2 = Hk(BG;
∼
K(Sk)) =⇒ K(BG)

on the anti-diagonal of the second page. Thus, if the odd dimensional cohomology of
the group is trivial then the spectral sequence collapses on the second page. But, if the
odd dimensional cohomology is not trivial then on the third page or on a higher odd
numbered page there may be a non-zero differential and the spectral sequence may not
collapse on the second page. A similar spectral sequence exists for the KO-theory as
well.

We should note here that we are attacking to the problem from the computational
point of view and not doing hard-core topology. This could be quite messy. You may see
for example [3] where the problem is studied for the dihedral groups and more topology
(quotient spaces etc.) is involved.

2. Real Projective Spaces

We start with a well-known and the simplest example. The AHSS for K(BZ2) col-
lapses on the second page. The K-ring of the infinite dimensional projective space is

K(BZ2) = Z [v]�(v2 + 2v)

where v = η − 1 is the reduction of the tautological complex line bundle η over BZ2.
Similarly, the AHSS for KO(BZ2) collapses on the second page and the KO-ring of the
infinite dimensional projective space is

KO(BZ2) = Z [λ]�(λ2 + 2λ)

where λ = ξ − 1 is the reduction of the tautological real line bundle ξ. Note that the
tautological bundles are induced from the corresponding tautological complex and real
one dimensional representations of Z2 via ASCT. You should have noticed that K(BZ2)
and KO(BZ2) are the same rings! They are algebraically isomorphic, but geometrically
they are different. The difference can be demonstrated by comparing the filtrations of
their AHSSs.

3. Lens Spaces

This is the generalization of projective spaces. For n ≥ 3, BZn is called an infinite
dimensional standard lens space. The AHSS for K(BZn) collapses on the second page
and the integral cohomology of the group Zn completely determines the filtrations of the
spectral sequence. We have

K(BZn) = Z [µ]�((1 + µ)n − 1)

where µ = η − 1 is the reduction of the tautological complex line bundle η (the Hopf
bundle) over BZn.
KO-rings are more complicated. But, again, the AHSS for KO(BZn) collapses on

the second page and and the integral cohomology of the group Zn together with the
cohomology with Z2 coefficients help us to detect the filtrations of the spectral sequence.
We need to consider the odd case and the even case separately.
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3.1. The Odd Case. If n ≥ 3 is odd,

KO(BZn) = Z [w]�(wfn(w))

where

fn(w) = n+

n−3
2∑

j=1

n(n2 − 12)(n2 − 32)...(n2 − (2j − 1)2)

22j .(2j + 1)!
wj + w

n−1
2

and w = r(µ) is the realification of µ, [5]. If n = p is an odd prime number then fn(·) is
the minimal polynomial of the number 2 cos( 2π

p
) − 2 which can be proved by using the

Eisenstein’s criterion and factorization of odd indexed Chebishev polynomials. We note
that

wfn(w) = ψ
n+1
2 (w)− ψ

n−1
2 (w)

where ψk denotes the Adams operation of degree k. The relation wfn(w) = 0 stems
from the triviality of the complex conjugation on the real theory. We can think of this
triviality as the equality ψ−1 = ψ1 in the real theory. You may see [5] and [6] for the
polynomials ψk(w) and see more in [6] about the connection between fn(·), the Adams
operations and the Chebishev polynomials.

3.2. The Even Case. If n is even, n ≥ 4, the problem is twisted because of the effect
of the prime number 2. In this case, we have the one dimensional tautological real line
bundle ξ together with the two dimensional tautological real plane bundle r(η).

This time, the KO-ring can be described in the following way:

KO(BZn) = Z [λ,w]�




λ2 + 2λ,

λw − ψ n
2
+1(w) + ψ

n
2 (w) + w,

ψ
n
2
+1(w)− ψ n

2
−1(w)

2λ− ψ n
2 (w)




where λ = ξ − 1 is the reduction of ξ and w is defined as in the odd case. Here, again,
ψk is the Adams operation of degree k.

The third polynomial ψ
n
2
+1(w)−ψ n

2
−1(w) in the ideal that defines the ring is the main

relation and it is related to the triviality of the complex conjugation on the real theory
exactly as in the odd case. We can also find an explicit expression for this polynomial
similar to the expression of the polynomial fn in the odd case. This will be important
for the K-rings of dihedral spaces.

Finally, note that lens spaces has a connection with the infinite dimensional complex
projective space BS1 due to the group inclusions Zn < S1. Many works of İbrahim Dibağ
relies on this connection. See for example, [1]. Note that the K-ring and KO-ring of BS1

are generated by the tautological complex line bundle and its realification respectively.

4. Dihedral Spaces

Let D2n be the dihedral group with 2n elements. We will call the classifying space
BD2n and its finite skeletons as dihedral spaces. Since, the representations of the di-
hedral groups are real, it follows that KO(BD2n) is isomorphic to K(BD2n). So, our
main problem is to describe the rings K(BD2n). We will treat odd and even cases of n
separately.
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4.1. The Odd Case. Let n = 2k+1 and k ≥ 1. The representation ring R(D2n) of D2n

is generated by the one-dimensional tautological complex representation η and the two-
dimensional tautological representation ρ by (direct) sums and (tensor) products. Let us
denote the complex vector bundles induced from these representations over BD2n by the
same letters. Due to the ASCT, it then follows that these bundles generate K(BD2n).

The integral group cohomology of D2n, for n odd, is zero in odd dimensions, [2].
Thus, the AHSS collapses on the second page and we can read the filtrations of the ring
K(BD2n) from the integral cohomology.

We define the reductions v = η− 1 and φ = ρ− 2 in the ring K(BD2n). The relations
η2 = 1 and ηρ = ρ immediately give the relations v2 + 2v = 0 and vφ + 2v = 0 in the
K-ring.

But, the main relation of the ring is coming from the iterative relations between the
two dimensional irreducible complex representations of the dihedral group D2n. You may
see [4] for the iterative relations and the structure of R(D2n).

By iterating these relations for ρ and by using the previous two relations and also by
getting use of the induced homomorphisms induced by the group injections of the cyclic
subgroups of the dihedral group, one can deduce a relation in the form

φfn(φ) = fn(−2)v

where fn(·) is the polynomial defined in the previous section.
Hence, since the AHSS collapses, we have

K(BD2n) = Z[v, φ]�




v2 + 2v,
vφ+ 2v,

φfn(φ)− fn(−2)v




which completely describes the K-ring of the classifying space of the dihedral group of
order 2n for n odd. For details, see [4]. As we noted before, the representations of the
dihedral groups are real and so the rings K(BD2n) and KO(BD2n) should be isomorphic
as rings, but, geometrically they carry different information. Their spectral sequences
are different and KO(BD2n) is also related to the cohomology with Z2 coefficients.

4.2. The Even Case. The even case is quite complicated with respect to the odd case
as usual. We still don’t have a complete description of the ring and we will give some
examples to exhibit the complexity of the relations that generate the ring.

Let n = 2k and k ≥ 1. The representation ring R(D2n) is generated by the one-
dimensional tautological representations η1, η2 and the two-dimensional tautological rep-
resentation ρ. Let us denote the complex vector bundles induced from these repre-
sentations over BD2n by the same letters. Due to the ASCT, these bundles generate
K(BD2n).

We define the reductions v1 = η1− 1, v2 = η2− 1 and φ = ρ− 2 in the ring K(BD2n).
The integral cohomology of the group D2n is given in [2] and we can read the filtrations
of the second page of the AHSS from the cohomology described there. Note that the
AHSS is not collapsing this time.

For k = 1, since D4 = Z2 × Z2 we have BD4 = BZ2 ×BZ2 and so

K(BD4) = Z[v1, v2]�(v21 + 2v1, v
2
2 + 2v2)

is just the K-ring of the product of two infinite dimensional real projective spaces. We
believe that this result could also be derived from the Atiyah’s Künneth theorem for
K-cohomology. We have the filtrations of AHSS as fallows: E2,−2

∞ = (Z2)2 which is

generated by v1 and v2; E2s,−2s
∞ = (Z2)3 for all s ≥ 2 which is generated by vs1, v

s
2 and

2s−2v1v2.
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For k ≥ 2, the generator φ emerges and we have some real difficulties for detecting
the relations associated with φ. For k = 2, we have the relation

φ2 + 4φ = −v21 − v22 + v1v2

by using the iterative relations on the representation ring. Since, there is only one
irreducible complex representation of D8, we have the relation η1ρ = η2ρ = ρ and it
then fallows that v1φ = v21 and v2φ = v22 . Hence, the ring K(BD8) should probably be
described as

Z[v1, v2, φ]�




v21 + 2v1, v
2
2 + 2v2,

v1φ+ 2v1, v2φ+ 2v2,
φ2 + 4φ− 2v1 − 2v2 − v1v2


 .

But as stated in [4], we have some problems with this description because of the filtration
incompatibility in AHSSs of this ring with respect to the K-rings of the projective and
lens spaces induced from the subgroups of D8; namely, because of the nonexistence of a
place of the product v1v2 in the filtration E4,−4

∞ .
For k ≥ 3, things become more twisted due to the fact that there are more than one

irreducible complex representations of dimension 2 and multiplication of these by η1 and
η2 are non-trivial. Because of that the products v1φ and v2φ are complicated. We believe
that K(BD12) looks like

Z[v1, v2, φ]�




v21 + 2v1, v
2
2 + 2v2,

v1φ− φf3(φ) + 3v1 + v2 + v1v2,
v2φ− φf3(φ) + v1 + 3v2 + v1v2,

3φ+ 13φ2 + 7φ3 + φ4 + 3v1 + 3v2 + 2v1v2




where f3(·) is the polynomial introduced in Lens Spaces section. Unlike to the k = 2
case, we could be able to find a place for the product ν1v2 in a filtration of the AHSS
and this description seems to be okay with respect to the cyclic subgroups of the dihedral
group.

We are still working on the problem for k ≥ 4 and hopefully we will find the general
solution of the problem; in particular, the polynomial which will be the main relation
of φ. Before that, of course, we should make the computation of the KO-rings of lens
spaces in the even case more explicit.

5. Other Finite Groups

One can consider the topological K-theory of other finite groups like the generalized
quaternion groups Q2n , the symmetric groups Sn, the general linear groups GL(n, p)
over finite fields etc. Especially, the computation of K(BSn), where Sn is the symmetric
group on n objects, is an open problem which is interesting and quite hard as well. One
should study tensor products of the Specht modules for which we know that they could
have very big dimensions when n increases and things are very complicated.
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