AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

Mustafa Bahşi * and Süleyman Solak ${ }^{\dagger} \ddagger$

Received 29:06:2012 : Accepted 18:02:2013

Abstract

In this study, firstly we defined an $n \times k$ matrix, $G_{n, k}^{(r)}$, whose entries consist of hyperharmonic numbers. Then we obtained relation between Pascal matrices and $G_{n, k}^{r}$. Finally we calculated the determinant of $G_{n, n}^{r}$.

Keywords: Pascal Matrix; Hyperharmonic numbers; Determinant
2000 AMS Classification: 11B99; 11C20; 15A23

1. Introduction

For $n>0$ and $1 \leq i \leq k$, let define the order- k sequences be as following:

$$
\begin{equation*}
g_{n}^{i}=\sum_{j=1}^{k} c_{j} g_{n-j}^{i} \tag{1.1}
\end{equation*}
$$

with initial values $g_{1-k}^{i}, g_{2-k}^{i}, \ldots, g_{0}^{i}$, where $c_{j}(1 \leq j \leq k)$ are constant coefficients, g_{n}^{i} is the nth term of i th sequence. Let the $k \times k$ matrix be as following:

$$
G_{n}=\left[\begin{array}{cccc}
g_{n}^{1} & g_{n}^{2} & \cdots & g_{n}^{k} \tag{1.2}\\
g_{n-1}^{1} & g_{n-1}^{2} & \cdots & g_{n-1}^{k} \\
\vdots & \vdots & & \vdots \\
g_{n-k+1}^{1} & g_{n-k+1}^{2} & \cdots & g_{n-k+1}^{k}
\end{array}\right]
$$

There have been many papers related to the sequences as in (1.1) [1, 2, 3, 4, 5]. In [1], Kalman obtained a number of closed-form formulas for the generalized sequence by matrix method.

[^0]In [2], Er defined the order- k Fibonacci numbers as a sequence which satisfies the recurrence (1.1) with the boundary conditions for $1-k \leq n \leq 0$

$$
g_{n}^{i}=\left\{\begin{array}{ll}
1, & \text { if } i=1-n \\
0, & \text { otherwise }
\end{array} .\right.
$$

When $k=2$ and $c_{j}=1(1 \leq j \leq k)$, this reduces to the well-known conventional Fibonacci numbers. Also, Er showed that

$$
\left[\begin{array}{cccc}
g_{n+1}^{i} & g_{n}^{i} & \ldots & g_{n-k+2}^{i}
\end{array}\right]^{T}=C\left[\begin{array}{llll}
g_{n}^{i} & g_{n-1}^{i} & \ldots & g_{n-k+1}^{i}
\end{array}\right]^{T}
$$

where

$$
C=\left[\begin{array}{cccccc}
c_{1} & c_{2} & c_{3} & \cdots & c_{k-1} & c_{k} \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

Then he obtained

$$
G_{n+1}=C G_{n}
$$

where G_{n} is $k \times k$ matrix as in (1.2).
In [3], Karaduman showed that

$$
G_{n}=C^{n}
$$

and

$$
\operatorname{det}\left(G_{n}\right)=\left\{\begin{array}{cl}
(-1)^{n}, & \text { if } k \text { is even } \\
1, & \text { if } k \text { is odd }
\end{array}\right.
$$

for $c_{j}=1(1 \leq j \leq k)$.
In [4], Tasci and Kilic gave a new generalization of the Lucas numbers in matrices. Also, they presented a relation between the generalized order- k Lucas numbers and Fibonacci numbers. In [5], Fu and Zhou obtained some new results on matrices related to Fibonacci and Lucas numbers.

The nth hyperharmonic number of order $r, H_{n}^{(r)}$, defined as: for $n, r \geq 1$

$$
\begin{equation*}
H_{n}^{(r)}=\sum_{k=1}^{n} H_{k}^{(r-1)} \tag{1.3}
\end{equation*}
$$

where $H_{n}^{(0)}=\frac{1}{n}$. From the definition of $H_{n}^{(r)}$, we have $H_{1}^{(r)}=1$, and $H_{n}^{(1)}=\sum_{k=1}^{n} \frac{1}{k}=H_{n}$ where H_{n} is nth ordinary harmonic number. Also, hyperharmonic numbers have the recurrence relation as follows: $H_{n}^{(r)}=H_{n}^{(r-1)}+H_{n-1}^{(r)}$.

In [6], Conway and Guy gave an equality as follows:

$$
H_{n}^{(r)}=\binom{n+r-1}{r-1}\left(H_{n+r-1}-H_{r-1}\right)
$$

and in [7], Benjamin and et all. gave

$$
\begin{equation*}
H_{n}^{(r)}=\sum_{s=1}^{n}\binom{n+r-s-1}{r-1} \frac{1}{s} . \tag{1.4}
\end{equation*}
$$

Let the $n \times k$ matrix be as following:

$$
G_{n, k}^{(r)}=\left[\begin{array}{cccc}
H_{n}^{(r)} & H_{n}^{(r+1)} & \cdots & H_{n}^{(r+k-1)} \tag{1.5}\\
H_{n-1}^{(r)} & H_{n-1}^{(r+1)} & \cdots & H_{n-1}^{(r+k-1)} \\
\vdots & \vdots & & \vdots \\
H_{1}^{(r)} & H_{1}^{(r+1)} & \cdots & H_{1}^{(r+k-1)}
\end{array}\right]
$$

where $H_{n}^{(r)}$ is nth hyperharmonic number of order r defined as in (1.3). In Section 2, we derive the relation between Pascal matrices and $G_{n, k}^{(r)}$. Also, we calculate the determinant of $G_{n, n}^{(r)}$.

Now we give some preliminaries related to our study. The $n \times k$ Pascal and $n \times n$ lower triangular Pascal matrices are respectively defined as

$$
\begin{align*}
& P=\left(p_{i j}\right)=\binom{i+j-2}{j-1}, \tag{1.6}\\
& P_{L}=\left(q_{i j}\right)=\left\{\begin{array}{c}
\binom{i-1}{j-1}, \text { if } i \geq j \\
0, \\
\text { otherwise }
\end{array}\right. \tag{1.7}
\end{align*} .
$$

For example, the matrices P and P_{L} of order 5 are

$$
P=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 6 & 10 & 15 \\
1 & 4 & 10 & 20 & 35 \\
1 & 5 & 15 & 35 & 70
\end{array}\right], \quad P_{L}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{array}\right]
$$

The matrices P and P_{L} in (1.6) and (1.7) have the following properties [8, 9] :
(1) $P=P_{L} P_{L}^{T}$, where P_{L}^{T} is transpose of P_{L}.
(2) $\operatorname{Det}(P)=1$.
(3) $P_{L}^{-1}=\operatorname{diag}\left[-1,1,-1, \ldots,(-1)^{n}\right] P_{L} \operatorname{diag}\left[-1,1,-1, \ldots,(-1)^{n}\right]$.
(4) $P^{-1}=\operatorname{diag}\left[-1,1,-1, \ldots,(-1)^{n}\right] P_{L}^{T} P_{L} \operatorname{diag}\left[-1,1,-1, \ldots,(-1)^{n}\right]$.

Let the $n \times n$ matrices H and A be as

$$
H=\left[\begin{array}{cccccc}
\frac{1}{n} & \frac{1}{n-1} & \frac{1}{n-2} & \cdots & \frac{1}{2} & 1 \tag{1.8}\\
\frac{1}{n-1} & \frac{1}{n-2} & \frac{1}{n-3} & \cdots & 1 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
\frac{1}{2} & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

and

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{1.9}\\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Then from the principle of mathematical induction on r, we have

$$
A^{r}=B_{r}=\left(b_{i j}\right)=\left\{\begin{array}{cl}
\binom{j-i+r-1}{r-1}, & \text { if } i \leq j \tag{1.10}\\
0, & \text { otherwise }
\end{array}\right.
$$

Also, the determinants of A and H have the forms:

$$
\operatorname{det}(A)=1
$$

and

$$
\operatorname{det}(H)=\left\{\begin{array}{rl}
1, & \text { if } n \equiv 0,1 \quad(\bmod 4) \\
-1, & \text { if } n \equiv 2,3 \quad(\bmod 4)
\end{array} .\right.
$$

2. The Main Results

2.1. Lemma. Let the $n \times k, n \times n, n \times k$ matrices $G_{n, k}^{(r)}, H, P b e$ as in (1.5), (1.8) and (1.6), respectively. Then,

$$
G_{n, k}^{(1)}=H P
$$

Proof. From matrix multiplication, we have

$$
H P=\left[\begin{array}{ccccc}
\sum_{s=1}^{n} \frac{1}{s} & \sum_{s=1}^{n}(n-s+1) \frac{1}{s} & \sum_{s=1}^{n}\binom{n-s+2}{2} \frac{1}{s} & \cdots & \sum_{s=1}^{n}\binom{n-s+k-1}{k-1} \frac{1}{s} \\
\sum_{s=1}^{n-1} \frac{1}{s} & \sum_{s=1}^{n-1}(n-s) \frac{1}{s} & \sum_{s=1}^{n-1}\binom{n-s+1}{2} \frac{1}{s} & \cdots & \sum_{s=1}^{n-1}\binom{n-s+k-2}{k-1} \frac{1}{s} \\
\vdots & \vdots & \vdots & & \vdots \\
\sum_{s=1}^{2} \frac{1}{s} & \sum_{s=1}^{2}(3-s) \frac{1}{s} & \sum_{s=1}^{2}\binom{4-s}{2} \frac{1}{s} & \cdots & \sum_{s=1}^{2}\binom{k-s+1}{k-1} \frac{1}{s} \\
1 & 1 & & \cdots & 1
\end{array}\right]
$$

From (1.4) and since $H_{1}^{(r)}=1$,

$$
H P=\left[\begin{array}{cccc}
H_{n}^{(1)} & H_{n}^{(2)} & \cdots & H_{n}^{(k)} \\
H_{n-1}^{(1)} & H_{n-1}^{(2)} & \cdots & H_{n-1}^{(k)} \\
\vdots & \vdots & & \vdots \\
H_{1}^{(1)} & H_{1}^{(2)} & \cdots & H_{1}^{(k)}
\end{array}\right]=G_{n, k}^{(1)}
$$

Thus, the proof is completed.
2.2. Lemma. Let the $n \times k$ matrices $G_{n, k}^{(r)}, P$ and $n \times n$ matrices H, A be as in (1.4), (1.6), (1.8) and (1.9), respectively. Then,

$$
G_{n, k}^{(r+1)}=A^{r} H P
$$

Proof. From matrix multiplication and (1.3), we have

$$
\left[\begin{array}{llll}
H_{n}^{(r+1)} & H_{n-1}^{(r+1)} & \ldots & H_{1}^{(r+1)}
\end{array}\right]^{T}=A\left[\begin{array}{llll}
H_{n}^{(r)} & H_{n-1}^{(r)} & \ldots & H_{1}^{(r)} \tag{2.1}
\end{array}\right]^{T}
$$

Generalizing (2.1), we derive

$$
G_{n, k}^{(r+1)}=A G_{n, k}^{(r)}
$$

By using the principle of mathematical induction, we write

$$
\begin{equation*}
G_{n, k}^{(r+1)}=A^{r} G_{n, k}^{(1)} . \tag{2.2}
\end{equation*}
$$

From Lemma 2.1, the Eq. (2.2) is rewritten as

$$
G_{n, k}^{(r+1)}=A^{r} H P
$$

2.3. Corollary. Let the $n \times k$ matrices $G_{n, k}^{(r)}, P$ and $n \times n$ matrices H, B_{r} be as in (1.5), (1.6), (1.8) and (1.10), respectively. Then,

$$
G_{n, k}^{(r+1)}=B_{r} H P
$$

For example, taking $n=4, k=3$ and $r=5$ in Corollary 2.3, we have

$$
\begin{aligned}
G_{4,3}^{(6)} & =\left[\begin{array}{ccc}
\frac{275}{4} & \frac{1207}{12} & \frac{1691}{12} \\
\frac{73}{3} & \frac{191}{6} & \frac{121}{3} \\
\frac{13}{2} & \frac{15}{2} & \frac{17}{2} \\
1 & 1 & 1
\end{array}\right]= \\
& =\left[\begin{array}{cccc}
1 & 5 & 15 & 35 \\
0 & 1 & 5 & 15 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 \\
\frac{1}{3} & \frac{1}{2} & 1 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6 \\
1 & 4 & 10
\end{array}\right]=B_{5} H P .
\end{aligned}
$$

2.4. Theorem. Let the nth hyperharmonic number of order $r, H_{n}^{(r)}$, be as in (1.3). Then, we have

$$
H_{n}^{(r+s)}=\sum_{t=1}^{n}\binom{n+r-t-1}{r-1} H_{t}^{(s)}
$$

where $r \geq 1$ and $s \geq 0$.
Proof. Let the matrices $G_{n, k}^{(r)}$ and B_{r} be as in (1.5) and (1.10), respectively. Then

$$
g_{11}=H_{n}^{(r+s)}, b_{1 j}=\binom{j+r-2}{r-1} \text { and } q_{j 1}=H_{n-j+1}^{(s)}
$$

where $G_{n, k}^{(r+s)}=\left(g_{i j}\right), B_{r}=\left(b_{i j}\right)$ and $G_{n, k}^{(s)}=\left(q_{i j}\right)$. From Lemma 2.1 and Corollary 2.3, we have $G_{n, k}^{(r+s)}=B_{r} G_{n, k}^{(s)}$. Then

$$
\begin{aligned}
g_{11} & =\sum_{j=1}^{n} b_{1 j} q_{j 1} \\
& =\sum_{j=1}^{n}\binom{j+r-2}{r-1} H_{n-j+1}^{(s)} \\
& =\sum_{t=1}^{n}\binom{n+r-t-1}{r-1} H_{t}^{(s)} .
\end{aligned}
$$

Since $g_{11}=H_{n}^{(r+s)}$, the proof is completed.
Taking $r=s$ in Theorem 2.4, we can write

$$
H_{n}^{(2 r)}=\sum_{t=1}^{n}\binom{n+r-t-1}{r-1} H_{t}^{(r)}
$$

Also, taking $r+s=2$ in Theorem 2.4, we have

$$
\begin{equation*}
H_{n}^{(2)}=H_{n}^{(1+1)}=\sum_{t=1}^{n} H_{t}^{(1)}=\sum_{t=1}^{n} H_{t} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n}^{(2)}=H_{n}^{(2+0)}=\sum_{t=1}^{n}(n-t+1) \frac{1}{t}=(n+1)\left(H_{n+1}-1\right) \tag{2.4}
\end{equation*}
$$

Therefore, from (2.3) and (2.4), for sum of the first n ordinary harmonic numbers, we obtain

$$
\sum_{t=1}^{n} H_{t}=(n+1)\left(H_{n+1}-1\right)
$$

2.5. Theorem. Let the matrix $G_{n, k}^{(r)}$ be as in (1.5). Then

$$
\operatorname{det}\left(G_{n, n}^{(r)}\right)=\left\{\begin{aligned}
1, & \text { if } n \equiv 0,1 \quad(\bmod 4) \\
-1, & \text { if } n \equiv 2,3 \quad(\bmod 4)
\end{aligned}\right.
$$

Proof. From Lemma 2.2, for $k=n$, we write

$$
G_{n, n}^{(r)}=A^{r-1} H P
$$

Then

$$
\operatorname{det}\left(G_{n, n}^{(r)}\right)=[\operatorname{det}(A)]^{r-1} \operatorname{det}(H) \operatorname{det}(P)
$$

Since

$$
\operatorname{det}(H)=\left\{\begin{array}{ccc}
1, & \text { if } & n \equiv 0,1 \\
-1, & (\bmod 4)
\end{array} \quad, \operatorname{if} \quad n \equiv 2,3 \quad(\bmod 4) \quad \operatorname{det}(A)=1 \text { and } \operatorname{det}(P)=1\right.
$$

we have

$$
\operatorname{det}\left(G_{n, n}^{(r)}\right)=\left\{\begin{array}{rlll}
1, & \text { if } \quad n \equiv 0,1 \quad(\bmod 4) \\
-1, & \text { if } \quad n \equiv 2,3 \quad(\bmod 4)
\end{array}\right.
$$

Taking $n=2$ in Theorem 2.5, we have

$$
\operatorname{det}\left(G_{2,2}^{(r)}\right)=\left|\begin{array}{ll}
H_{2}^{(r)} & H_{2}^{(r+1)} \\
H_{1}^{(r)} & H_{1}^{(r+1)}
\end{array}\right|=-1
$$

and

$$
H_{2}^{(r+1)}-H_{2}^{(r)}=1
$$

where $H_{1}^{(r)}=1$. Since $H_{2}^{(1)}=\frac{3}{2}$, thus we have

$$
H_{2}^{(r)}=\frac{1+2 r}{2}
$$

References

[1] Kalman D. Generalized Fibonacci numbers by matrix methods, Fibonacci Quarterly 20(1), 73-76, 1982.
[2] Er M.C. Sums of Fibonacci numbers by matrix methods, Fibonacci Quarterly 22(3), 204-207, 1984.
[3] Karaduman E. An application of Fibonacci numbers in matrices, Applied Mathematics and Computation 147, 903-908, 2004.
[4] Tasci D. and Kilic E. On the order-k generalized Lucas numbers, Applied Mathematics and Computation 155, 637-641, 2004.
[5] Fu X. and Zhou X. On matrices related with Fibonacci and Lucas numbers, Applied Mathematics and Computation 200, 96-100, 2008.
[6] Conway, J.H. and Guy, R.K. The Book of Numbers, Springer-Verlag, New York, 1996.
[7] Benjamin, A.T., Gaebler, D. and Gaebler, R. A combinatorial approach to hyperharmonic numbers, Integers: Electron. J. Combin. Number Theory 3, 1-9, 2003.
[8] El-Mikkawy, M.E.A. On solving linear systems of the Pascal type, Applied Mathematics and Computation 136, 195-202, 2003.
[9] Lv, X.-G., Huang, T.-Z. and Ren, Z.-G. A new algorithm for linear systems of the Pascal type, Journal of Computational and Applied Mathematics 225, 309-315, 2009.

[^0]: *Aksaray University, Education Faculty, Aksaray TURKEY. Email: (M. Bahşi) mhvbahsi@yahoo.com
 ${ }^{\dagger}$ N. E. Universty, A. K. Education Faculty, Konya TURKEY. Email: (S. Solak) ssolak42@yahoo.com
 \ddagger Corresponding author

