ON π-MORPHIC MODULES

A. Harmanci, ${ }^{*}$ H. Kose ${ }^{\dagger}$ and Y. Kurtulmaz ${ }^{\ddagger}$

Received 02:07:2012 : Accepted 27:03:2013

Abstract

Let R be an arbitrary ring with identity and M be a right R-module with $S=\operatorname{End}\left(M_{R}\right)$. Let $f \in S . f$ is called π-morphic if $M / f^{n}(M) \cong$ $r_{M}\left(f^{n}\right)$ for some positive integer n. A module M is called π-morphic if every $f \in S$ is π-morphic. It is proved that M is π-morphic and image-projective if and only if S is right π-morphic and M generates its kernel. S is unit- π-regular if and only if M is π-morphic and π-Rickart if and only if M is π-morphic and dual π-Rickart. M is π-morphic and image-injective if and only if S is left π-morphic and M cogenerates its cokernel.

Keywords: Endomorphism rings; π-morphic rings; π-morphic modules; unit π-regular rings.
2000 AMS Classification: 16D99, 16S50, 16U99.

1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules and all ring homomorphisms are unital (unless explicitly stated otherwise).

A ring R is said to be strongly π-regular (π-regular, right weakly π-regular) if for every element $x \in R$ there exists an integer $n>0$ such that $x^{n} \in x^{n+1} R$ (respectively $x^{n} \in x^{n} R x^{n}, x^{n} \in x^{n} R x^{n} R$). It is called unit- π-regular if for every $a \in R$, there exist a unit element $x \in R$ and a positive integer n such that $a^{n}=a^{n} x a^{n}$. In the case of $\mathrm{n}=1$ there exists a unit x such that $a=a x a$ for all $a \in R$, then R is unit regular. Clearly, a strongly π-regular ring is a π-regular ring.

We say also that the ring R is (von Neumann) regular if for each $a \in R$ there exists $x \in R$ such that $a=a x a$ for some element x in R , that is, a is regular.

A module M is said to satisfy Fitting's lemma if, for all $f \in S$, there exists an integer $n \geq 1$, depending on f, such that $M=f^{n} M \oplus \operatorname{Ker}\left(f^{n}\right)$. Hence a module satisfies

[^0]Fitting's lemma if and only if its endomorphism ring is strongly π-regular (see for detail [4]).

Let M be a module. It is a well-known theorem of Erlich [2] that a map $\alpha \in S$ is unit regular if and only if it is regular and $M / \alpha(M) \cong \operatorname{ker}(\alpha)$. We say that the ring R is left morphic if every element a satisfies $R / R a \cong l(a)$.

In what follows, by $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{n}$ and $\mathbb{Z} / n \mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers modulo n and the \mathbb{Z}-module of integers modulo n.
We also denote $r_{M}(I)=\{m \in M \mid \operatorname{Im}=0\}$ where I is any subset of S; $r_{R}(N)=\{r \in R \mid N r=0\}$ and $l_{S}(N)=\{f \in S \mid f N=0\}$ where N is any subset of M. The maps between modules are assumed to be homomorphisms unless otherwise stated in the context.

2. Morphic Modules and π-Morphic Modules

Let M be a module with $S=\operatorname{End}\left(M_{R}\right)$, the ring of endomorphisms of the right R module M and $\mathbf{1}$ be the identity endomorphism of M. Let $f \in S . f$ is called morphic if $M / f(M) \cong r_{M}(f)$. The module M is called morphic if every $f \in S$ is morphic. Morphic modules are studied in [5]. An endomorphism $f \in S$ is called π-morphic if $M / f^{n}(M) \cong$ $r_{M}\left(f^{n}\right)$ for some positive integer n. The module M is called π-morphic if every $f \in S$ is π-morphic. In the sequel S will stand for $\operatorname{End}\left(M_{R}\right)$ for the right R-module M is considered.

It is clear that every morphic module is π-morphic.
2.1. Example. There exists a π-morphic module which is not morphic.

Let $e_{i j}$ denote 3×3 matrix units. Consider the ring
$R=\left\{\left(e_{11}+e_{22}+e_{33}\right) a+e_{12} b+e_{13} c+e_{23} d \mid a, b, c, d \in \mathbb{Z}_{2}\right\}$ and the right R-module $M=$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ where right R-module operation is given by

$$
(x, y, z)\left(\left(e_{11}+e_{22}+e_{33}\right) a+e_{12} b+e_{13} c+e_{23} d\right)=(x a, x b+y a, x c+y d+z a)
$$

where $(x, y, z) \in M,\left(e_{11}+e_{22}+e_{33}\right) a+e_{12} b+e_{13} c+e_{23} d \in R$. Let $f \in S=\operatorname{End}(M)$. It is a routine check that there exist $x, z \in \mathbb{Z}_{2}$ such that $f(1,0,0)=(x, 0, z), f(0,1,0)=(0, x, 0), f(0,0,1)=(0,0, x)$. For any $(a, b, c) \in M$, $f(a, b, c)=(x a, y a+x b, z a+x c)$.
(i) Let $x=0, y=0, z=1$. Then $f_{1}(a, b, c)=(0,0, a)$ implies $f_{1}^{2}=0$ which gives $r_{M}\left(f_{1}^{2}\right)=M$. Hence $M / f_{1}^{2}(M) \cong r_{M}\left(f_{1}^{2}\right)$.
(ii) Let $x=1, y=0, z=1$. Then $f_{2}(a, b, c)=(a, b, a+c)$ implies $r_{M}\left(f_{2}\right)=0$ and $f_{2}(M)=M$. Hence $M / f_{2}(M) \cong r_{M}\left(f_{2}\right)$.
(iii) Let $x=1, y=0, z=0$. Then $f_{3}(a, b, c)=(a, b, c)$ and f_{3} is the identity endomorphism of M.
(iv) Let $x=0, y=1, z=0$. Then $f_{4}(a, b, c)=(0, a, 0)$ and $f_{4}^{2}=0$.
(v) Let $x=0, y=1, z=1$. Then $f_{5}(a, b, c)=(0, a, a)$ and so $f_{5}^{2}=0$.
(vi) Let $x=1, y=1, z=0$. Then $f_{6}(a, b, c)=(a, a+b, c)$. Hence f_{6} is an isomorphism.
(vii) Let $x=1, y=1, z=1$. Then $f_{7}(a, b, c)=(a, a+b, a+c)$. Hence f_{7} is an isomorphism.
(viii) The last one f_{8} is the zero endomorphism.

It follows that M is π-morphic. However $r_{M}\left(f_{1}\right)=(0) \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $f_{1}(M)=(0) \times(0) \times \mathbb{Z}_{2}$ shows that M is not morphic since, otherwise, $M / f_{1}(M) \cong r_{M}\left(f_{1}\right)$, contrary to the fact that $e_{12} 1+e_{13} 1 \in R$ would annihilate $r_{M}\left(f_{1}\right)$ from the right but not $M /\left((0) \times(0) \times \mathbb{Z}_{2}\right)=$ $M / f_{1}(M)=r_{M}\left(f_{1}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times(0)$.
2.2. Lemma. Let $f \in S$. If $M / f^{n}(M) \cong r_{M}\left(f^{n}\right)$, there exists $g \in S$ such that $f^{n} M=$ $r_{M}(g)$ and $g(M)=r_{M}\left(f^{n}\right)$.

Proof. Assume that $M / f^{n} M \cong r_{M}\left(f^{n}\right)$. Let $M \xrightarrow{\pi} M / f^{n} M \xrightarrow{h} r_{M}\left(f^{n}\right)$ where π is the coset map and h is the isomorphism. Set $g=h \pi$. Then $g(M)=r_{M}\left(f^{n}\right)$ and $r_{M}(g)=f^{n}(M)$.
2.3. Proposition. Let M be a module, and let $f \in S$ be π-morphic. Then the following conditions are equivalent:
(1) $r_{M}(f)=0$.
(2) f is an automorphism.

Proof. Assume that f in S is π-morphic. Then there exists a positive integer n such that $M / f^{n}(M) \cong r_{M}\left(f^{n}\right)$. By Lemma 2.2 there exists $g \in S$ such that $f^{n} M=r_{M}(g)$ and $g(M)=r_{M}\left(f^{n}\right)$. Assume (1) holds. Then $r_{M}(f)=0$ and so $r_{M}\left(f^{n}\right)=0$. This shows that $f^{n}(M)=M$. Hence $f(M)=M$ and f is an automorphism and (2) holds. (2) \Rightarrow (1) always holds.
2.4. Theorem. Let M be a π-morphic module. Then the following holds.
(1) For any $f \in S$, if $r_{M}(f)=0$ then f^{n} is an automorphism of M for some positive integer n.
(2) For any $f \in S$, if $f(M)=M$ then f^{n} is an automorphism of M for some positive integer n.

Proof. (1) Let $f \in S$ with $r_{M}(f)=0$. By hypothesis there exists a positive integer n such that $M / f^{n} M \cong r_{M}\left(f^{n}\right)$ and $r_{M}(f)=0$ implies $r_{M}\left(f^{n}\right)=0$. So $M=f^{n} M$. Hence f^{n} is an automorphism.
(2) Assume that $f(M)=M$. Then $f^{i}(M)=M$ for all $i \geq 1$. By hypothesis there exists a positive integer n such that $M / f^{n} M \cong r_{M}\left(f^{n}\right)$. Then $r_{M}\left(f^{n}\right)=0$. Hence f^{n} is an automorphism.

Recall that the ring R is called directly finite if $a b=1$ implies $b a=1$ for any a, $b \in R$. A module M is called directly finite if its endomorphism ring is directly finite, equivalently for any endomorphisms f and g of $M, f g=1$ implies $g f=1$ where 1 is the identity endomorphism of M.
2.5. Corollary. Let M be a π-morphic module. Then it is directly finite.

Proof. Let $f, g \in S$ with $f g=1$. By Proposition 2.3, g is an automorphism. Hence $g f=1$.
2.6. Lemma. Let f be a π-morphic element. If $h: M \rightarrow M$ is an automorphism, then there exists a positive integer n such that $f^{n} h$ and $h f^{n}$ are both morphic. In particular, every π-unit regular endomorphism is morphic.

Proof. By Lemma 2.2, there exist $g \in S$ and a positive integer n such that $g(M)=r_{M}\left(f^{n}\right)$ and $r_{M}(g)=f^{n}(M)$. Then $\left(f^{n} h\right)(M)=f^{n}(h(M))=f^{n}(M)=$ $r_{M}(g)=r_{M}\left(h^{-1} g\right)$. Next we show $r_{M}\left(f^{n} h\right)=\left(h^{-1} g\right)(M)$. For if $m \in r_{M}\left(f^{n} h\right)$, then $\left(f^{n} h\right)(m)=0$ or $h(m) \in r_{M}\left(f^{n}\right)$. Hence $m \in\left(h^{-1} g\right)(M)$ since $r_{M}\left(f^{n}\right)=g(M)$. So $r_{M}\left(f^{n} h\right) \leq\left(h^{-1} g\right)(M)$. For the converse inclusion, let $m \in\left(h^{-1} g\right)(M)$. Then $h(m) \in g(M)$. So $h(m) \in r_{M}\left(f^{n}\right)$ since $r_{M}\left(f^{n}\right)=g(M)$. Hence $\left(f^{n} h\right)(m)=0$ or $m \in r_{M}\left(f^{n} h\right)$. Thus $\left(h^{-1} g\right)(M) \leq r_{M}\left(f^{n} h\right)$. It follows that $r_{M}\left(f^{n} h\right)=\left(h^{-1} g\right)(M)$, and so $f^{n} h$ is morphic. Similarly $h f^{n}$ is morphic.
2.7. Examples. (1) Every strongly π-regular ring is π-morphic as a right module over itself.
(2) Every module satisfying Fitting's lemma is π-morphic.
(3) Let R be an Artinian ring. Then every finitely generated R module is π-morphic.

Proof. (1) and (2) are clear. (3) Let R be an Artinian ring and M be a finitely generated module. Then M is both Artinian and Noetherian. By Proposition 11.7 in [1], M satisfies Fitting's lemma. Therefore M is π-morphic.
2.8. Theorem. Every direct summand of $a \pi$-morphic module is π-morphic.

Proof. Let $M=N \oplus K$ and $S_{N}=\operatorname{End}_{R}(N)$ and $f \in S_{N}$. Define $M \xrightarrow{g} M$ by $g(m)=$ $f(n)+k$ where $m=n+k$ and $n \in N, k \in K$. Clearly $g \in S$ and $g(M)=f(N) \oplus K$ and $r_{M}(g)=r_{N}(f)$. By hypothesis there exists a positive integer n such that $M / g^{n}(M) \cong$ $r_{M}\left(g^{n}\right)$. It is apparent that $g^{n}(M)=f^{n}(N) \oplus K$. Hence $N / f^{n}(N) \cong(N \oplus K) /\left(f^{n}(N) \oplus\right.$ $K)=M / g^{n}(M) \cong r_{M}\left(g^{n}\right)=r_{N}\left(f^{n}\right)$.
2.9. Remark. One may suspect that for π-morphic modules M_{1} and M_{2},
$M=M_{1} \oplus M_{2}$ is π-morphic module provided $\operatorname{Hom}\left(M_{i}, M_{j}\right)=0$ for $1 \leq i \neq j \leq 2$. But we cannot prove it.

Example 2.10 reveals that direct sum of π-morphic modules need not depend on the condition $\operatorname{Hom}\left(M_{i}, M_{j}\right)=0$.
2.10. Example. Consider the ring $R=\left\{\left.\left(\begin{array}{ccc}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}_{2}\right\}$ and the right R-module $M=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{2}\right\}$, and the submodules $N=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{2}\right\}$ and $K=\left\{\left.\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, c \in \mathbb{Z}_{2}\right\}$.
Then $M=N \oplus K$. Clearly N and K are π-morphic right R-modules. Let $e_{i j}$ denote the 3×3 matrix units in M and for $e_{23} c \in K$ define $K \xrightarrow{h} N$ by $h\left(e_{23} c\right)=e_{13} c \in N$. Then $0 \neq h \in \operatorname{Hom}(K, N)$. For any $f \in S$, there exist $a, b, c, u, v \in \mathbb{Z}_{2}$ such that
f is given by $f\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & a x & b x+a y+c z \\ 0 & 0 & u x+v z \\ 0 & 0 & 0\end{array}\right)$. It is easily checked that all f 's are morphic endomorphisms.
2.11. Proposition. Let $M=K \oplus N$ be a π-morphic module and $K \xrightarrow{f} N$ be a homomorphism. Then K is isomorphic to a direct summand of N.

Proof. For $k+n \in M$ where $k \in K, n \in N$, define $g(k+n)=f(k)+n$. Then g is a right R module homomorphism of M and $g^{2}=g$. So $M=g(M) \oplus(1-g)(M)=(f(K)+N) \oplus\{k-$ $f(k) \mid k \in K\}$. Clearly $r_{M}(g)=(1-g)(M)=\{k-f(k) \mid k \in K\}$ is a direct summand of N. By hypothesis there exists a positive integer n such that $M / g^{n}(M) \cong r_{M}\left(g^{n}\right)$. Since $g^{2}=g$, so $K \cong K \oplus(N / f(K)+N) \cong(K \oplus N) /(f(K)+N) \cong M / g(M)=r_{M}(g)$ is a direct summand of N.

A right R-module M is called generalized right principally injective (briefly right $G P$ injective) if, for any nonzero $a \in R$, there exists a positive integer n depending on a such that $a^{n} \neq 0$ and any right homomorphism from $a^{n} R$ to M extends to one of R_{R} into M, equivalently, $\operatorname{lr}\left(a^{n}\right)=R a^{n}$ (see, [6, Lemma 5.1]). Similarly, M is left GP-injective S-module means that for any $f \in S$ there exists a positive integer n such that $f^{n} \neq 0$ and any map α from $S f^{n}$ to M extends to one of $S S$ into M, equivalently, if for any $f \in S$, there exists a positive integer n with $f^{n} \neq 0$ such that $f^{n} M=r_{M} l_{S}\left(f^{n}\right)$.

A module M is called image-projective if, whenever $g M \leq f M$ where $f, g \in S$, then $g \in f S$, that is $g=f h$ for some $h \in S$.
2.12. Lemma. Let M be a module with $S=\operatorname{End}_{R}(M)$.
(1) If M is π-morphic, then M is left GP-injective S-module.
(2) If M is π-morphic and image-projective, then S is right π-morphic.
(3) If S is right π-morphic and M generates its kernel, then M is π-morphic.

Proof. (1) Let $f \in S$. By hypothesis there exist a positive integer n and $g \in S$ such that $f^{n} M=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g M$. Since $l_{S}\left(f^{n}\right)=l_{S}\left(f^{n} M\right), r_{M} l_{S}\left(f^{n}\right)=r_{M} l_{S}\left(f^{n} M\right)=$ $r_{M} l_{S}\left(r_{M}(g)\right)=r_{M}(g)=f^{n} M$.
(2) Let $f \in S$. By hypothesis there exist $g \in S$ and a positive integer n such that $f^{n}(M)=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g(M)$. Then $g f^{n}=0$. Hence $f^{n} \in r_{S}(g)$ and so $f^{n} S \leq r_{S}(g)$. Let $h \in r_{S}(g)$. Then $g h(M)=0$ and $h(M) \leq r_{M}(g)=f^{n}(M)$. By image-projectivity of M there exists $h^{\prime} \in S$ such that $f^{n} h^{\prime}=h \in f^{n} S$ or $r_{S}(g) \leq f^{n} S$. Thus $r_{S}(g)=f^{n} S$. Next we prove $r_{S}\left(f^{n}\right)=g S$. If $h \in r_{S}\left(f^{n}\right)$, then $f^{n} h=0$ and $f^{n} h(M)=0$ and $h(M) \leq r_{M}\left(f^{n}\right)=g(M)$. By image-projectivity of M there exists an $h^{\prime} \in S$ such that $h=g h^{\prime} \in g S$. So $r_{S}\left(f^{n}\right) \leq g S$. Let $h \in g S$. There exists an $h^{\prime} \in S$ such that $h=g h^{\prime} . r_{M}\left(f^{n}\right)=g(M)$ implies $f^{n} g=0$. Hence $g \in r_{S}\left(f^{n}\right)$. Thus $g S \leq r_{S}\left(f^{n}\right)$ and so $g S=r_{S}\left(f^{n}\right)$.
(3) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^{n} S=r_{S}(g)$ and $r_{S}\left(f^{n}\right)=g S$. We prove $f^{n}(M)=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g(M) . f^{n} S=r_{S}(g)$ implies $g f^{n}=0$ and so $f^{n}(M) \leq r_{M}(g)$. Let $h \in S$ such that $h(M) \leq r_{M}(g)$. So $g h=0$ and $h \in f^{n} S$. There exists $h^{\prime} \in S$ such that $h=f^{n} h^{\prime}$. Hence $h(M) \leq f^{n} h^{\prime}(M) \leq f^{n}(M)$. Since M generates $r_{M}(g), r_{M}(g) \leq f^{n}(M), r_{M}(g)=f^{n}(M)$. Next we prove $r_{M}\left(f^{n}\right)=$ $g(M) . r_{S}\left(f^{n}\right)=g S$ implies $f^{n} g=0$. Then $g(M) \leq r_{M}\left(f^{n}\right)$. Let $h(M) \leq r_{M}\left(f^{n}\right)$. Then $f^{n} h(M)=0$ and so $f^{n} h=0$ and $h \in r_{S}\left(f^{n}\right)=g S$. There exists $h^{\prime} \in S$ such that $h=g h^{\prime}$. Hence $h(M) \leq g h^{\prime}(M) \leq g(M)$ and $r_{M}\left(f^{n}\right) \leq g(M)$ since M generates $r_{M}\left(f^{n}\right)$. Thus $r_{M}\left(f^{n}\right)=g(M)$.

The following theorem generalizes Theorem 32 in [5] to π-morphic modules.
2.13. Theorem. Let M be a module. Then the following are equivalent:
(1) M is π-morphic and image-projective.
(2) S is right π-morphic and M generates its kernel.

Proof. Clear by Lemma 2.12.
Let M be a module. In [7], the module M is called π-Rickart if for any $f \in S$, there exist $e^{2}=e \in S$ and a positive integer n such that $r_{M}\left(f^{n}\right)=e M$, while in [3], M is said to be Rickart if for any $f \in S$, there exists $e^{2}=e \in S$ such that $r_{M}(f)=e M$. Rickart module is named as kernel-direct in [5]. In [8], M is called dual π-Rickart if for any $f \in S$, there exist $e^{2}=e \in S$ and a positive integer n such that $f^{n}(M)=e M$, while in [3], M is said to be dual Rickart if for any $f \in S$, there exists $e^{2}=e \in S$ such that $f(M)=e M$. Dual-Rickart module is named as image-direct in [5]. Erlich [2] proved that a map $f \in S$ is unit-regular if and only if f is regular and morphic. We state and prove this theorem for π-regular rings.
2.14. Theorem. Let $f \in S$. Then the following are equivalent:
(1) f is unit- π-regular.
(2) f is π-regular and morphic.

Proof. (1) \Rightarrow (2) Every unit- π-regular ring is π-regular. There exist a unit g and a positive integer n such that $f^{n}=f^{n} g f^{n}$. Then $g f^{n}$ is an idempotent, $r_{M}\left(f^{n}\right)=\left(1-g f^{n}\right) M$ and
$M \cong f^{n}(M) \oplus\left(1-g f^{n}\right) M$. Hence $M / f^{n}(M) \cong r_{M}\left(f^{n}\right)$.
(2) \Rightarrow (1) Let $f^{n}=f^{n} g f^{n}$ where $g \in S$. Then
$M=f^{n} M \oplus\left(1-f^{n} g\right) M=r_{M}\left(f^{n}\right) \oplus\left(g f^{n}\right) M$.
Let $h: f^{n} M \rightarrow g f^{n}(M)$ be defined by $h f^{n}(m)=g f^{n}(m)$ where $f^{n}(m) \in f^{n}(M)$. Then h and f^{n} are isomorphisms and inverse each other. Now
$M=f^{n}(M) \oplus\left(1-f^{n} g\right)(M)$ and $M / r_{M}\left(f^{n}\right) \cong f^{n}(M)$. By morphic condition we have $M / f^{n}(M) \cong r_{M}\left(f^{n}\right)$. Then $M / f^{n}(M) \cong\left(1-\left(f^{n} g\right)\right)(M)$ gives rise to an isomorphism $\left(1-\left(f^{n} g\right)\right)(M) \xrightarrow{h^{\prime}} r_{M}\left(f^{n}\right)$. Set $\alpha=h \oplus h^{\prime}$. Let $m=x+y$ with $x \in f^{n}(M)$ and $y \in\left(1-f^{n} g\right)(M)$. Then $\left(f^{n} \alpha f^{n}\right)(x+y)=\left(f^{n} h f^{n}\right)(x)+\left(f^{n} h^{\prime} f^{n}\right)(y)=\left(f^{n} g f^{n}\right)(y)+0=$ $f^{n}(y)+f^{n}(x)=f^{n}(x+y)$. Hence $f^{n} \alpha f^{n}=f^{n}$.
2.15. Theorem. Let M be a module with $S=\operatorname{End}_{R}(M)$. The following are equivalent: (1) S is unit- π-regular.
(2) M is π-morphic and π-Rickart.
(3) M is π-morphic and dual π-Rickart.

Proof. (1) $\Rightarrow(2)$ Let S be unit- π-regular and $f \in S$. There exist a unit $g \in S$ and a positive integer n such that $f^{n}=f^{n} g f^{n}$. By virtue of Theorem 2.14, M is π-morphic. M is π-Rickart since $1-g f^{n}$ is an idempotent and $r_{M}\left(f^{n}\right)=\left(1-g f^{n}\right) M$.
$(2) \Rightarrow(3)$ Let $f \in S$. There exists a positive integer n such that $M /\left(f^{n} M\right) \cong r_{M}\left(f^{n}\right)$. By Lemma 2.2 there exists a $g \in S$ such that $g(M)=r_{M}\left(f^{n}\right)$ and $r_{M}(g)=f^{n}(M)$. By (2), $r_{M}(g)$ is π-Rickart, therefore $f^{n}(M)$ is direct summand.
(3) \Rightarrow (1) Let $f \in S$. By (3), there exist a positive integer n and $g \in S$ such that $f^{n} M=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g(M)$. By (3), $f^{n} M$ and $g(M)$ are direct summand and so is $r_{M}\left(f^{n}\right)$. Hence S is π-regular ring by [9, Corollary 3.2]. By Theorem 2.14, S is unit- π-regular.

Example 2.16 shows that there exists a π-Rickart module which is not π-morphic.
2.16. Example. Consider $M=\mathbb{Z} \oplus(\mathbb{Z} / 2 \mathbb{Z})$ as a \mathbb{Z}-module. It can be easily determined that $S=\operatorname{End}_{\mathbb{Z}}(M)$ is $\left[\begin{array}{cc}\mathbb{Z} & 0 \\ \mathbb{Z}_{2} & \mathbb{Z}_{2}\end{array}\right]$. For any $f=\left[\begin{array}{cc}a & 0 \\ \bar{b} & \bar{c}\end{array}\right] \in S$, we have the following cases.

Case 1. Assume that $a=0, \bar{b}=\overline{0}, \bar{c}=\overline{1}$ or $a=0, \bar{b}=\bar{c}=\overline{1}$. In both cases f is an idempotent, and so $r_{M}(f)=(1-f) M$.

Case 2. If $a \neq 0, \bar{b}=\overline{0}, \bar{c}=\overline{1}$ or $a \neq 0, \bar{b}=\bar{c}=\overline{1}$, then $r_{M}(f)=0$.
Case 3. If $a \neq 0, \bar{b}=\bar{c}=\overline{0}$ or $a \neq 0, \bar{b}=\overline{1}, \bar{c}=\overline{0}$, then $r_{M}(f)=0 \oplus \mathbb{Z} / 2 \mathbb{Z}$.
Case 4. If $a=0, \bar{b}=\overline{1}, \bar{c}=\overline{0}$, then $f^{2}=0$. Hence $r_{M}\left(f^{2}\right)=M$.
Therefore M is a π-Rickart module. Now we prove it is not π-morphic. Let
$f=\left[\begin{array}{cc}2 & 0 \\ \overline{0} & \overline{1}\end{array}\right] \in S$. For each positive integer $n, r_{M}\left(f^{n}\right)=0$ and
$f^{n}(M)=2^{n} \mathbb{Z} \oplus(\mathbb{Z} / 2 \mathbb{Z})$. Then $M / f^{n}(M) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$. But $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ can not be isomorphic to $r_{M}\left(f^{n}\right)=0$.

In [5], M is called an image-injective module if for each $f \in S$, every R-module homomorphisms from $f(M)$ to M extends to M. By this definition we state and prove dual versions of Lemma 2.12.
2.17. Lemma. Let M be a module with $S=\operatorname{End}_{R}(M)$.
(1) If S is left π-morphic, then M is image-injective.
(2) If M is π-morphic and image-injective, then S is left π-morphic.
(3) If S is left π-morphic and M cogenerates its cokernel, then M is π-morphic.

Proof. (1) By Lemma 2.12, S is right GP-injective. Let $f, g \in S$. There exists a positive integer n depending on f such that $f^{n} \neq 0$ and any map $f^{n} S \xrightarrow{g^{\prime}} S$ extends to an endomorphism of S. Let $f^{n}(M) \xrightarrow{g} M$ be a right R-module homomorphism and set $h=g f^{n}$. Then $r_{S}\left(f^{n}\right) \leq r_{S}(h)$. The map $f^{n} S \xrightarrow{t} h S$ defined by $t\left(f^{n} s\right)=h s$ where $s \in S$ is well defined right S-module homomorphism. By the GP-injectivity of S, t extends to an endomorphism g^{\prime} of S so that $g^{\prime} f^{n}=h$. Let $m \in M . g^{\prime} f^{n}(m)=h(m)=g f^{n}(m)$. Hence g extends to $g^{\prime} \in S$. Thus M is image-injective.
(2) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^{n}(M)=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g(M)$. We prove $S f^{n}=l_{S}(g)$ and $l_{S}\left(f^{n}\right)=S g . r_{M}\left(f^{n}\right)=g(M)$ implies $f^{n} g=0$. Then $f^{n} \in l_{S}(g)$ and so $S f^{n} \leq l_{S}(g)$. Let $h \in l_{S}(g)$. Then $h g=0$ or $f^{n}(M)=g(M) \leq r_{M}(h)$. Since $f^{n}(M)=g(M)$, the map defined t by $f^{n}(M) \xrightarrow{t} h(M)$ extends to an endomorphism α of M. Then $\alpha f^{n}=h \in S f^{n}$. Hence $l_{S}(g) \leq S f^{n}$ and so $l_{S}(g)=S f^{n}$.
$f^{n}(M)=r_{M}(g)$ implies $g f^{n}=0$. So $g \in l_{S}\left(f^{n}\right)$ and $S g \leq l_{S}\left(f^{n}\right)$. Let $h \in l_{S}\left(f^{n}\right)$. Then $h f^{n}=0$. Hence $r_{M}(g)=f^{n}(M) \leq r_{M}(h)$. So the map defined by $g(M) \xrightarrow{t} h(M)$ is a module homomorphism and, by image-injectivity of M it extends to an endomorphism α of M. Hence $h=\alpha g \in S g$. Thus $l_{S}\left(f^{n}\right) \leq S g$ and so $l_{S}\left(f^{n}\right)=S g$ and S is left π-morphic.
(3) Let $f \in S$. We prove that there exist $g \in S$ and a positive integer n such that $f^{n}(M)=r_{M}(g)$ and $r_{M}\left(f^{n}\right)=g(M)$. By hypothesis S is left π-morphic, there exist $g \in S$ and a positive integer n such that $S f^{n}=l_{S}(g)$ and $l_{S}\left(f^{n}\right)=S g . S f^{n}=l_{S}(g)$ implies $f^{n} g=0$ and $g(M) \leq r_{M}\left(f^{n}\right)$. Let $m \in r_{M}\left(f^{n}\right)-g(M)$. Then $\overline{0} \neq \bar{m} \in M / g(M)$. By hypothesis, M cogenerates $M / g(M)$. There exists a map $M / g(M) \xrightarrow{t} M$ such that $t(\bar{m}) \neq 0$. Now define $M \xrightarrow{\alpha} M$ by $\alpha(x)=t(\bar{x})$. Then $\operatorname{tg}(x)=0$ for all $x \in M$. Hence $\alpha g=0$. So $\alpha \in l_{S}(g)=S f^{n}$. There exists $s \in S$ such that $\alpha=s f^{n}$. This leads us a contradiction since $0 \neq \alpha(m)=s f^{n}(m)=0$. Thus $r_{M}\left(f^{n}\right)=g(M)$.
On the other hand $l_{S}\left(f^{n}\right)=S g$ implies $g f^{n}=0$ and $f^{n}(M) \leq r_{M}(g)$. Let $m \in r_{M}(g)-f^{n}(M)$. As in the preceding paragraph there exist $s, \alpha \in S$ such that $\alpha=s g$ and $\alpha(m) \neq 0$. Since $g(m)=0$, this would lead us to a contradiction again. Thus $f^{n}(M)=r_{M}(g)$.
2.18. Theorem. Let M be a module. Then the following are equivalent:
(1) M is π-morphic and image injective.
(2) S is left π - morphic and M cogenerates its cokernel.

Proof. Clear from Lemma 2.17.
A ring R is said to be right Kasch if every simple right R-module embeds in R, equivalently, if $l(I) \neq 0$ for every proper (maximal) right ideal I of R (see also [6, page $51]$). Let M be a module. M is called Kasch module if any simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated right R modules, while M is strongly Kasch if any simple right R-module embeds in M. It is easy to see that a ring R is right Kasch if and only if the right R-module R is Kasch if and only if the right R-module R is strongly Kasch since $\sigma[R]$ is just the category of all right R-modules for details see [10].
2.19. Proposition. Let M be a π-morphic module. If every maximal right ideal of S is principal, then S is a right Kasch ring.
Proof. Let I be maximal right ideal of S. Then $I=f S$ for some $f \in S$. There exists a positive integer n such that $M / f^{n} M \cong r_{M}\left(f^{n}\right)$. Assume that $r_{M}\left(f^{n}\right)=0$. Then $f^{n} M=M=f M$. Hence f^{n} is an isomorphism. Thus $I=S$. It is a contradiction.

It follows that for any nonzero $0 \neq f \in I$ there exists a positive integer n such that $M / f^{n} M \cong r_{M}\left(f^{n}\right) \neq 0$. Consider the diagram $M \xrightarrow{\pi} M / f^{n} M \xrightarrow{\varphi} r_{M}\left(f^{n}\right)$ where π is coset map and φ is the isomorphism. Then $\varphi \pi f^{n}=0$. Hence $0 \neq \varphi \pi f^{n-1} \in l_{S}(f)$.
2.20. Corollary. Let R be a right π-morphic ring and every maximal right ideal be principal. Then R is right Kasch.
Proof. Clear from Lemma 2.19 by considering $M=R_{R}$ and $S=\operatorname{End}_{R}(R) \cong R$.
2.21. Proposition. Let S be a right π-morphic ring. Then the following conditions are equivalent:
(1) S is a right Kasch ring.
(2) Every maximal right ideal of S is an annihilator.
(3) Every maximal right ideal of S is principal.

Proof. Note that every π-morphic ring is directly finite by Corollary 2.5. In [6] it is noted that $(1) \Rightarrow(2)$ always holds.
$(2) \Rightarrow(3)$ Let I be a maximal right ideal of S. Then there exists a nonzero right ideal A of S such that $I=l(A)$. Let $0 \neq a \in A$, there exist $b \in S$ and a positive integer n such that such that $a^{n} S=r(b)$ and $r\left(a^{n}\right)=b S$. Hence $I \subseteq l\left(a^{n}\right) \neq S$. Therefore, $I=r\left(a^{n}\right)$. $(3) \Rightarrow(1)$ To complete the proof we show that $l(I) \neq 0$ for every maximal right ideal I of S. Let I be a maximal right ideal. By (3), $I=a S$ for some $a \in S$. We invoke hypothesis here to find $b \in S$ and a positive integer n such that $a^{n} S=r(b)$ and $r\left(a^{n}\right)=b S$. Then $a^{n} b=0$ and $b a^{n}=0$. If $b=0$, then $a^{n} S=S$. By Corollary 2.5, a is invertible and so $I=S$. This contradicts being I maximal. It follows that $b \neq 0$. Let t be a nonzero positive integer such that $b a^{t}=0$ and $b a^{t-1} \neq 0$. Hence $b a^{t}=0$ implies $0 \neq b a^{t-1} \in l(I)$. So S is right Kasch.

References

[1] Anderson, F.W. and Fuller, K.R. Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[2] Erlich, G. Units and one sided units in regular rings, Trans. A.M.S. 216, 203-211, 1976.
[3] Lee, G., Rizvi, S.T. and Roman, C.S. Rickart Modules, Comm. Algebra 38(11), 4005-4027, 2010.
[4] Nicholson, W.K. Strongly clean rings and Fitting's lemma, Comm. Alg. 27(8), 3583-3592, 1999.
[5] Nicholson, W.K. and Campos, E.S. Morphic Modules, Comm. Alg. 33, 2629-2647, 2005.
[6] Nicholson, W.K. and Yousif, M.F. Quasi-Frobenius Rings, Cambridge Univ.Press, 158, 2003.
[7] Ungor, B., Halıcıoğlu, S. and Harmancı, A. A Generalization of Rickart Modules, see arXiv: 1204.2343.
[8] Ungor, B., Kurtulmaz, Y., Halıcıŏlu, S. and Harmancı, A. Dual π - Rickart Modules, Revista Colombiana de Matematicas 46, 167-180, 2012.
[9] Ware, R. Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155, 233256, 1971.
[10] Zhu, Z. A Note on Principally-Injective Modules, Soochow Journal of Mathematics 33(4), 885-889, 2007.

[^0]: *Department of Mathematics, Hacettepe University, Ankara, Turkey. E-mail: (A. Harmanci) harmanci@hacettepe.edu.tr
 ${ }^{\dagger}$ Department of Mathematics, Ahi Evran University, Kirsehir, Turkey. Email: (H. Kose) hkose@ahievran.edu.tr
 ${ }^{\ddagger}$ Bilkent University, Department of Mathematics, Ankara, Turkey. Email: (Y. Kurtulmaz) yosum@fen.bilkent.edu.tr

