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Abstract

If X is a topological group, then its fundamental groupoid π1(X) is a
group-groupoid which is a group object in the category of groupoids.
Further if X is a path connected topological group which has a simply
connected cover, then the category of covering groups of X and the
category of covering groupoids of π1(X) are equivalent. In this paper
we prove that if (X,x0) is an H-group, then the fundamental groupoid
π1(X) is a weak categorical group. This enables one to prove that the
category of the covering spaces of an H-group (X,x0) is equivalent to
the category of covering groupoids of the weak categorical group π1(X).
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Introduction

Covering spaces are studied in algebraic topology, but they have important applica-
tions in many other branches of mathematics including differential topology, the theory
of topological groups and the theory of Riemann surfaces.

One of the ways of expressing the algebraic content of the theory of covering spaces is
using groupoids and the fundamental groupoids. The latter functor gives an equivalence
of categories between the category of covering spaces of a reasonably nice space X and
the category of covering groupoids of π1(X).

If X is a connected topological group with identity e and p : (X̃, ẽ) → (X, e) is a

covering map of pointed spaces such that X̃ is simply connected, then X̃ becomes a
topological group with identity ẽ such that p is a morphism of topological groups (see
for example [6, Proposition 5] and [11, Theorem 10.42]).

The problem of universal covers of non-connected topological groups was first studied
by Taylor in [12]. He proved that a topological group X determines an obstruction class
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kX in H3(π0(X), π1(X, e)), and that the vanishing of kX is a necessary and sufficient
condition for the lifting of the group structure to a universal cover. In [8] an analogous
algebraic result is given in terms of crossed modules and group objects in the category
of groupoids (see also [3] for a revised version, which generalizes these results and shows
the relation with the theory of obstructions to extension for groups).

For a topological group X, the fundamental groupoid π1(X) becomes a group-groupoid
which is a group object in the category of groupoids [4]. This notion is also known as
an internal category in the category of groups [10]. This functor gives an equality of
the category of the covering groups of a topological group X whose underlying space
is locally nice, and the category of the covering groupoids of π1(X) [3, Proposition 2.3]
(see also [8]). Recently the notion of monodromy for topological group-groupoids was
developed by the authors in [9].

In this paper we prove that if (X,x0) is an H-group (see Definition 1.3), then the
fundamental groupoid π1(X) is a weak categorical group. This enables us to prove that
the category of the covering spaces of an H-group (X,x0) is equivalent to the category
of covering groupoids of the weak categorical group π1(X). We also prove that the
categorical group structure lifts to some kinds of the covering groupoids.

1. Covering Spaces and H-groups

We assume the usual theory of covering maps. All spaces X are assumed to be locally
path connected and semi locally simply connected, so that each path component of X
admits a simply connected cover.

Recall that a covering map p : X̃ → X of connected spaces is called universal if it

covers every cover of X in the sense that if q : Ỹ → X is another cover of X then there

exists a map r : X̃ → Ỹ such that p = qr (hence r becomes a cover). A covering map

p : X̃ → X is called simply connected if X̃ is simply connected. Note that a simply
connected cover is a universal cover.

1.1. Definition. We call a subset U of X liftable if it is open, path connected and U lifts

to each cover of X, that is, if p : X̃ → X is a covering map, ı : U → X is the inclusion

map, and x̃ ∈ X̃ satisfies p(x̃) = x ∈ U , then there exists a map (necessarily unique)

ı̂ : U → X̃ such that pı̂ = ı and ı̂(x) = x̃. 2

It is an easy application that U is liftable if and only if it is open, path connected
and for all x ∈ U , the fundamental group π1(U, x) is mapped to the singleton by the
morphism π1(U, x) → π1(X,x) induced by the inclusion map ı : U → X. Remark that
if X is a semi locally simply connected topological space, then each point x ∈ X has a
liftable neighbourhood.

The following result, which is very useful for the proof of Theorem 3.11, is known as
Covering Homotopy Theorem [11, Theorem 10.6]. In Theorem 3.12 we prove a parallel
result for covering groupoids.

1.2. Theorem. Let p : X̃ → X be a covering map and Z a connected space. Consider
the commutative diagram of continuous maps

Z

j

��

f̃
// X̃

p

��

Z × I

F̃

<<

F
// X

where j : Z → Z × I, j(z) = (z, 0) for all z ∈ Z. Then there is a unique continuous map

F̃ : Z × I → X̃ such that pF̃ = F and F̃ j = f̃ . 2
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As a corollary of this theorem if the maps f, g : Z → X are homotopic, then their
respective liftings f̃ and g̃ are homotopic. If f ' g, there is a continuous map F : Z×I →
X such that F (z, 0) = f(z) and F (z, 1) = g(z). So there is a continuous map F̃ : Z×I →
X̃ as in Theorem 1.2. Here pF̃ (z, 0) = F (z, 0) = f(z) and pF̃ (z, 1) = F (z, 1) = g(z). By

the uniqueness of the liftings we have that F̃ (z, 0) = f̃(z) and F̃ (z, 1) = g̃(z). Therefore

f̃ and g̃ are homotopic.

1.3. Definition. [11, p.324] A pointed space (X,x0) is called an H − group if there are
continuous pointed maps

m : (X ×X, (x0, x0))→ (X,x0), (x, x′) 7→ xx′

n : (X,x0)→ (X,x0), x 7→ x−1

and pointed homotopies

(i) associativity : m(1X ×m) ' m(m× 1X);
(ii) unit: m ı1 ' 1X ' m ı2;

(iii) inverse: m(1X , n) ' c ' m(n, 1X)

where ı1, ı2 : X → X × X are injections defined by ı1(x) = (x, x0) and ı2(x) = (x0, x);
and c : X → X is the constant map at x0. 2

We remark that these axioms of the associativity, the unit and the inverse can be
respectively stated that the following diagrams are commutative up to homotopy.

(X ×X ×X, (x0, x0, x0))

1X×m
��

m×1X // (X ×X, (x0, x0))

m

��

(X ×X, (x0, x0))
m

// (X,x0)

(X ×X, (x0, x0))

m
''

(X,x0)

1X

��

ı1oo
ı2 // (X ×X, (x0, x0))

m
ww

(X,x0)

and

(X ×X, (x0, x0))

m
''

(X,x0)

c

��

(n,1X )
oo

(1X ,n)
// (X ×X, (x0, x0))

m
ww

(X,x0)

.

Let (X,x0) and (Y, y0) be H-groups. A continuous map f : (X,x0) → (Y, y0) such
that f(xx′) = f(x)f(x′) for x, x′ ∈ X, is called a morphism of H-groups. So we have a
category of H-groups denoted by HGrp.

1.4. Example. A topological group X with identity e is an H-group since the group
operation

m : (X ×X, (e, e))→ (X, e)

and the inverse map n : (X,x0) → (X,x0) are continuous; and the following axioms are
satisfied:

(i) the associativity: m(1X ×m) = m(m× 1X);
(ii) the unit: m ı1 = 1X = m ı2;
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(iii) the inverse: m(1X , n) = c = m(n, 1X)

where c : X → X is the constant map at e. 2

1.5. Theorem. [11, Theorem 11.9] If (X,x0) is a pointed space, then the loop space
Ω(X,x0) is an H-group.

We give a definition before we prove a result on H-groups.

1.6. Definition. Let (X,x0) and (Y, y0) be H-groups and U an open neighbourhood of
x0 in X. A continuous map φ : (U, x0) → (Y, y0) is called a local morphism of H-groups
if φ(xy) = φ(x)φ(y) for x, y ∈ U such that xy ∈ U . 2

1.7. Theorem. Let (X,x0) and (X̃, x̃0) be H-groups and q : (X̃, x̃0) → (X,x0) a mor-
phism of H-groups which is a covering map on the underlying spaces. Let U be an open
and path connected neighbourhood of x0 in X such that U2 is contained in a liftable
neighbourhood V of x0 in X. Then the inclusion map ı : (U, x0)→ (X,x0) lifts to a local

morphism ı̂ : (U, x0)→ (X̃, x̃0) of H-groups.

Proof. Since V lifts to X̃, then U lifts to X̃ by ı̂ : (U, x0)→ (X̃, x̃0). We now prove that ı̂

is a local morphism of H-groups. By the lifting theorem the map ı̂ : (U, x0)→ (X̃, x̃0) is

continuous. We have to prove that ı̂ : (U, x0)→ (X̃, x̃0) preserves the multiplication. Let
x, y ∈ U such that xy ∈ U . Let a and b be paths from x and y to x0 in U respectively.
By the continuity of

m : (X ×X, (x0, x0))→ (X,x0)

c = ab defined by c(t) = a(t)b(t) for t ∈ [0, 1] is a path from xy to x0. Since U2 ⊆ V ,

the path c is in V . So the paths a, b and c lift to X̃. Let ã, b̃ and c̃ be the liftings of the
paths a, b and c with end points x0 chosen respectively as above. Since q is a morphism
of H-spaces, we have that

q(c̃) = c = ab = q(ã)q(b̃).

and

q(ãb̃) = q(ã)q(b̃).

Since c̃ and ãb̃ end at x̃0 ∈ X̃, by the unique path lifting, we have that

c̃ = ãb̃.

By evaluating these paths at 0 ∈ I we have that

ı̂(xy) = ı̂(x)̂ı(y).

Hence ı̂ : (U, x0)→ (X̃, x̃0) is a local morphism of H-groups. 2

2. Covering Groupoids

A groupoid G on Ob(G) is a small category in which each morphism is an isomorphism.
Thus G has a set of morphisms, a set Ob(G) of objects together with functions s, t : G→
Ob(G), ε : Ob(G) → G such that sε = tε = 1Ob(G), the identity map. The functions s,
t are called initial and final point maps respectively. If a, b ∈ G and t(a) = s(b), then
the product or composite ba exists such that s(ba) = s(a) and t(ba) = t(b). Further,
this composite is associative, for x ∈ Ob(G) the element ε(x) denoted by 1x acts as
the identity, and each element a has an inverse ā such that s(ā) = t(a), t(ā) = s(a),
aā = (εt)(a), āa = (εs)(a). The map G→ G, a 7→ ā, is called the inversion. So a group
is a groupoid with only one object.
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In a groupoid G for x, y ∈ Ob(G) we write G(x, y) for the set of all morphisms with
initial point x and final point y. We say G is connected if for all x, y ∈ Ob(G), G(x, y)
is not empty and simply connected if G(x, y) has only one morphism. For x ∈ Ob(G) we
denote the star {a ∈ G | s(a) = x} of x by Gx. The object group at x is G(x) = G(x, x).

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H → G
and Of : Ob(H)→ Ob(G) such that s ◦ f = Of ◦ s, t ◦ f = Of ◦ t and f(ba) = f(b)f(a)
for all (a, b) ∈ Ht ×s H. For such a morphism we simply write f : H → G.

2.1. Definition. Let p : G̃→ G be a morphism of groupoids. Then p is called a covering

morphism and G̃ a covering groupoid of G if for each x̃ ∈ Ob(G̃) the restriction of p

px : (G̃)x̃ → Gp(x̃)

is bijective. A covering morphism p : G̃ → G is called connected if both G̃ and G are
connected. 2

A group homomorphism f : G → H is a covering morphism if and only if it is an
isomorphism.

A connected covering morphism p : G̃→ G is called universal if G̃ covers every cover of

G, i.e., if for every covering morphism q : H̃ → G there is a unique morphism of groupoids

p̃ : G̃→ H̃ such that qp̃ = p (and hence p̃ is also a covering morphism), this is equivalent

to that for x̃, ỹ ∈ Ob(G̃) the set G̃(x̃, ỹ) has not more than one element.

For any groupoid morphism p : G̃ → G and an object x̃ of G̃ we call the subgroup

p(G̃(x̃)) of G(px̃) the characteristic group of p at x̃.

2.2. Example. [2, 10.2] If p : X̃ → X is a covering map of topological spaces, then the

morphism π1(p) : π1(X̃) → π1(X) of fundamental groupoids is a covering morphism of
groupoids. 2

2.3. Definition. Let p : G̃→ G be a covering morphism of groupoids and q : H → G a
morphism of groupoids. If there exists a unique morphism q̃ : H → G̃ such that q = pq̃
we just say q lifts to q̃ by p. 2

We recall the following theorem from Brown [2, 10.3.3] which gives an important
criteria to have the lifting maps on covering groupoids. For a useful application of this
theorem see for example the proof of Theorem 3.12.

2.4. Theorem. Let p : G̃ → G be a covering morphism of groupoids, x ∈ Ob(G) and

x̃ ∈ Ob(G̃) such that p(x̃) = x. Let q : K → G be a morphism of groupoids such that K
is connected and z ∈ Ob(K) such that q(z) = x. Then the morphism q : K → G uniquely

lifts to a morphism q̃ : K → G̃ such that q̃(z) = x̃ if and only if q[K(z)] ⊆ p[G̃(x̃)], where

K(z) and G̃(x̃) are the object groups.

From Theorem 2.4 the following corollary follows.

2.5. Corollary. Let p : (G̃(x̃) → (G, x) and q : (H̃, z̃) → (G, x) be connected covering
morphisms with characteristic groups C and D respectively. If C ⊆ D, then there is a

unique covering morphism r : (G̃, x̃) −→ (H̃, z̃) such that p = qr. If C = D, then r is an
isomorphism.

3. Homotopies of functors and weak categorical groups

In this section before main results we prove that the functors are homotopic if and
only if they are naturally isomorphic. For the homotopies of functors we first need the
following fact whose proof is straightforward.
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3.1. Proposition. Let C, D and E be categories and F : C×D→ E a functor. Then for
x ∈ Ob(C) and y ∈ Ob(D) we have the induced functors

F (x,−) : D→ E

F (−, y) : C→ E.

2

We write J for the simply connected groupoid whose objects are 0 and 1; and whose
non-identity morphisms are ι : 0→ 1 and ῑ : 1→ 0.

As similar to the homotopy of continuous functions, the homotopy of functors is
defined as follows.

3.2. Definition. [2, p.228] Let f, g : C → D be functors. These functors are called
homotopic and written f ' g if there is a functor F : C × J → D such that F (−, 0) = f
and F (−, 1) = g 2

3.3. Proposition. [2, 6.5.10] If the maps f, g : X → Y are homotopic, then the induced
morphisms π1f, π1g : π1(X)→ π1(Y ) of the fundamental groupoids are homotopic.

3.4. Definition. Let f, g : C → D be two functors. We call f and g are naturally
isomorphic if there exists a natural isomorphism σ : f → g. 2

3.5. Theorem. The functors f, g : C→ D are homotopic in the sense of Definition 3.2
if and only if they are naturally isomorphic.

Proof. If the functors f, g : C → D are homotopic there is a functor F : C × J → D such
that F (−, 0) = f and F (−, 1) = g. Since (1x, ι) : (x, 0)→ (x, 1) is an isomorphism in C×J
the morphism F (1x, ι) : F (x, 0)→ F (x, 1) is an isomorphism in D where F (x, 0) = f(x)
and F (x, 1) = g(x). We now define a natural transformation σ : f → g by σ(x) =
F (x, ι) : f(x) → g(x) for x ∈ Ob(C). To prove that for a morphism α : x → y in C the
diagram

f(x)

f(α)

��

σ(x)
// g(x)

g(α)

��

f(y)
σ(y)
// g(y)

is commutative we prove that the diagram

F (x, 0)

F (α,0)

��

F (1x,ι)// F (x, 1)

F (α,1)

��

F (y, 0)
F (1y,ι)

// F (y, 1)

is commutative. Since F is a functor

F (α, 1) ◦ F (1x, ι) = F ((α, 1) ◦ (1x, ι))

= F (α ◦ 1x, 1 ◦ ι) = F (α, 1)

and

F (1y, ι) ◦ F (α, 0) = F ((1y, ι) ◦ (α, 0))

= F (1y ◦ α, ι ◦ 0) = F (α, 1)

424



Covering groupoids of categorical groups

and therefore the latter diagram is commutative. Therefore the functors f and g are
naturally isomorphic.

Conversely suppose that the functors f, g : C→ D are naturally isomorphic. So there
is a natural transformation σ : f → g such that σx : f(x) → g(x) is an isomorphism for
x, y ∈ Ob(C) and the following diagram is commutative

x

α

��

f(x)

f(α)

��

σ(x)
// g(x)

g(α)

��

y f(y)
σ(y)
// g(y).

for α ∈ C(x, y). We now define a homotopy of functors F : C× J→ D as follows: Define
F on objects by F (x, 0) = f(x) and F (x, 1) = g(x) for x ∈ Ob(C). For x, y, z ∈ Ob(C)
consider the following diagram of the morphisms in C× J.

(x, 0)

(α,ι)

��

(α,0)
// (y, 0)

(y, 1) (x, 1)
(α,1)
oo

(α,ῑ)

OO

Define F on these morphisms as follow:

F (α, 0) = f(α)

F (α, 1) = g(α)

F (α, ι) = g(α) ◦ σx
F (α, ῑ) = f(α) ◦ (σx).

In this way a functor F : C × J → D is defined such that F (−, 0) = f and F (−, 1) = g.
Therefore the functors f and g are homotopic. 2

A group-groupoid which is also known as 2-group in literature is a group object in the
category of groupoids. The formal definition of a group-groupoid is given in [4] under
the name G-groupoid as follows:

3.6. Definition. A group-groupoid G is a groupoid endowed with a group structure such
that the following maps, which are called respectively product, inverse and unit are the
morphisms of groupoids:

• m : G×G→ G, (a, b) 7→ ab;
• u : G→ G, a 7→ a−1;
• e : {?} → G, where {?} is singleton.

2

Here note that the axioms of the associativity, the unit and the inverse can be stated
respectively in terms of functions as follows:

(i) m(1×m) = m(m× 1);
(ii) m ı1 = 1G = m ı2;

(iii) m(1, u) = m(u, 1) = e

where ı1, ı2 : G → G × G are injections defined by ı1(a) = (a, e) and ı2(a) = (e, a); and
e : G→ G is the constant map at e.

In the definition of group-groupoid if we take these functors to be homotopic rather
than equal, we obtain the definition of weak categorical group. There are various forms
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of the definitions of a categorical group in the literature (see [5] and [7]) and we will use
the following one without coherence conditions and call weak categorical group.

3.7. Definition. Let G be a groupoid. Let ⊗ : G × G → G and u : G → G, a 7→ a−1 be
functors called respectively product and inverse. Let e ∈ Ob(G) be an object. If the
following conditions are satisfied then we call (G,⊗, u, e) a weak categorical group and
write just G.

(1) The functors ⊗(1×⊗),⊗(1×⊗) : G× G× G→ G are homotopic.
(2) The functors e⊗1, 1⊗e : G→ G defined by (e⊗1)(a) = e⊗a and (1×e)(a) = a⊗e

for a ∈ G are homotopic to the identity functor G→ G.
(3) The functors ⊗(1, u),⊗(u, 1) : G → G defined by ⊗(1, u)(a) = a ⊗ u(a) and
⊗(u, 1)(a) = u(a)⊗ a are homotopic to the constant functor e : G→ G .

2

In this definition if these functors are equal rather than homotopic, then the weak
categorical group is called a strict categorical group which is a group-groupoid.

Note that the product ⊗ : G× G→ G is a functor if and only if

(b ◦ a)⊗ (d ◦ c) = (b⊗ d) ◦ (a⊗ c)(3.1)

for a, b, c, d ∈ G whenever the compositions b◦a and d◦c are defined. Since u : G→ G, a 7→
a−1 is a functor when the groupoid composition b ◦ a is defined (b ◦ a)−1 = b−1 ◦ a−1 and
1x
−1 = 1x−1 for x ∈ Ob(G).

3.8. Theorem. If (X,x0) is an H-group, then the fundamental group π1(X) is a weak
categorical group.

Proof. Since (X,x0) is an H-group by Definition 1.3 there are continuous maps

m : (X ×X, (x0, x0))→ (X,x0)

n : (X,x0)→ (X,x0)

and there are the following homotopies of the maps:

(i) m(1X ×m) ' m(m× 1X);
(ii) m ı1 ' 1X ' m ı2;

(iii) m(1X , n) ' c ' m(n, 1X)

where ı1, ı2 : X → X × X are injections defined by ı1(x) = (x, x0), ı2(x) = (x0, x) and
c : X → X is the constant map at x0. From m and n we have the following induced
functors

m̃ : π1(X)× π1(X)→ π1(X)

and

ñ : π1(X)→ π1(X).

By Proposition 3.3 from the above homotopies (i), (ii) and (iii), the following homotopies
of the functors are obtained:

(i) m̃(1× m̃) ' m̃(m̃× 1);
(ii) m̃ ı̃1 ' 1π1X ' m̃ ı̃2;

(iii) m̃(1π1X , ñ) ' π1c ' m̃(ñ, 1π1X).

where ı̃1 and ı̃2 are respectively the morphisms induced by ı1 and ı2. Therefore π1(X)
becomes a weak categorical group. 2
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3.9. Definition. Let G and H be two weak categorical groups. A morphism of weak
categorical groups is a morphism f : H→ G of groupoids such that the functors f⊗,⊗(f×
f) : H × H → G are homotopic and f(eH) is isomorphic to eG, where eG and eH are
respectively the base points of G and H. 2

By Theorem 3.5 the condition that the functors f⊗,⊗(f × f) : H ×H → G are ho-
motopic, is equivalent to that f(x ⊗ y) is naturally isomorphic to f(x) ⊗ f(y) for all
x, y ∈ Ob(H).

So we have a category CatGrp of weak categorical groups.
The proof of the following proposition is immediate and therefore it is omitted.

3.10. Proposition. If p : (X̃, x̃0)→ (X,x0) is a morphism of H-groups, then the induced

map π1p : π1(X̃)→ π1(X) is a morphism of weak categorical groups.

Let (X,x0) be an H-group. Then we have a category CovHGrp/(X, x0) of H-group

morphisms f : (X̃, x̃0) → (X,x0) which are covering maps on the underlying spaces. So

a morphism from f : (X̃, x̃0) → (X,x0) to g : (Ỹ , ỹ0) → (X,x0) is a continuous map

p : (X̃, x̃0)→ (Ỹ , ỹ0) which becomes also a covering map, such that f = gp.

Similarly we have an other category CovCatGrp/π1X of morphisms p : G̃ → π1(X) of
weak categorical groups, which are covering morphisms on the underlying groupoids.

3.11. Theorem. Let (X,x0) be an H-group such that the underlying space has a simply
connected cover. Then the categories CovHGrp/(X, x0) and CovCatGrp/π1X are equivalent.

Proof. Let p : (X̃, x̃0) → (X,x0) be a morphism of H-groups which is a covering map

on the spaces. Then by Proposition 3.10 the induced morphism π1p : (π1X̃) → π1(X)
is a morphism of weak categorical groups which is a covering morphism of underlying
groupoids. So in this way we have a functor

π1 : CovHGrp/(X, x0)→ CovCatGrp/π1X.

Conversely we define a functor

η : CovCatGrp/π1X→ CovHGrp/(X, x0)

as follows:
Let q : G̃ → π1(X) be a morphism of weak categorical groups which is a covering

morphism on the underlying groupoids. Then by [2, 9.5.5] there is a topology on X̃ =

Ob(G̃) and an isomorphism α : G̃ → π1(X̃) such that p = Oq : (X̃, x̃0) → (X,x0) is a

covering map and q = π1(p)◦α. Hence weak categorical group structure on G̃ transports

via α to π1(X̃). So we have the morphisms of groupoids

m̃ : π1(X̃)× π1(X̃) −→ π1(X̃)

ñ : π1(X̃) −→ π1(X̃)

such that π1(p) ◦ m̃ = m ◦ (π1(p)× π1(p)) and nπ1(p) = π1(p)ñ. From these morphisms
we obtain the maps

m̃ : X̃ × X̃ −→ X̃

ñ : X̃ −→ X̃.

Since (X,x0) is an H-group with the maps

m : (X ×X, (x0, x0))→ (X,x0)

n : (X,x0)→ (X,x0)

we have the following homotopies of pointed maps:

(i) m(1X ×m) ' m(m× 1X);
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(ii) m ı1 ' 1X ' m ı2;
(iii) m(1X , n) ' c ' m(n, 1X).

Then by Theorem 1.2 we have the following homotopies:

(i) m̃(1X̃ × m̃) ' m̃(m̃× 1X̃);
(ii) m̃ ı1 ' 1X̃ ' m̃ ı2;
(iii) m̃(1X̃ , ñ) ' c ' m̃(ñ, 1X̃).

Therefore (X̃, x̃0) is an H-group and q = Op : (X̃, x̃0)→ (X,x0) is a covering morphism
of H-groups.

If p : (X̃, x̃0)→ (X,x0) is a covering map on underlying spaces, then by [2, 9.5.5] the

topology of X̃ is that of X lifted by the covering morphism π1p : π1X̃ → π1X and so

ηπ1 = 1. Further if q : G̃ → π1(X) is a morphism of weak categorical groups, then for

the lifted topology on X̃, G̃ is isomorph to π1X̃ and so ηπ1 ' 1. Therefore these functors
give an equivalence of the categories. 2

As similar to Theorem 1.2, in the following theorem we prove that the liftings of
homotopic functors are also homotopic.

3.12. Theorem. Let p : (G̃, x̃)→ (G, x) be a covering morphism of groupoids. Suppose
that K is a simply connected groupoid, i.e., for each x, y ∈ OK , K(x, y) has only one
morphism. Let f, g : (K, z) → (G, x) be the morphisms of groupoids such that f and g

are homotopics. Let f̃ and g̃ be the liftings of f and g respectively. Then f̃ and g̃ are
also homotopic.

Proof. Since the functors f and g are homotopic, there is a functor F : K × J → G
such that F (−, 0) = f and F (−, 1) = g. Since K is a simply connected groupoid by

Theorem 2.4 there is a functor F̃ : (K × J, (z, 0)) → (G̃, x̃) such that pF̃ = F . Hence

pF̃ (−, 0) = F (−, 0) = f and pF̃ (−, 1) = F (−, 1) = g. So by the uniqueness of the liftings

we have that F̃ (−, 0) = f̃ and F̃ (−, 1) = g̃. Therefore f̃ and g̃ are homotopic. 2

3.13. Definition. Let G be a weak categorical group, e ∈ Ob(G) the base point and

let G̃ be just a groupoid. Suppose p : G̃ → G is a covering morphism of groupoids and

ẽ ∈ Ob(G̃) such that p(ẽ) = e. We say that the weak categorical group structure of G

lifts to G̃ if there exists a weak categorical group structure on G̃ with the base point

ẽ ∈ Ob(G̃) such that p : G̃→ G is a morphism of weak categorical groups 2

3.14. Theorem. Let G̃ be a simply connected groupoid and G a weak categorical group.

Suppose that p : G̃ → G is a covering morphism on the underlying groupoids. Let e ∈
Ob(G) be the base point of G and ẽ ∈ OG̃ such that p(ẽ) = e. Then the weak categorical

group structure of G lifts to G̃.

Proof. Since G is weak categorical group, we have the following functors

• ⊗ : G× G→ G, (a, b) 7→ a⊗ b;
• u : G→ G, a 7→ a−1;
• e : {?} → G

such that the following functors are homotopic:

1. ⊗(1×⊗) ' ⊗(⊗× 1);
2. ⊗ı1 ' ⊗ı2 ' 1G;
3. ⊗(1, u) ' c ' ⊗(u, 1).

Since G̃ is a simply connected groupoid by Theorem 2.4 the functors ⊗ and u lift respec-
tively to the morphisms of groupoids

⊗̃ : (G̃× G̃, (ẽ, ẽ))→ (G̃, ẽ)
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and

ũ : (G̃, ẽ)→ (G̃, ẽ)

By Theorem 3.12 we have the following homotopies of the functors:

1. ⊗̃(1× ⊗̃) ' ⊗̃(⊗̃ × 1);
2. ⊗̃ ı1 ' ⊗̃ ı2 ' 1G̃;
3. ⊗̃(1, ũ) ' c ' ⊗̃(ũ, 1).

Therefore G̃ is a week categorical group as required. 2

As it is stated in the introduction there is a well known result for topological groups
that the group structure of a topological group lifts to its a simply connected covering
space. See [1] for a lifting of R-module to the covering space. We now give a similar
result for H-groups as a result of Theorem 3.14.

3.15. Corollary. Let (X,x0) be an H-group and p : (X̃, x̃0)→ (X,x0) a covering map.

If X̃ is a simply connected topological space, then H-group structure of (X,x0) lifts to

(X̃, x̃0), i.e., (X̃, x̃0) is an H-group and p : (X̃, x̃0)→ (X,x0) is a morphism of H-groups.

Proof. Since p : (X̃, x̃0)→ (X,x0) is a covering map, the induced morphism π1p : π1(X̃)→
π1(X) is a covering morphism of groupoids. Since (X,x0) is an H-group by Theoremn

3.8 π1(X) is a weak categorical group and since X̃ is simpy connected the fundamental

groupoid π1X̃ is a simply connected groupoid. So by Theorem 3.14 the weak categorical

group structure of π1(X) lifts to π1(X̃). So we have the groupoid morphisms

m̃ : π1(X̃)× π1(X̃) −→ π1(X̃)

ñ : π1(X̃) −→ π1(X̃)

such that π1(p) ◦ m̃ = m ◦ (π1(p) × π1(p)) and nπ1(p) = π1(p)ñ and therefore we have
the maps

m̃ : X̃ × X̃ −→ X̃

ñ : X̃ −→ X̃.

Since (X,x0) is an H-group, we have the homotopies:

(i) m(1X ×m) ' m(m× 1X);
(ii) m ı1 ' 1X ' m ı2;

(iii) m(1X , n) ' c ' m(n, 1X)

and so by Theorem 1.2 we have the homotopies:

(i) m̃(1X × m̃) ' m̃(m̃× 1X);
(ii) m̃ ı1 ' 1X ' m̃ ı2;

(iii) m̃(1X , ñ) ' c ' m̃(ñ, 1X).

Therefore (X̃, x̃0) is an H-group and q = Ob(p) : (X̃, x̃0) → (X,x0) is a covering mor-
phism of H-groups. 2
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