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Abstract

In this work, by Green’s functional concept, in order to obtain Green’s
solution we concentrate on a new constructive technique by which a
linear completely nonhomogeneous nonlocal problem for a second-order
loaded differential equation with generally variable coefficients satisfy-
ing some general properties such as p-integrability and boundedness is
transformed into one and only one integral equation. A system of three
integro-algebraic equations called the special adjoint system is obtained
for this problem. A solution of this special adjoint system is Green’s
functional which enables us to determine Green’s function and Green’s
solution for the problem. Two illustrative applications are provided.

Keywords: Green’s function; loaded differential equation; nonlocal condition; adjoint
problem.
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1. Introduction

Some boundary value problems with loaded equations involving local and nonlocal
conditions arise in the various areas of mechanics frequently. However, the studies on the
ones with nonlocal conditions are fewer than the studies with local conditions in literature.
In [5], priori bounds for the stability of solutions to boundary value problems with some
loaded equations are obtained. In [8], a boundary value problem for loaded equation
involving nonlocal condition is considered in order to obtain the sufficient conditions for
Fredholm property.

Green’s functions of linear boundary value problems for ordinary differential equations
with sufficiently smooth coefficients have been investigated in detail in several studies [11,
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12, 13, 14, 15]. In this work, a linear, generally nonlocal problem is studied for a second-
order loaded differential equation. The coefficients of the equation are assumed to be
generally nonsmooth functions satisfying some general properties such as p-integrability
and boundedness. The operator of this equation, in general, does not have a formal
adjoint operator, or any extension of the traditional type for this operator exists only
on a space of distributions [9, 13]. In addition, the considered problem does not have
a meaningful traditional type adjoint problem, even for simple cases of a differential
equation and nonlocal conditions. Due to these facts, some serious difficulties arise in
application of the classical methods for such a problem. As can be seen from [11],
similar difficulties arise even for classical type boundary value problems if the coefficients
of the differential equation are, for example, continuous nonsmooth functions. For this
reason, a Green’s functional approach is introduced for the investigation of the considered
problem. This approach is based on [1, 2, 3, 4] and on some methods of functional
analysis. The main idea of this approach is related to the usage of a new concept of the
adjoint problem named adjoint system. Such an adjoint system includes three integro-
algebraic equations with an unknown element (f2(ξ), f1, f0) in which f2(ξ) is a function,
and fj for j = 0, 1 are real numbers. One of these equations is an integral equation with
respect to f2(ξ) and generally includes fj as parameters. The other two equation can
be considered as a system of algebraic equations with respect to f0 and f1, and they
may include some integral functionals defined on f2(ξ). The form of the adjoint system
depends on the operators of the equation and the conditions. The role of the adjoint
system is similar to that of the adjoint operator equation in the general theory of the
linear operator equations in Banach spaces [6, 10, 11]. The integral representation of
the solution is obtained by Green’s functional which is introduced as a special solution
f(x) = (f2(ξ, x), f1(x), f0(x)) of the corresponding adjoint system having a special free
term depending on x as a parameter. The first component f2(ξ, x) of Green’s functional
f(x) is corresponded to Green’s function for the problem. The other two components
fj(x) for j = 0, 1 correspond to the unit effects of the conditions. To summarize, this
approach is principally different from the classical methods used for constructing Green’s
functions [14].

2. Statement Of The Problem

Let R be the set of real numbers. Let G = (x0, x1) be a bounded open interval in
R. Let Lp(G) with 1 ≤ p < ∞ be the space of p-integrable functions on G. Let L∞(G)

be the space of measurable and essentially bounded functions on G, and let W
(2)
p (G)

with 1 ≤ p ≤ ∞ be the space of all functions u = u(x) ∈ Lp(G) having derivatives

dku/dxk ∈ Lp(G), where k = 1, 2. The norm on the space W
(2)
p (G) is defined as

‖u‖
W

(2)
p (G)

=

2∑

k=0

∥∥∥∥
dku

dxk

∥∥∥∥
Lp(G)

We consider the following boundary value problem

(2.1) (V2u)(x) ≡ u′′(x) +A0(x)u(x) +A1(x)u(x0) = z2(x), x ∈ G,
subject to the nonlocal conditions

V1u ≡ a1u(x0) + b1u
′(x0) +

∫ x1

x0

g1(ξ)u′′(ξ)dξ = z1,

V0u ≡ a0u(x0) + b0u
′(x0) +

∫ x1

x0

g0(ξ)u′′(ξ)dξ = z0,(2.2)
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which are more general conditions than the ones in [4]. We investigate a solution to

the problem in the space Wp = W
(2)
p (G). Furthermore, we assume that the following

conditions are satisfied: Ai ∈ Lp(G) and gi ∈ Lq(G) for i = 0, 1, where 1
p

+ 1
q

= 1, are

given functions; ai, bi for i = 0, 1 are given real numbers; z2 ∈ Lp(G) is a given function
and zi for i = 0, 1 are given real numbers.

Problem (2.1)-(2.2) is a linear completely nonhomogeneous problem which can be
considered as an operator equation:

V u = z,(2.3)

with the linear operator V = (V2, V1, V0) and z = (z2(x), z1, z0).
The assumptions considered above guarantee that V is bounded from Wp into the

Banach space Ep ≡ Lp(G)× R× R consisting of element z = (z2(x), z1, z0) with

‖z‖Ep = ‖z2‖Lp(G) + |z1|+ |z0|, 1 ≤ p ≤ ∞.
If, for a given z ∈ Ep, the problem (2.1)-(2.2) has a unique solution u ∈ Wp with
‖u‖Wp ≤ c0‖z‖Ep , then this problem is called a well-posed problem, where c0 is a constant
independent of z. Problem (2.1)-(2.2) is well-posed if and only if V : Wp → Ep is a (linear)
homeomorphism.

3. Adjoint Of The Solution Space

The solution to problem (2.1)-(2.2) is sought by virtue of a new concept of the adjoint
problem. This concept is introduced in the papers [2, 3] by the adjoint operator V ∗ of
V . On the other hand, some isomorphic decompositions of the solution space Wp and its
adjoint space W ∗p are employed. Any function u ∈Wp can be represented as

u(x) = u(α) + u′(α)(x− α) +

∫ x

α

(x− ξ)u′′(ξ)dξ(3.1)

where α is a given point in G which is the set of closure points for G. Furthermore,
the trace or value operators D0u = u(γ), D1u = u′(γ) are bounded and surjective from

Wp onto R for a given point γ of G. In addition, the values u(α), u′(α) and the de-
rivative u′′(x) are unrelated elements of the function u ∈ Wp such that for any real
numbers ν0, ν1 and any function ν2 ∈ Lp(G), there exists one and only one u ∈ Wp

such that u(α) = ν0, u
′(α) = ν1 and u′′(x) = ν2(x). Therefore, there exists a linear

homeomorphism between Wp and Ep. In other words, the space Wp has the isomorphic
decomposition Wp = Lp(G)× R× R.

3.1. Theorem. If 1 ≤ p < ∞, then any linear bounded functional F ∈ W ∗p can be
represented as

(3.2) F (u) =

∫ x1

x0

u′′(x)ϕ2(x)dx+ u′(x0)ϕ1 + u(x0)ϕ0

with a unique element ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq where 1
p

+ 1
q

= 1. Any linear bounded

functional F ∈W ∗∞ can be represented as

(3.3) F (u) =

∫ x1

x0

u′′(x)dϕ2 + u′(x0)ϕ1 + u(x0)ϕ0

with a unique element ϕ = (ϕ2(e), ϕ1, ϕ0) ∈ Ê1 = (BA(
∑
, µ)) × R × R where µ is the

Lebesgue measure on R,
∑

is σ-algebra of the µ-measurable subsets e ⊂ G and BA(
∑
, µ)

is the space of all bounded additive functions ϕ2(e) defined on
∑

with ϕ2(e) = 0 when
µ(e) = 0 [10]. The inverse is also valid, that is, if ϕ ∈ Eq, then (3.2) is bounded on Wp

439
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for 1 ≤ p <∞ and 1
p

+ 1
q

= 1. If ϕ ∈ Ê1, then (3.3) is bounded on W∞.

Proof. The operator Nu ≡ (u′′(x), u′(x0), u(x0)) : Wp → Ep is bounded and has a
bounded inverse N−1 represented by

u(x) = (N−1h)(x) ≡
∫ x

x0

(x− ξ)h2(ξ)dξ + h1(x− x0) + h0,

h = (h2(x), h1, h0) ∈ Ep.(3.4)

The kernel Ker N of N is trivial and the image Im N of N is equal to Ep. Hence,
there exists a bounded adjoint operator N∗ : E∗p → W ∗p with Ker N∗ = {0} and Im
N∗ = W ∗p . In other words, for a given F ∈W ∗p there exists a unique ψ ∈ E∗p such that

(3.5) F = N∗ψ or F (u) = ψ(Nu), u ∈Wp.

If 1 ≤ p < ∞, then E∗p = Eq in the meaning of an isomorphism [10]. Therefore, the
functional ψ can be represented by

(3.6) ψ(h) =

∫ x1

x0

ϕ2(x)h2(x)dx+ ϕ1h1 + ϕ0h0, h ∈ Ep,

with a unique element ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq. By expressions (3.5) and (3.6), any
F ∈ W ∗p can uniquely be represented by (3.2). For a given ϕ ∈ Eq, the functional F
represented by (3.2) is bounded on Wp. Hence, (3.2) is a general form for the functional
F ∈W ∗p .

The proof is complete due to that the case p =∞ can also be shown [4]. �

Theorem 3.1 guarantees that W ∗p = Eq for all 1 ≤ p <∞ [4].

4. Adjoint Operator And Adjoint System Of The Integro-algebraic
Equations

An explicit form for the adjoint operator V ∗ of V is tried to investigate in this section.
For this purpose, any f = (f2(x), f1, f0) ∈ Eq is taken as a linear bounded functional on
Ep and also

(4.1) f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+ f1(V1u) + f0(V0u), u ∈Wp,

can be presumed. By substituting expressions (2.1) and (2.2), and expression (3.1) (for
α = x0) of u ∈Wp into (4.1), we have

f(V u) ≡
∫ x1

x0

f2(x)[u′′(x) +A0(x){u(x0) + u′(x0)(x− x0)

+

∫ x

x0

(x− ξ)u′′(ξ)dξ}+A1(x)u(x0)]dx+ f1{a1u(x0) + b1u
′(x0)

+

∫ x1

x0

g1(ξ)u′′(ξ)dξ}+ f0{a0u(x0) + b0u
′(x0) +

∫ x1

x0

g0(ξ)u′′(ξ)dξ}.(4.2)

After some calculations, we can obtain

f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+

1∑

i=0

fi(Viu)

=

∫ x1

x0

(w2f)(ξ)u′′(ξ)dξ + (w1f)u′(x0) + (w0f)u(x0)

≡ (wf)(u), ∀f ∈ Eq, ∀u ∈Wp, 1 ≤ p ≤ ∞(4.3)
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where

(w2f)(ξ) = f2(ξ) + f1g1(ξ) + f0g0(ξ) +

∫ x1

ξ

f2(s)A0(s)(s− ξ)ds,

w1f = b1f1 + b0f0 +

∫ x1

x0

f2(s)A0(s)(s− x0)ds

w0f = a1f1 + a0f0 +

∫ x1

x0

f2(s)[A0(s) +A1(s)]ds.(4.4)

The operators w2, w1, w0 are linear and bounded from the space Eq of the triples f =
(f2(x), f1, f0) into the spaces Lq(G),R,R respectively. Therefore, the operator w =
(w2, w1, w0) : Eq → Eq represented by wf = (w2f, w1f, w0f) is linear and bounded.
By (4.3) and Theorem 3.1, the operator w is an adjoint operator for the operator V
when 1 ≤ p < ∞, in other words, V ∗ = w. When p = ∞, w : E1 → E1 is bounded; in
this case, the operator w is the restriction of the adjoint operator V ∗ : E∗∞ → W ∗∞ of V
onto E1 ⊂ E∗∞.

(2.3) can be transformed into the following equivalent equation

(4.5) V Sh = z,

with an unknown h = (h2, h1, h0) ∈ Ep by the transformation u = Sh where S = N−1.
If u = Sh, then u′′(x) = h2(x), u′(x0) = h1, u(x0) = h0. Hence, (4.3) can be rewritten
as

f(V Sh) ≡
∫ x1

x0

f2(x)(V2Sh)(x)dx+

1∑

i=0

fi(ViSh)

=

∫ x1

x0

(w2f)(ξ)h2(ξ)dξ + (w1f)h1 + (w0f)h0

≡ (wf)(h), ∀f ∈ Eq, ∀h ∈ Ep, 1 ≤ p ≤ ∞.(4.6)

Therefore, one of the operators V S and w becomes an adjoint operator for the other one.
Consequently, the equation

(4.7) wf = ϕ,

with an unknown function f = (f2(x), f1, f0) ∈ Eq and a given function ϕ = (ϕ2(x), ϕ1, ϕ0)
∈ Eq can be considered as an adjoint equation of (4.5)(or of (2.3)) for all 1 ≤ p ≤ ∞.
(16) can be written in the explicit form as the system of equations

(w2f)(ξ) = ϕ2(ξ), ξ ∈ G, w1f = ϕ1, w0f = ϕ0.(4.8)

By the expressions (4.4), the first equation in (4.8) is an integral equation for f2(ξ)
and includes f1 and f0 as parameters; on the other hand, the other equations in (4.8)
constitute a system of two algebraic equations for the unknowns f1 and f0 and they
include some integral functionals defined on f2(ξ). In other words, (4.8) is a system of
three integro-algebraic equations. This system called the adjoint system for (4.5)(or (2.3))
is constructed by using (4.3) which is actually a formula of integration by parts in a
nonclassical form. The traditional type of an adjoint problem is defined by the classical
Green’s formula of integration by parts [14], therefore, has a meaning only for some
restricted class of problems.
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5. Solvability Conditions For Completely Nonhomogeneous Prob-
lem

The operator Q = w − Iq is considered where Iq is the identity operator on Eq, i.e.
Iqf = f for all f ∈ Eq. This operator can also be defined as Q = (Q2, Q1, Q0) with

(Q2f)(ξ) = (w2f)(ξ)− f2(ξ), ξ ∈ G,
Qif = wif − fi, i = 0, 1.(5.1)

By the expressions (4.4) and the conditions imposed on A0 and gi for i = 0, 1, Qm : Eq →
Lq(G) is a compact operator, and also Qi : Eq → R for i = 0, 1 are compact operators
where 1 < p < ∞. That is, Q : Eq → Eq is a compact operator, and therefore has a
compact adjoint operator Q∗ : Ep → Ep. Since w = Q + Iq and V S = Q∗ + Ip, where
Ip = I∗q , (4.5) and (4.7) are canonical equations, and S is a right regularizer of (2.3) [11].
As a result, we can have the following theorem [4]:

5.1. Theorem. If 1 < p < ∞, then V u = 0 has either only the trivial solution or a
finite number of linearly independent solutions in Wp:
(1) If V u = 0 has only the trivial solution in Wp, then also wf = 0 has only the trivial
solution in Eq. Then, the operators V : Wp → Ep and w : Eq → Eq become linear
homeomorphisms.
(2) If V u = 0 has m linearly independent solutions u1, u2, ..., um in Wp, then wf = 0
has also m linearly independent solutions

f?1? = (f?1?2 (x), f?1?1 , f?1?0 ), ..., f?m? = (f?m?2 (x), f?m?1 , f?m?0 )

in Eq. In this case, (2.3) and (4.7) have solutions u ∈ Wp and f ∈ Eq for given z ∈ Ep
and ϕ ∈ Eq if and only if the conditions

∫ x1

x0

f?i?2 (ξ)z2(ξ)dξ + f?i?1 z1 + f?i?0 z0 = 0, i = 1, 2, ...,m,(5.2)

∫ x1

x0

ϕ2(ξ)u′′i (ξ)dξ + ϕ1u
′
i(x0) + ϕ0ui(x0) = 0, i = 1, 2, ...,m,(5.3)

are satisfied, respectively.

6. Green’s Functional and Special Adjoint System

Consider the following equation given in the form of a functional identity

(6.1) (wf)(u) = u(x), ∀u ∈Wp,

where f = (f2(ξ), f1, f0) ∈ Eq is an unknown triple and x ∈ G is a parameter.

6.1. Definition. Suppose that f(x) = (f2(ξ, x), f1(x), f0(x)) ∈ Eq is a triple with pa-

rameter x ∈ G. If f = f(x) is a solution of (6.1) for a given x ∈ G, then f(x) is called a
Green’s functional of V (or of (2.3)).

Since the operator IWp,C of the imbedding of Wp into the space C(G) of continu-

ous functions on G is bounded, the linear functional θ(x) defined by θ(x)(u) = u(x) is

bounded on Wp for a given x ∈ G. Moreover, (wf)(u) = (V ∗f)(u). Thus, (6.1) can also
be written as [2, 3, 4]

(V ∗f) = θ(x).

In other words, (6.1) can be considered as a special case of the adjoint equation V ∗f = ψ
when ψ = θ(x).
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By substituting α = x0 into (3.1) and using (4.3), we can rewrite (6.1) as
∫ x1

x0

(w2f)(ξ)u′′(ξ)dξ + (w1f)u′(x0) + (w0f)u(x0) =

∫ x

x0

(x− ξ)u′′(ξ)dξ

+u′(x0)(x− x0) + u(x0), ∀f ∈ Eq, ∀u ∈Wp.(6.2)

The elements u′′(ξ) ∈ Lp(G), u′(x0) ∈ R and u(x0) ∈ R of the function u ∈ Wp are
unrelated. Then, we can construct the following system

(w2f)(ξ) = (x− ξ)H(x− ξ), ξ ∈ G, w1f = x− x0, w0f = 1,(6.3)

where H(x− ξ) is a Heaviside function on R.
(6.1) is equivalent to the system (6.3) which is a special case for the adjoint system (4.8)

when ϕ2(ξ) = (x − ξ)H(x − ξ), ϕ1 = x − x0 and ϕ0 = 1. Therefore, f(x) is a Green’s

functional if and only if f(x) is a solution of the system (6.3) for an arbitrary x ∈ G. For
a solution u ∈Wp of (2.3) and a Green’s functional f(x), we can rewrite (4.3) as

∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0 =

∫ x1

x0

(x− ξ)H(x− ξ)u′′(ξ)dξ

+ u′(x0)(x− x0) + u(x0).(6.4)

The right hand side of (6.4) is u(x). Therefore, we have the following theorem:

6.2. Theorem. If (2.3) has at least one Green’s functional f(x), then any solution
u ∈Wp of (2.3) can be represented by

u(x) =

∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0.(6.5)

Additionally, V u = 0 has only the trivial solution.

Since one of the operators V : Wp → Ep and w : Eq → Eq is a homeomorphism, so
is the other, and, there exists a unique Green’s functional, where 1 ≤ p ≤ ∞. Necessary
and sufficient conditions for the existence of a Green’s functional can be given in the
following theorem for 1 < p <∞.

6.3. Theorem. If there exists a Green’s functional, then it is unique. Additionally, a
Green’s functional exists if and only if V u = 0 has only the trivial solution.

From Theorem 5.1 and Theorem 6.2, Theorem 6.3 can be shown easily.

6.4. Remark. If V u = 0 has a nontrivial solution, then a Green’s functional correspond-
ing to V u = z does not exist due to Theorem 6.2. In this case, V u = z usually has no
solution unless z is of a specific type. Therefore, a representation of the existing solution
of V u = z can be constructed by a generalized Green’s functional concept [3, 4].

It must be noticed that the proposed Green’s functional approach can also be applied
some classes of nonlinear equations involving linear nonlocal conditions to transform into
the corresponding integral equations and then solve them. The corresponding integral
equations will naturally become nonlinear type. These nonlinear integral equations can
be solved approximately even if they can not be solved exactly.

7. Illustrative Applications

In this section, two simple problem involving nonlocal boundary condition are consid-
ered in order to emphasize the preferability of the presented approach.
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7.1. Example. Firstly, we seek for a Green’s function to the following problem

(V2u)(x) ≡ u′′(x) = 2 + x4 − u2(x) = z2(x), x ∈ G = (0, 1),

V1u ≡ u′(1) = 2 = z1,

V0u ≡ u(0) + 3

∫ 1

0

u(x)dx = 1 = z0.

Thus, we have A0(x) = A1(x) = 0 and

a1 = 0, b1 = 1, g1(ξ) = 1, a0 = 4, b0 =
3

2
, g0(ξ) =

∫ 1

ξ

3(x− ξ)dx.

Hence, the special adjoint system (6.3) corresponding to this problem can be constructed
in the following form

f2(ξ) + f1 + f0

∫ 1

ξ

3(x− ξ)dx = (x− ξ)H(x− ξ),(7.1)

f1 +
3

2
f0 = x,(7.2)

4f0 = 1,(7.3)

where ξ ∈ (0, 1). In order to solve (7.1)-(7.3), we firstly determine f1 and f0 by using
only (7.2) and (7.3) owing to the condition ∆ = 4 6= 0 where ∆ is the determinant of
coefficients matrix for (7.2) and (7.3). Thus, we have

f1 = x− 3

8
, f0 =

1

4
.

After substituting f1 and f0 into equation (7.1), f2(ξ) becomes

f2(ξ) = (x− ξ)H(x− ξ)− x+
3

8
− 3(1− ξ)2

8
.

Thus, Green’s functional f(x) = (f2(ξ, x), f1(x), f0(x)) for the problem has been de-
termined. The first component f2(ξ, x) = f2(ξ) is Green’s function for the problem.
By (6.5) in Theorem 6.2, for the representation of the existing solution to the problem,
the following equality

u(x) =

∫ 1

0

[(x− ξ)H(x− ξ)− x+
3

8
− 3(1− ξ)2

8
][2 + ξ4 − u2(ξ)]dξ + 2x− 1

2

can be written easily. By the definition of Heaviside function, this last equality can also
be written as

u(x) =

∫ x

0

[−ξ +
3

8
− 3(1− ξ)2

8
][2 + ξ4 − u2(ξ)]dξ

+

∫ 1

x

[−x+
3

8
− 3(1− ξ)2

8
][2 + ξ4 − u2(ξ)]dξ + 2x− 1

2
.(7.4)

As can be seen, (7.4) is a nonlinear integral equation of Volterra type. In order to solve
this equation exactly or approximately, the various analytical or numerical techniques
can be utilized.
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7.2. Example. Finally, we seek an integral equation yielding a Green’s function to the
following problem

(V2u)(x) ≡ u′′(x) + xu(0) = − sin(x) = z2(x), x ∈ G = (0, 1),

V1u ≡ u′(1) +

∫ 1

0

u(x)dx =
5

2
= z1,

V0u ≡ u′(0) +

∫ 1

0

u′(x)dx = 3 + sin(1) = z0.

Thus, we have A0(x) = 0, A1(x) = x and

a1 = 1, b1 =
3

2
, g1(ξ) =

3

2
− ξ +

ξ2

2
, a0 = 0, b0 = 2, g0(ξ) = 1− ξ.

Hence, the special adjoint system (6.3) corresponding to this problem can be constructed
in the following form

f2(ξ) + f1[
3

2
− ξ +

ξ2

2
] + f0(1− ξ) = (x− ξ)H(x− ξ),(7.5)

3

2
f1 + 2f0 = x,(7.6)

f1 +

∫ 1

0

sf2(s)ds = 1,(7.7)

where ξ ∈ (0, 1). In order to solve (7.5)-(7.7), we firstly determine f1 and f0 by using
only (7.6) and (7.7) owing to the condition ∆ = −2 6= 0 where ∆ is the determinant of
coefficients matrix for (7.6) and (7.7). Thus, we have

f1 = 1−
∫ 1

0

sf2(s)ds, f0 =
x

2
− 3

4
+

3

4

∫ 1

0

sf2(s)ds.

After substituting f1 and f0 into equation (7.5), an equation yielding f2(ξ) can be written
as follows:

f2(ξ) + [1−
∫ 1

0

sf2(s)ds][
3

2
− ξ +

ξ2

2
] + [

x

2
− 3

4
+

3

4

∫ 1

0

sf2(s)ds](1− ξ)

= (x− ξ)H(x− ξ).(7.8)

As can be seen, (7.8) is a linear integral equation of Fredholm type. By solving this
integral equation, firstly f2(ξ) and then f1 and f0 are identified. Thus, Green’s functional
f(x) = (f2(ξ, x), f1(x), f0(x)) for the problem has been determined. The first component
f2(ξ, x) = f2(ξ) is Green’s function for the problem.

8. Concluding Remarks

The proposed approach principally differs from the known classical methods used to
construct of Green’s function, it is based on the use of the structural properties of the
solution space instead of the classical Green’s formula of integration by parts, it decreases
the difficulties emphasized in the introduction, and it has a natural and constructive
property which can be easily applied to a very wide class of linear and some nonlinear
boundary value problems involving nonlocal conditions. Owing to these properties, it is
one of the useful methods which derive of a solution to such problems by reducing to an
integral equation in general.

The introduced special adjoint system corresponding to the problem allows us to
clarify about the existence and uniqueness of the solutions. A unique solution to the
special adjoint system exists if and only if Green’s function uniquely exists subject to the
solvability conditions of the problem.
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