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Abstract

In this study, we give a Schur type theorem for almost cosymplectic
manifolds with Keahlerian leaves.
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1. Introduction

Let M be a Riemannian manifold with curvature tensor R. The sectional curvature of
a 2-plane α in a tangent space TPM is defined by K(α, P ) = R(X,Y, Y,X), where {X,Y }
is an orthonormal basis of TPM . The classical theorem of F. Schur says that if M is a
connected manifold of dimension n ≥ 3 and in any point P ∈ M the curvature K(α, P )
does not depend on α ∈ TPM then it does not depend on the point P too, i.e. it is a global
constant. Such a manifold is called a manifold of constant sectional curvature. The Shur’s
theorem has been studied by many authors for different structures [11]. In 1989, Nobuhiro
improves the Shur’s theorem and gets a new version for locally symmetric spaces [10]. In
2001, Kassabov considers connected 2n-dimensional almost Hermitian manifold M to be
of pointwise constant antiholomorphic sectional curvature ν(p), p ∈ M and proves that
ν is a global constant [6]. In 2006, Cho defines a contact strongly pseudo-convex CR
space-form using the Tanaka-Webster connection in a way similar to the Sasakian space
form and then he studies the geometry of such spaces. He presents a Schur type theorem
for such structures [7]. The notion of an almost cosymplectic manifold was introduced
by Goldberg and Yano in 1969, [19]. The simplest examples of such manifolds are those
being the products (possibly local) of almost Kaehlerian manifolds and the real line R
or the circle S1. Curvature properties of almost cosymplectic manifolds were studied
mainly by Goldberg and Yano [12], Olszak [13], [14], Kirichenko [15] and Endo [16]. We
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relate some of them in a historical order. A cosymplectic manifold of constant curvature is
necessarily locally flat [17]. The existence of locally flat cosymplectic manifolds is obvious.
In fact, they are locally products of locally flat Kaehlerian manifolds and the real line (for
instance, Cn × R). If the curvature operator R of an almost cosymplectic manifold M
commutes with the fundamental singular collineation ϕ, then M is normal, that is, it is
a cosymplectic manifold [12]. In particular, an almost cosymplectic manifold of constant
curvature is cosymplectic if and if it is locally flat. Generalizing this, it is proved in [13],
[14]. that almost cosymplectic manifolds of non-zero constant curvature do not exist. For
a conformally flat almost cosymplectic manifold of dimension ≥ 5, the scalar curvature r
is non-positive and the manifold is cosymplectic if and only if it is locally flat [13], [14].
If M is an almost cosymplectic manifold of constant ϕ sectional curvature then the scalar
curvature r and the ϕ sectional curvature H satisfy the inequality n(n + 1)H ≥ r. This
equality holds if and only if the manifold is cosymplectic [13].

In this paper, we concentrate on almost cosymplectic manifolds with Kaehlerian leaves
and considering Schur’s lemma on spaces of constant curvature, we get a new version for
almost cosymplectic manifolds with Kaehlerian leaves.

2. Almost Cosymplectic Manifolds

Let M be a (2n+1)-dimensional differentiable manifold equipped with a triple (ϕ, ξ, η),
where ϕ is a type of (1, 1) tensor field, ξ is a vector field, η is a 1-form on M such that

(2.1) η(ξ) = 1, ϕ2 = −I + η ⊗ ξ,
which implies

(2.2) ϕξ = 0, η ◦ ϕ = 0, rank(ϕ) = 2n.

If M admits a Riemannian metric g, such that

(2.3)
g(ϕX,ϕY ) = g(X,Y )− η (X) η (Y ) ,

η (X) = g(X, ξ),

then M is said to have an almost contact structure (ϕ, ξ, η, g). On such a manifold, the
fundamental 2-form Φ of M is defined by

Φ(X,Y ) = g(ϕX, Y ),

for any vector fields X,Y on M. An almost contact manifold (M,ϕ, ξ, η) is said to be
normal if the Nijenhuis torsion

Nϕ(X,Y ) = [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ2[X,Y ] + 2dη(X,Y )ξ,

vanishes for any vector fields X,Y on M. As it is known that an almost contact metric
structure is almost cosymplectic if and only if both 5η and 5Φ vanish. A normal
almost cosymplectic manifold is called a cosymplectic manifold. Let M be an almost
cosymplectic manifold with structure (ϕ, ξ, η, g) and D is the distribution of M defined
by D = ker η. Since dη = 0, D is integrable and the (2n)-dimensional distribution is given
by ϕ(D) = D. Also, we obviously have ξ is orthogonal to D. Let N be an maximal
integral submanifold of D. So the vector field ξ restricted to integral submanifold N
is the normal vector of N. Hence, there exists a Hermitian structure. Moreover, the

tensor field ϕ induces an almost complex structure J (J2 = −I) on M by JX̃ = ϕX̃

for any vector field X̃ tangent to N. Let G be the Riemannian metric induced on N

defined by G(X̃, Ỹ ) = g(X̃, Ỹ ). Then (J,G) becomes an almost Hermitian structure on

N such that G(X̃, Ỹ ) = G(JX̃, JỸ ) for any vector fields X̃ and Ỹ tangent to N. The

fundamental 2-form Ω, Ω(X̃, Ỹ ) = G(JX̃, Ỹ ) of (J,G) induced on N . We also have

Ω(X̃, Ỹ ) = Φ(X,Y ) , that is, Ω is the pull-back of the tensor field ϕ from M to N. As
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a result, Ω is closed, i.e., dΩ = 0. So the pair (J,G) is an almost Kaehlerian structure
on N of D. Therefore, when the structure J is complex, (J,G) becomes a Kaehlerian
structure on N. If the structure (J,G) is Kaehlerian on every integral submanifold of
the distribution D, such manifold is said to be an almost cosymplectic manifold with
Kaehlerian integral submanifold. Suppose that M is an almost cosymplectic manifold.
Denote by A the (1, 1)-tensor field on M defined by

(2.4) A = −∇ξ,
and by h the (1, 1)-tensor field given by the following relation

h = 1
2
Lξϕ,

where L is the Lie derivative of g. Obviously, A(ξ) = 0 and h(ξ) = 0. Moreover, the
tensor fields A and h are symmetric operators and satisfy the following relations

(2.5) ∇Xξ = −ϕhX,
(2.6) (ϕ ◦ h)X + (h ◦ ϕ)X = 0,

(∇Xη)Y = g(ϕY, hX),(2.7)

δη = 0, tr(h) = 0,(2.8)

(2.9) tr(A) = 0,

(2.10) tr(ϕA) = 0,

(2.11) Aϕ+ ϕA = 0,

(2.12) Aξ = 0,

(2.13) (∇XA) ξ = A2X,

(2.14) tr(A2) =
∥∥A2

∥∥ ,
for any vector fields X,Y on M.We also remark that

(2.15) h = 0⇔ ∇ξ = 0.

2.1. Proposition. Let M be an almost cosymplectic manifold. M has Kaehlerian leaves
if and only if it satisfies the condition

(2.16) (∇Xϕ)Y = −g(ϕAX, Y )ξ + η(Y )ϕAX.

for any vector fields X,Y on M [1].

3. Basic Curvature Relations

In this section, we will briefly give the basic curvature relations. Let
(M,φ, ξ, η, g) be an almost cosymplectic manifold. We denote the curvature tensor and
Ricci tensor of g by R and S, respectively. We define a self adjoint operator l = R(., ξ)ξ
(The Jacobi operator with respect to ξ). One easily see the followings.

3.1. Proposition. Let M be an almost cosymplectic manifold. Then we have

R(X,Y )ξ = (∇Y ϕh)X − (∇Xϕh)Y,(3.1)

R(X,Y )ξ = −(∇XA)Y + (∇YA)X,(3.2)

(3.3) R(X, ξ)ξ = −h2X + ϕ(∇ξh)X,

(3.4) (∇ξh)X = −ϕR(X, ξ)ξ − ϕh2X,

(3.5) R(X, ξ)ξ − ϕR(ϕX, ξ)ξ = −2
[
h2X

]
,

(3.6) S(X, ξ) = −
2n+1∑

i=1

g((∇eiϕh) ei, X),
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(3.7) tr (l) = S(ξ, ξ) = −tr(h2).

for any vector fields X,Y on M.

By simple computations, we have the following proposition that will be used in the
next important result.

3.2. Proposition. For the curvature transformation of almost cosymplectic manifold
with Kaehlerian leaves, we have

(3.8)
R(X,Y )ϕZ − ϕR(X,Y )Z = g(AX,ϕZ)AY − g(AY,ϕZ)AX − g(AX,Z)ϕAY
+g(AY,Z)ϕAX − η(Z)ϕ(R(X,Y )ξ)− g(R(X,Y )ξ, ϕZ)ξ,

and

(3.9)

R(ϕX,ϕY )Z −R(X,Y )Z = η(Y )R(ξ,X, Z) + g(AZ,ϕX)AϕY − g(AZ,ϕY )AϕX
−g(AZ,X)AY + g(AZ, Y )AX − η(X)R(ξ, Y, Z) + η(X)η(Y )R(ξ, ξ).

3.3. Proposition. If we denote

Pϕ (X,Y ) = (∇Y ϕh)X − (∇Xϕh)Y,

and

P (X,Y ) = (∇Y h)X − (∇Xh)Y.

Then, we satisfy following relations

Pϕ (X,Y ) = ϕP (X,Y ) ,

ϕPϕ (X,Y ) = −P (X,Y ) + 2g (hX,ϕhY ) ξ,

Pϕ (X,Y ) = −Pϕ (Y,X) .

3.4. Proposition. Let M be an almost cosymplectic manifold. The necessary and suffi-
cient condition for M to have pointwise constant ϕ−holomorphic sectional curvature H
is

(3.10)

4R(X,Y, Z,W ) = H [g(X,W )g(Z, Y )− g(X,Z)g(W,Y )]
−H [η (X) η (W ) g(Z, Y ) + η(Y )η (Z) g(X,W )
+2g(X,ϕY )g(Z,ϕW )− η (Y ) η (W ) g(X,Z)− η(X)η (Z) g(W,Y )]
+H [g(X,ϕZ)g(W,ϕY )− g(X,ϕW )g(Z,ϕY ]
−g(AX,ϕZ)g(AY,ϕW ) + g(AW,ϕX)g(AZ,ϕY )
−g(AZ,ϕX)g(AW,ϕY ) + g(AX,ϕW )g(AY,ϕZ)
+2g(AX,Z)g(AW,Y )− 2g(AX,W )g(AZ, Y )
+4η(X)Pϕ(Z,W, Y ) + 4η(Z)Pϕ(X,Y,W )
−4η(W )Pϕ(X,Y, Z)− 4η(X)η (W )Pϕ(Z, ξ, Y )
−4η(X)η (Z)Pϕ(ξ,W, Y )− 4η(X)η (Y )Pϕ(Z,W, ξ)
−4η(Y )Pϕ(Z,W,X) + 4η(Y )η (W )Pϕ(Z, ξ,X)
+4η(Y )η (Z)Pϕ(ξ,W,X) + 4η(X)η (Z)Pϕ(ξ, Y,W )
−4η(X)η(W )Pϕ(ξ, Y, Z).

for all vector fields X,Y, Z,W in M.

Proof. For any vector fields X and Y ∈ D,we have

(3.11) g (R(X,ϕX)X,ϕX) = −Hg (X,X)2

By (3.8)we get

(3.12)
R(X,ϕY,X, ϕY ) = R(X,ϕY, Y, ϕX) + g(AX,ϕX)g(AY,ϕY )
−g(AϕY,ϕX)g(AX,Y ) + g(AϕY,ϕY )g(AX,X)
−g(AϕY,X)g(AX,ϕY ),
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(3.13) R(X,ϕX, Y, ϕX) = R(X,ϕX,X,ϕY ),

for X,Y ∈ D. Submitting X + Y in (3.11),we see

−H
[
2g (X,Y )2 + 2g(X,X)g(X,Y ) + 2g(X,Y )g(Y, Y ) + g(X,X)g(Y, Y )

]

= 1
2

(gR(X + Y, ϕX + ϕY ) (X + Y ) , ϕX + ϕY ) + 1
2
H
(
g(X,X)2 + g(Y, Y )2

)
,

and because of (3.8) and (3.13) and the Bianchi identity

−H
[
2g (X,Y )2 + 2g(X,X)g(X,Y ) + 2g(X,Y )g(Y, Y ) + g(X,X)g(Y, Y )

]

= 2R(X,ϕX,X,ϕY ) + 2R(X,ϕY, Y, ϕX) +R(X,Y, ϕX,ϕY )
+2R(Y, ϕY, Y, ϕX) +R(X,ϕY,X, ϕY )
+ 1

2

[
g(AY, Y )g(AϕX,ϕX)− g(AY,ϕX)2 − g(AX,X)g(AϕY,ϕY )

+g(AX,ϕY )2
]
,

then because of (3.9) and (3.12), we get

(3.14)

2R(X,ϕX,X,ϕY ) + 2R(Y, ϕX, Y, ϕY ) + 3R(X,ϕY, Y, ϕX)
+R(X,Y,X, Y ) + 1

2
[2g (AX,ϕX) g (AY,ϕY )− 2g (AX,ϕY ) g (AY,ϕX)

−2g (AX,X) g (AY, Y )] + 4g (AX,Y )2 − g (AX,ϕY )2

+2g (AX,ϕX) g (AY,ϕY ) + g (AY, Y ) g (AϕX,ϕX)

−g (AY,ϕX)2 − g (AX,X) g (AϕY,ϕY )

= −H
[
2g (X,Y )2 + 2g(X,X)g(X,Y ) + 2g(X,Y )g(Y, Y ) + g(X,X)g(Y, Y )

]

Replacing Y by −Y in (3.14) and summing it to (3.14) we have

(3.15)

3R (X,ϕY, Y, ϕX) +R (X,Y,X, Y ) = −H
[
2g (X,Y )2 + g (X,X) g (Y, Y )

]

−2g (AX,ϕX) g (AY,ϕY ) + g (AX,ϕY ) g (AY,ϕX) + 2g (AX,X) g (AY, Y )

+2g (AX,ϕY )2 − 4g (AX,Y )2 − 1
2

[g (AY, Y ) g (AϕX,ϕX)

−g (AY,ϕX)2 − g (AX,X) g (AϕY,ϕY )
]
,

By virtue of (3.15) we see

(3.16)

8R (X,Y,X, Y ) = H
[
2g (X,ϕY )2 + g (X,X) g (ϕY, ϕY )

+2g (X,Y )2 + g (X,X) g (Y, Y )
]

−4g (AX,ϕX) g (AY,ϕY ) + 8g (AX,ϕY ) g (AY,ϕX)

+ 17
2
g (AX,X) g (AY, Y )− 11

2
g (AX,Y )2 − 7

2
g (AX,ϕY )2

+ 1
2
g (AY, Y ) g (AϕX,ϕX)− 1

2
g (AY,ϕX)2 + 5

2
g (AX,X) g (AϕY,ϕY )

− 3
2

[
g (AϕY,ϕY ) g (AϕX,ϕX)− g (AY,ϕX)2

]

We verify (3.16), replacing Y by ϕY in (3.15), together with (3.9) and (3.12)

(3.17)

−H
[
2g (X,ϕY )2 + g (X,X) g (ϕY, ϕY )

]
= 3R (X,Y,X, Y )

+R (X,ϕY, Y, ϕX) + 2g (AX,ϕX) g (AY,ϕY )

−3g (AX,ϕY ) g (AY,ϕX)− 7
2
g (AX,X) g (AY, Y ) + 5

2
g (AX,Y )2

−g (AX,X) g (AϕY,ϕY ) + g (AX,ϕY )2

+ 1
2

[
g (AϕY,ϕY ) g (AϕX,ϕX)− g (AϕY,ϕX)2

]
,

and because of (3.15)

−H
[
2g (X,ϕY )2 + g (X,X) g (ϕY, ϕY )

]
= 3R (X,Y,X, Y )

− 1
3
R (X,Y,X, Y )− H

3

[
2g (X,Y )2 + g (X,X) g (Y, Y )

]

+ 4
3
g (AX,ϕX) g (AY,ϕY )− 8

3
g (AX,ϕY ) g (AY,ϕX)

− 17
6
g (AX,X) g (AY, Y ) + 11

6
g (AX,Y )2 + 7

6
g (AX,ϕY )2

− 1
6
g (AY, Y ) g (AϕX,ϕX) + 1

6
g (AY,ϕX)2 − 5

6
g (AX,X) g (AϕY,ϕY )

+ 1
2

[
g (AϕY,ϕY ) g (AϕX,ϕX)− g (AϕY,ϕX)2

]
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After simplification (3.16) follows. Therefore by a standard calculation we have

(3.18)

8R (X,Y,X, Y ) = −3H
[
2g (X,ϕY )2 + g (X,X) g (ϕY, ϕY )

]

+H
[
2g (X,Y )2 + g (X,X) g (Y, Y )

]
− 4g (AX,ϕX) g (AY,ϕY )

+8g (AX,ϕY ) g (AY,ϕX) + 17
2
g (AX,X) g (AY, Y )

− 11
2
g (AX,Y )2 − 7

2
g (AX,ϕY )2 + 1

2
g (AY, Y ) g (AϕX,ϕX)

− 1
2
g (AY,ϕX)2 + 5

2
g (AX,X) g (AϕY,ϕY )

− 3
2

[
g (AϕY,ϕY ) g (AϕX,ϕX)− g (AϕY,ϕX)2

]
.

for any X,Y ∈ D. Firstly, replacing X = X+Z in (3.18) and then replacing Y = Y +W
in obtained result and by using Bianchi identity and (2.6) we get

(3.19)

48R (X,W,Z, Y ) = H [12g (X,Y ) g (Z,W )
−12g (X,ϕY ) g (Z,ϕW )− 24g (X,ϕW ) g (Z,ϕY )
−12g(X,Z)g(Y,W ) + 12g(X,ϕZ)g(Y, ϕW )]
+3g (AX,ϕZ) g (AY,ϕW )− 3g (AX,ϕY ) g (AZ,ϕW )
−12g (AX,ϕZ) g (AW,ϕY ) + 12g (AX,ϕY ) g (AW,ϕZ)
−12g (AZ,ϕX) g (AY,ϕW ) + 12g (AY,ϕX) g (AZ,ϕW )
−3g (AZ,ϕX) g (AW,ϕY ) + 3g (AY,ϕX) g (AW,ϕZ)
+15g (AX,ϕW ) g (AY,ϕZ)− 15g (AX,ϕW ) g (AZ,ϕY )
+9g (AZ,ϕY ) g (AW,ϕX)− 9g (AY,ϕZ) g (AW,ϕX)
+24g (AX,Z) g (AY,W )− 24g (AX,Y ) g (AZ,W ) .

where X,Y, Z,W ∈ D.We now let X be an arbitrary vector field on M.Then we may
write

X = XT + η (X) ξ

where XT denotes the horizontal part of X.Then we have all vector fields X,Y, Z,W in
M .

(3.20)

R(X,Y, Z,W ) = R(XT , Y T , ZT ,WT )
+η(X)R(ξ, Y T , ZT ,WT ) + η(Y )R(XT , ξ, ZT ,WT )
+η(Z)R(XT , Y T , ξ,WT ) + η(W )R(XT , Y T , ZT , ξ)
+η(X)η(Z)R(ξ, Y T , ξ,WT ) + η(X)η(W )R(ξ, Y T , ZT , ξ)
+η(Y )η(Z)R(XT , ξ, ξ,WT ) + η(Y )η(W )R(XT , ξ, ZT , ξ).

If we use (3.19) and (3.20) the proof is completed. �

Moreover, from (3.10), we get

(3.21)
S (Y,Z) = 1

2
[(n+ 1)H] {g (Y,Z)− η (Y ) η (Z)}

+η (Z)
∑
Pϕ (Eİ , Y, Eİ)− η (Y )

∑
Pϕ (Z,Eİ , Eİ)

+η (Y ) η (Z)
∑
Pϕ (ξ, Eİ , Eİ)− 2Pϕ (ξ, Y, Z) .

for all vector fields X and Y in M where {Ei} (i = 1, 2, ..., 2n+ 1) is an arbitrary local
orthonormal frame field on M since the trace of h vanishes,from (3.21),we have for the
scalar curvature

(3.22) τ = n (n+ 1)H − 2Tr(h2).

4. A class of almost cosymplectic manifolds D

There are two typical examples of contact manifolds;one is formed by the principal
circle bundles over symplectic manifolds of integral class (including the odd-dimensional
spheres) and the other is given by the unit tangent sphere bundles. The former admit
a Riemannian metric which is Sasakian. Concerning the latter, in [20], it was proved
that the associated CR-structure of a unit tangent sphere bundle T1M with standard
contact Riemannian structure is integrable if and only if the base manifold is of constant
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curvature. Here,we note that the unit tangent sphere bundle of a space of constant
curvature satisfies ([21])

(4.1) g
(
(∇XT h)Y T , ZT

)
= 0.

That is, h is η−parallel. Now, we consider a contact Riemannian manifold whose struc-
ture tensor h satisfies. (4.1) and (3.4) simultaneously. Then

0 = g
(
(∇XT h)Y T , ZT

)
= g

(
(∇X−η(X)ξh)(Y − η (Y ) ξ, Z − η (Z) ξ

)

= g ((∇Xh)Y,Z)− η (X) g ((∇ξh)Y,Z)− η (Y ) g ((∇Xh)ξ, Z)
−η (Z) g ((∇Xh)Y, ξ) + η (X) η (Y ) g ((∇ξh)ξ, Z) + η (Y ) η (Z) g ((∇Xh)ξ, ξ)
+η (Z) η (X) g ((∇ξh)Y, ξ)− η (X) η (Y ) η (Z) g ((∇ξh)ξ, ξ) .

From the above equation ,by using (2.6), (2.7) and using (3.4),we have

(4.2) (∇Xh)Y = η (X)
[
−ϕlY − ϕh2Y

]
− η (Y )

(
ϕh2X

)
− g

(
ϕh2X,Y

)
ξ.

Moreover from (3.22) we have

(4.3) P (X,Y ) = η (X)ϕlY − η (Y )ϕlX − 2g
(
ϕh2X,Y

)
ξ,

(4.4) Pϕ (X,Y ) = −η (X) lY + η (Y ) lX.

for any vector fields X and Y Now we define a (1, 2)- tensor field Q1 (X,Y ) by

Q1 (X,Y ) = (∇Xh)Y − η (X)
[
−ϕlY − ϕh2Y

]

−η (Y )
[
ϕh2X

]
+ g

(
ϕh2X,Y

)
ξ.

4.1. Definition. The class D is given by the spaces of almost cosymplectic manifold
with Kaehlerian leaves satisfying Q1 = 0, that is

D= {(M,φ, ξ, η, g) : Q1 = 0} .
We can see that this class D is invariant under D-homothetic deformations [21].

4.2. Lemma. Let M be a space ∈ D then the eigenvalues of h are constant.

5. Shur Type Theorem

5.1. Theorem. Let M be an almost cosymplectic manifold with Kaehlerian leaves be-
longing to the class D. If the ϕ-holomorphic sectional curvature at any point of M is
independent of the choice of ϕ-holomorphic section, then it is constant on M and the
curvature tensor is given by

(5.1)

4R(X,Y, Z,W ) = c [g(X,W )g(Z, Y )− g(X,Z)g(W,Y )]
−c [η (X) η (W ) g(Z, Y ) + η(Y )η (Z) g(X,W ))
+2g(X,ϕY )g(Z,ϕW − η (Y ) η (W ) g(X,Z)
−η(X)η (Z) g(W,Y ]
+H [g(X,ϕZ)g(W,ϕY )− g(X,ϕW )g(Z,ϕY ]
−g(AX,ϕZ)g(AY,ϕW ) + g(AW,ϕX)g(AZ,ϕY )
−g(AZ,ϕX)g(AW,ϕY ) + g(AX,ϕW )g(AY,ϕZ)
+2g(AX,Z)g(AW,Y )− 2g(AX,W )g(AZ, Y ).

for all vector fields X,Y, Z,W in M .

Proof. Suppose that M has pointwise constant ϕ-holomorphic sectional curvature H
.Then, taking account of (4.2), (4.3) and (4.4),from (3.21) we obtain

(5.2)
S (Y,Z) = 1

2
[(n+ 1)H] {g (Y,Z)− η (Y ) η (Z)}

+Tr (l) η (Y ) η (Z) + 2g (lY, Z) ,

(5.3) τ = n (n+ 1)H + 3Tr (l) .

461



N. Aktan, G. Ayar, İ. Bektaş

From (4.2) and by using (2.16) and Lemma 4.2, we have

2 (∇XS) (Y,Z) = [(n+ 1)X (H)] {g (Y,Z)− η (Y ) η (Z)}
+ [2Tr (l)− (n+ 1)H] {η (Z) g (Y,∇Xξ)− η (Y ) g (Z,∇Xξ)}
+4g ((∇X l)Y,Z) ,

which yields

(5.4)

∑
2
(
∇E

İ
S
)

(Y,Eİ) =
∑

[(n+ 1)Eİ (H)] {g (Y,Eİ)− η (Y ) η (Eİ)}
+
∑

[2Tr (l)− (n+ 1)H]
{
η (Y ) g

(
Eİ ,∇Eİ

ξ
)
− η (Eİ) g

(
Y,∇E

İ
ξ
)}

+
∑

4g
((
∇E

İ
l
)
Y,Eİ

)

= (n+ 1)
∑
Eİ (H) g (Y,Eİ)− (n+ 1) ξ (H) η (Y ) +

∑
4g
((
∇E

İ
l
)
Y,Eİ

)
.

by the well-known formula

(∇Xτ) = 2
∑(
∇E

İ
S
)

(X,Eİ) .

for any local orthonormal frame field {Ei} (i = 1, 2, ..., 2n+ 1) and by using (5.3), (5.4)
and Lemma 4.2, we have

(n+ 1) {XH − (ξH) η (X)} = 2n (n+ 1)XH.

This says that ξH = 0 and (n− 1)XH = 0 .Since n > 1,we see that H is constant,say
c. by applying (4.2), (4.3) and (4.4) in Proposition 3.4, we obtain (5.1) �

5.2. Definition. A complete and simply connected almost cosymplectic manifold of class
D with constant ϕ-holomorphic sectional curvature is said to be an almost cosymplectic
space form.

So, from the proof of Proposition 3.4 and Theorem 5.1, we have,

5.3. Theorem. Let M be a complete and simply connected almost cosymplectic space
belonging to the class D. Then M is an almost cosymplectic space form if and only if the
curvature tensor R is given by (5.1).
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