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Abstract

The purpose of this paper is to provide stochastic versions of several
results on fixed point theorems in the literature.
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1. Introduction and Preliminaries

Random operator theory is needed for the study of various classes of random operator
equations in probabilistic functional analysis. During the last three decades several results
(e.g., see, [3, 4, 6, 8, 10, 11, 13, 14, 15] and references therein) regarding random fixed
points of various types of random operators have been established and a number of
their applications have been obtained after a survey article of Bharucha Reid [5]. In
fact, random fixed point theorems are stochastic generalizations of deterministic/classical
fixed point theorems and have important applications in random operator equations,
random differential equations and differential inclusions [5, 6, 7, 10]. In the present
paper we derive common random fixed point theorems for a sequence of multivalued
random operators satisfying Edelstein type contractive condition. We give, also a result
of a common random fixed point for a sequence of multivalued random operators that
have a common deterministic fixed point. Our paper establish stochastic versions of
many Banach type fixed point theorems e.g., see, [2] and references therein.
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For a metric space (X, d), we denote by 2X the family of all nonempty subsets of X,
CB (X) the family of all nonempty closed and bounded subsets of X, we define Hausdorff
metric H on CB (X) as follows:

H (A,B) = max

{
sup
α∈A

d (a,B) , sup
b∈B

d (A, b)

}
for A,B ∈ CB (X) , where

d (x,E) = inf {d (x, y) : y ∈ E} .

Let (Ω,Σ) be a measurable space (i.e., Σ is a σ−algebra of subsets of Ω). A function
ξ : Ω −→ X is said to measurable if for any open subset C of X, ξ−1 (C) ∈ Σ. A
multivalued mapping T : Ω −→ 2X is called measurable if for any open subset C of X.

T−1 (C) = {w ∈ Ω : T (w) ∩ C 6= ∅} ∈ Σ.

This type of measurability is usually called weakly measurability (cf. Himmelberg [9]),
but as in this paper we always use this type of measurability, thus we omit the term
“weakly” for simplicity. A mapping ξ : Ω −→ X is said to be measurable selector of a
measurable mapping T : Ω→ 2X if ξ is measurable and for each w ∈ Ω, ξ (w) ∈ T (w) .
A mapping T : Ω ×X −→ 2X is called multivalued random operator if for any x ∈ X,
T (·, x) is measurable.

A measurable mapping ξ : Ω −→ X is said to be a random fixed point of multivalued
random operator T : Ω ×X −→ 2X if for each w ∈ Ω, ξ (w) ∈ T (w, ξ (w)). A mapping
ξ : Ω −→ X is said to be a deterministic fixed point of multivalued random operator
T : Ω×X −→ 2X if for each w ∈ Ω, ξ (w) ∈ T (w, ξ (w)).

In [8] Fierro et al. introduced a condition, named condition (P), and we prove some
random fixed points theorems. A mapping T : X → 2X is said to satisfy condition (P)
if, for every closed ball B of X with radius r ≥ 0 and any sequence {xn} ⊂ X for which
d(xn, B) → 0 and d(xn, Txn) → 0 as n → ∞, there exists x0 ∈ B such that x0 ∈ Tx0.
The operator T : Ω × X → 2X satisfies condition (P) if, for each ω ∈ Ω, the mapping
T (ω, ·) : X → 2X satisfy condition (P).

1.1. Lemma. ([1, Lemma 2]) Let {An} be a sequence in CB(X) and there exists A ∈
CB(X) such that

lim
n→∞

H(An, A)→ 0.

If xn ∈ An (n = 1, 2, 3, ..) and there exists x ∈ X such that

lim
n→∞

d(xn, x)→ 0

then x ∈ A.

1.2. Lemma. [9, Theorems 3.2(i), 3.3] Let (X, d) be a Polish space and T : Ω −→ 2X

is a closed valued mapping. Consider the following statements:

(a) for any closed subset C of X

T−1 (C) = {w ∈ Ω : T (w) ∩ C 6= ∅} ∈ Σ.

(b) T is measurable.
(c) w 7−→ d (x, T (w)) is measurable function of w for each x ∈ X.

Then

(a)⇒ (b)⇔ (c)
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2. Main Results

Let (X, d) be a metric space, ε > 0 and x, y ∈ X. An ε-chain from x to y is a
finite set of points x1, x2, x3, . . . , xn such that x = x1, xn = y, and d(xj−1, xj) < ε for
all j = 2, 3, . . . , n. A metric space (X, d) is said to be ε-chainable if and only if given
x, y ∈ X, there exists an ε-chain from x to y. For every ε ∈ (0,∞], let Kε the family of
mappings K : [0, ε) → [0, 1) that satisfy the condition: for t > 0, there exist δ(t) > 0
and s(t) < 1 such that

0 ≤ r − t < δ(t) =⇒ K(r) ≤ s(t).
The following theorem is proved in [2].

2.1. Theorem. Let (X, d) be a complete ε-chainable metric space and {Tn}∞n=1be a se-
quence of multivalued mapping from X to CB(X) satisfying the following condition: x, y ∈
X and 0 < d(x, y) < ε implies

H(Tnx, Tmy) ≤ K(d(x, y))d(x, y)

for n,m = 1, 2..., where K ∈ Kε. Then there exists a point y∗ ∈ X such that y∗ ∈
∞⋂
n=1

Tny
∗.

The following theorem is the stochastic versions of the above result.

2.2. Theorem. Let (X, d) be an ε-chainable Polish space and {Tn}∞n=1be a sequence of
random operators from Ω×X to CB(X) satisfying the following condition: x, y ∈ X and
0 < d(x, y) < ε implies

H(Tn (w, x) , Tm (w, y)) ≤ K(w, d(x, y))d(x, y)

for n,m = 1, 2..., where K : Ω × [0, ε) → [0, 1) is a mapping such that K (w, ·) ∈ Kε

and it is measurable for each w ∈ Ω. If Tj enjoys condition (P) for every j ∈ N, then
there exists a common random fixed point of {Tn}∞n=1, that is, there exists a measurable
mapping ξ : Ω −→ X such that for all w ∈ Ω

ξ (w) ∈
∞⋂
n=1

Tn (w, ξ (w)) .

Proof. We note, that for every w ∈ Ω, the sequence {Tn(w, ·)}∞n=1 of multivalued map-
pings on X satisfy the hypothesis of Theorem 2.1, so there exists a point x∗ ∈ X such
that

x∗ ∈
∞⋂
n=1

Tn (w, x∗) .

Now we see that each Tn(w, ·) is continuous, for all w ∈ Ω. Let β > 0 and assume that
xm → x∗, then there exists an integer Mβ > 0 such that m ≥ Mβ implies d(xm, x

∗) <
min{β, ε}. From inequality (2), we deduce that

H(Tn (w, xm) , Tn (w, x∗)) ≤ K(w, d(xm, x
∗))d(xm, x

∗) =

Kw(d(xm, x
∗))d(xm, x

∗) < d(xm, x
∗) < min{β, ε} ≤ β,

whenever, m ≥Mβ . Consequently, Tn(w, ·) is continuous.
We consider the multivalued mapping F : Ω→ 2X defined by

F (w) =

{
x ∈ X : x ∈

∞⋂
n=1

Tn (w, x)

}
.

In the view of inequality (3), it follows that F (w) is nonempty for each w ∈ Ω.
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To see that F (·) is closed valued, let u be a limit point of F (w), this implies that there

exists a sequence {u1, u2, u3, ...} ⊂ F (w) such that ui → u. Then ui ∈
∞⋂
n=1

Tn (w, ui), for

every i = 1, 2, 3, ... . Since ui ∈ Tn (w, ui), for every n, the continuity of Tn (w, ·) implies

that Tn (w, ui)→ Tn (w, u) . By Lemma 1.1, it follows that u ∈
∞⋂
n=1

Tn (w, u), hence F (·)

is closed valued.
Now, for every j = 1, 2, 3, ...., we consider the multivalued mapping Fj : Ω → 2X

defined by

Fj (w) = {x ∈ X : x ∈ Tj (w, x)} .
To see that Fj(·) is a measurable mapping, let B = B(z, r) := {y ∈ X : d(z, y) ≤ r}
be a closed ball of X and we prove that F−1

j (B) ∈ Σ. Take a countable dense subset

S = {x1, x2, ...} of X and let

L (B) =

∞⋂
n=1

⋃
xi∈Sn

{
w ∈ Ω : d (xi, Tj (w, xi)) <

2ε

n

}
,

where

Sn =
{
x ∈ S : d (x,B) <

ε

n

}
.

We show that F−1
j (B) = L (B) . If w ∈ F−1

j (B) then Fj (w) ∩ B 6= ∅. Let x ∈ B such

that x ∈ Tj (w, x), then S ∩ {z : d(x, z) < ε
n
} 6= ∅. It follows that for each n there exists

xi(n) ∈ Sn such that d
(
x, xi(n)

)
< ε

n
≤ ε. This implies that

H
(
Tj (w, x) , Tj

(
w, xi(n)

))
≤ K(w, d(x, xi(n)))d(x, xi(n)) < d(x, xi(n)) <

ε

n
.

We obtain

d
(
xi(n), Tj

(
w, xi(n)

))
≤ d

(
xi(n), x

)
+ d

(
x, Tj

(
w, xi(n)

))
≤

d
(
xi(n), x

)
+ H

(
Tj (w, x) , Tj

(
w, xi(n)

))
<
ε

n
+
ε

n
.

As xi(n) ∈ Sn, it follows that w ∈ L (B) and F−1
j (B) ⊆ L (B).

Conversely, if ω ∈ L(B), then for each n, we can take xi(n) ∈ Sn for which

d(xi(n), Tj(ω, xi(n))) < 2ε/n.

We have

d(xi(n), B)→ 0 i.e. d(xi(n), Tj(ω, xi(n))→ 0,

since the mapping Tj(ω, ·) satisfies condition (P), there exists x ∈ B such that x ∈
Tj(ω, x) and hence ω ∈ F−1

j (B). Therefore L(B) = F−1
j (B).

Now for any x ∈ X define a mapping Gj(x) : Ω→ R as Gj(x) (·) = d (x, Tj (·, x)) , since
(by hypotheses) Tj (·, x) is closed valued and measurable. By Lemma 1.2, the mapping
Gj(x) (·) is measurable. It follows that{

w ∈ Ω : d (xi, Tj (w, xi)) <
2ε

n

}
∈ Σ.

Hence F−1
j (B) = L (B) ∈ Σ. To complete the proof, let G be an arbitrary open subset

of X, by the separability of X there exists a sequence of closed ball {Bn} such that

G =

∞⋃
n=1

Bn.

Since F−1
j (G) =

⋃∞
n=1 F

−1
j (Bn), we conclude that Fj is measurable.
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Hence, F (·) is measurable. The Kuratowski-Ryll-Nardzewski theorem [12] further
implies that there exists a measurable mapping ξ : Ω −→ X such that for all w ∈ Ω

ξ (w) ∈
∞⋂
n=1

Tn (w, ξ (w)) .

This completes the proof. �

The following results are direct consequences of the above theorem.

2.3. Theorem. Let (X, d) be an ε-chainable Polish space and T : Ω ×X → CB(X) be
a multivalued random operator satisfying the following condition: x, y ∈ X and 0 <
d(x, y) < ε implies

H(T (w, x) , T (w, y)) ≤ K(w, d(x, y))d(x, y),

where K : Ω × [0, ε) → [0, 1) is a mapping such that K (w, ·) ∈ Kε and it is measurable
for each w ∈ Ω. If T enjoys condition (P), then T has a random fixed point.

2.4. Corollary. Let (X, d) be a Polish space and T : Ω×X → CB(X) be a multivalued
random operator satisfying the following condition: x, y ∈ X

H(T (w, x) , T (w, y)) ≤ K(w, d(x, y))d(x, y),

where K : Ω× [0,∞)→ [0, 1) is a mapping such that K (w, ·) ∈ K∞ and it is measurable
for each w ∈ Ω. If T enjoys condition (P), then T has a random fixed point.

3. A result for a sequence with a common deterministic fixed
point

In this section we consider sequences of multivalued random operators with a common
deterministic fixed point and we deduce the existence of a common random fixed point.

Let (X, d) be a metric space and ε > 0. A sequence {Tn}∞n=1 of multivalued random
operators from Ω×X to CB(X) is ε-locally nonexpansive if for every x, y ∈ X such that
0 < d(x, y) < ε holds

H(T (ω, x), T (ω, y)) ≤ d(x, y).

3.1. Theorem. Let (X, d) be a Polish space and {Tn}∞n=1 be a sequence of ε-locally
nonexpansive multivalued random operators from Ω×X to CB(X). Assume that the Tj
enjoys condition (P) for every j ∈ N. If the sequence {Tn}∞n=1 of random operators, has
a common deterministic fixed point, then there exists a common random fixed point of
{Tn}∞n=1, that is, there exists a measurable mapping ξ : Ω −→ X such that for all w ∈ Ω

ξ (w) ∈
∞⋂
n=1

Tn (w, ξ (w)) .

Proof. Let F : Ω→ 2X be defined for every ω ∈ Ω from

F (ω) := {x ∈ X : x ∈
+∞⋂
n=1

Tn(ω, x)}.

Since the random operators Tn (n = 1, 2, ...) have a common deterministic fixed point we
deduce that F (ω) 6= ∅ for all ω ∈ Ω. We note that Tj(ω, ·) : X → CB(X) is continuous
for all ω ∈ Ω and j ∈ N. In fact if 0 < d(x, y) < ε, we have

H(Tj(ω, x), Tj(ω, y)) ≤ d(x, y).

The set

Aj(ω) := {x ∈ X : x ∈ Tj(ω, x)}
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is closed for all j and it implies that F (ω) is closed for all ω ∈ Ω. Proceeding as in
the proof of Theorem 2.2, we obtain that there exists a common random fixed point of
{Tn}∞n=1. �

3.2. Proposition. Let (X, d) be a locally compact metric space and T be a ε-locally non-
expansive multivalued random operator from Ω×X to CB(X). Then T enjoys condition
(P).

Proof. Let B be a compact ball of X and {xn} a sequence such that d(xn, B) → 0,
it is not restrictive to suppose that xn → x0 ∈ B. If 0 < d(xn, x0) < ε, then
H(T (ω, x0), T (ω, xn)) ≤ d(x0, xn), consequently

H(T (ω, x0), T (ω, xn)→ 0.

By Lemma 1.1, we deduce that x0 ∈ T (ω, x0) and thus T satisfies condition (P). �

The following results are direct consequences of the Theorem 3.1 and Proposition 3.2.

3.3. Corollary. Let (X, d) be a locally compact separable complete metric space and
{Tn}∞n=1 be a sequence of ε-locally nonexpansive multivalued random operators from Ω×X
to CB(X). If the random operators {Tn}∞n=1 have a common deterministic fixed point,
then there exists a common random fixed point of {Tn}∞n=1.

3.4. Corollary. Let (X, d) be a locally compact separable complete metric space and T
be a ε-locally nonexpansive multivalued random operator from Ω ×X to CB(X). If the
random operator T has a deterministic fixed point, then there exists a random fixed point
of T .
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