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Abstract

We introduce anti-invariant ξ⊥-Riemannian submersions from almost
contact manifolds onto Riemannian manifolds. We give an example,
investigate the geometry of foliations which are arisen from the defi-
nition of a Riemannian submersion and check the harmonicity of such
submersions. We also find necessary and sufficient conditions for a spe-
cial anti-invariant ξ⊥-Riemannian submersion to be totally geodesic.
Moreover, we obtain decomposition theorems for the total manifold of
such submersions.
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1. Introduction

Riemannian submersions between Riemannian manifolds were studied by O’Neil [9]
and Gray [7]. In [13], Waston defined almost Hermitian submersions between almost
Hermitian manifolds and he showed that the base manifold and each fiber has the same
kind of structure as the total space, in most cases. He also showed that the verti-
cal and horizontal distributions are invariant. On the other hand, the geometry of
anti-invariant Riemannian submersions is quite different from the geometry of almost
Hermitian submersions. For example, since every holomorphic map between Kähler
manifolds is harmonic [5], it follows that any holomorphic submersion between Kähler
manifolds is harmonic. However, this result is not valid for anti-invariant Riemannian
submersions, which was first studied by Sahin in [11]. Simlarly, Ianus and Pastore [8]
shows φ-holomorphic maps between contact manifolds are harmonic. This implies that
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any contact submersion is harmonic. However, this result is not valid for anti-invariant
ξ⊥-Riemannian submersions.

We also note that Riemannian submersions have applications in Klauza-Klein thoery
and the theory of robotics. Indeed, in Klauza-Klein theory, the general solution of a recent
model can be expressed in harmonic maps which satisfies Einstein equations. However,
a very general class of solution is given by Riemannian submersions from the extra
dimensional space onto the space in which the scalar fields take values ( see [6] for details
). On the other hand, Altafini [1] used the Riemannian submersion in redundant robots,
it means that the robotic chain has more than six joints, and showed that the forward
kinematic map from joint space to the workspace of the end effector is a Riemannian
submersion. He also showed that there is a close relationship between inverse kinematic
in robotics and the horizontal lift of vector fields in Riemannian submersions.

In [4], Chinea defined almost contact Riemannian submersions between almost contact
metric manifolds and examined the differential geometric properties of Riemannian sub-
mersions between almost contact metric manifolds. More precisely, let (M, gM , ϕ, ξ, η)
and (N, gN , ϕ

′, ξ′, η′) be almost contact manifolds with dimM = 2m + 1 and dimN =
2n + 1. A Riemannian submersion F : M −→ N is called th almost contact metric
submersion if F is an almost contact mapping, i.e., ϕ′F∗ = F∗ϕ. The main result of this
notion is that the vertical and horizontal distributions are ϕ-invariant. Moreover, the
characteristic vector field ξ is horizontal. We note that only ϕ-holomorphic submersions
have been considered on almost contact manifolds [6].

In this paper, we consider a Riemannian submersion from an almost contact manifold
under the assumption that the fibers are anti-invariant with respect to the tensor field of
type (1, 1) of the almost contact manifold. This assumption implies that the horizontal
distribution is not invariant under the action of the tensor field of the total manifold
of such submersions. Roughly speaking, almost contact submersions are useful for de-
scribing the geometry of base manifolds, anti-invariant submersions are however served
to determine the geometry of total manifolds.

The paper is organized as follows: In Section 2, we present the basic information,
needed for this paper. In Section 3, we give the definition of anti-invariant ξ⊥-Riemannian
submersions, provide an example and investigate the geometry of leaves of the distri-
butions. We also introduce a special anti-invariant ξ⊥-Riemannian submersions and
obtain necessary and sufficient conditions for such submersions to be totally geodesic
or harmonic. In Section 4, we give decomposition theorems by using the existence of
anti-invariant ξ⊥-Riemannian submersions and observe that such submersions put some
restrictions on the geometry of the total manifold.

2. Preliminaries

In this section, we define almost contact manifolds, recall the notion of Riemannian
submersions between Riemannian manifolds and give a brief review of basic facts of Rie-
mannian submersions.

Let M be an almost contact metric manifold with structure tensors (ϕ, ξ, η, gM ) where
ϕ is a tensor field of type (1, 1), ξ a vector field, η a 1-form and gM is the Riemannian
metric on M . Then these tensors satisfy [2]

(2.1) ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1

(2.2) ϕ2 = −I + η ⊗ ξ, and gM (ϕX,ϕY ) = gM (X,Y )− η(X)η(Y ),
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where I denotes the identity endomorphism of TM and X,Y are any vector fields on M .
Moreover, if M is Sasakian [12], then we have

(2.3) (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X and ∇Xξ = ϕX,

where ∇ is the connection of Levi-Civita covariant differentiation.

Let (Mm, gM ) and (Nn, gN ) be Riemannian manifolds, where dimM = m, dimN = n
and m > n. A Riemannian submersion F : M −→ N is a map from M onto N satisfying
the following axioms:

(S1) F has the maximal rank.
(S2) The differential F∗ preserves the lengths of horizontal vectors.

For each q ∈ N , F−1(q) is an (m − n)-dimensional submanifold of M . The sub-
manifolds F−1(q) are called fibers. A vector field on M is called vertical if it is always
tangent to fibers. A vector field on M is called horizontal if it is always orthogonal
to fibers. A vector field X on M is called basic if X is horizontal and F -related to
a vector field X∗ on N , i.e., F∗Xp = X∗F (p) for all p ∈ M . Note that we denote the

projection morphisms on the distributions kerF∗ and (kerF∗)
⊥ by V and H, respectively.

We recall the following lemma from O’Neil [9].

2.1. Lemma. Let F : M −→ N be a Riemannian submersion between Riemannian
manifolds and X,Y be basic vector fields of M . Then

(a) gM (X,Y ) = gN (X∗, Y∗) ◦ F .

(b) the horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corresponds to
[X∗, Y∗], i.e., F∗([X,Y ]) = [X∗, Y∗].

(c) [V,X] is vertical for any vector field V of kerF∗.

(d) (∇M
X Y )H is the basic vector field corresponding to ∇N

X∗Y∗.

The geometry of Riemannian submersions is characterized by O’Neil’s tensors T and
A defined for vector fields E, F on M by

AEF = H∇HEVF + V∇HEHF(2.4)

TEF = H∇VEVF + V∇VEHF ,(2.5)

where ∇ is the Levi-Civita connection of gM . It is easy to see that a Riemannian sub-
mersion F : M −→ N has totally geodesic fibers if and only if T vanishes identically. For
any E ∈ Γ(TM), TC = TVE and A is horizontal, A = AHE . We note that the tensor T

and A satisfy

TUW = TWU, U,W ∈ Γ(kerF∗)(2.6)

AXY = −AYX =
1

2
V[X,Y ], X, Y ∈ Γ((kerF∗)

⊥).(2.7)

On the other hand, from (2.4) and (2.5), we have

∇VW = TVW + ∇̂VW(2.8)

∇VX = H∇VX + TVX(2.9)

∇XV = AXV + V∇XV(2.10)

∇XY = H∇XY + AXY(2.11)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW . If X is basic,

then H∇VX = AXV .
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Finally, we recall the notion of harmonic maps betwwen Riemannian manifolds. Let
(M, gM ) and (N, gN ) be Riemannian manifolds and supposed that ϕ : M −→ N is
a smooth map. Then the differential ϕ∗ of ϕ can be viewed a section of the bun-
dle Hom(TM,ϕ−1TN) → M , where ϕ−1TN is the pullback bundle which has fibers
(ϕ−1TN)p = Tϕ(p)N , p ∈M . Hom(TM,ϕ−1TN) has a connection ∇ induced from the

Levi-Civita connection ∇M and the pullback connection ∇ϕ. Then the second funda-
mental form of ϕ is given by

(2.12) (∇ϕ∗)(X,Y ) = ∇ϕ
Xϕ∗(Y )− ϕ∗(∇M

X Y )

for X,Y ∈ Γ(TM). It is known that the second fundamental form is symmetric. A
smooth map ϕ : (M, gM ) −→ (N, gN ) is said to be harmonic if trace(∇ϕ∗) = 0. On the
other hand, the tensor field of ϕ is the sectionτ(ϕ) of Γ(ϕ−1TN) defined by

(2.13) τ(ϕ) = divϕ∗ =

m∑
i=1

(∇ϕ∗)(ei, ei),

where {e1, · · · , em} is the orthonormal frame on M . Then it follows that ϕ is harmonic
if and only if τ(ϕ) = 0 (for details, see [3]).

3. Anti-invariant ξ⊥-Rieamannian submersions

In this section, we define anti-invariant ξ⊥-Riemannian submersion from an almost
contact metric manifold onto a Riemannian manifold and investigate the integrabiltiy
of distributions and obtain a necessary and sufficient condition for such submersions to
be totally geodesic map. We also investigate the harmonicity of a special Riemannian
submersions.

3.1. Definition. Let (M, gM , ϕ, ξ, η) be an almost contact metric manifold and (N, gN ) a
Riemannian manifold. Suppose that there exists a Riemannian submersion F : M −→ N
such that ξ is normal to kerF∗ and kerF∗ is anti-invariant with respect to ϕ, i.e.,
ϕ(kerF∗) ⊂ (kerF∗)

⊥. Then we say that F is an anti-invariant ξ⊥-Riemannian sub-
mersion.

Now, we assume that F : (M, gM , ϕ, ξ, η) −→ (N, gN ) is an anti-invariant ξ⊥-Riemannian
submersion. First of all, from Definition 3.1, we have (kerF∗)

⊥∩kerF∗ 6= {0}. We denote
the complementary orthogonal distribution to ϕ(kerF∗) in (kerF∗)

⊥ by µ. Then we have

(3.1) (kerF∗)
⊥ = ϕ(kerF∗)⊕ µ,

where ϕ(µ) ⊂ µ. Hence µ contains ξ. Thus, for X ∈ Γ((kerF∗)
⊥), we have

(3.2) ϕX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ). On the other hand, since F∗((kerF∗)
⊥) = TN

and F is a Riemannian submersion, using (3.2), we have gN (F∗ϕV, F∗ϕCX) = 0 for any
X ∈ Γ((kerF∗)

⊥) and V ∈ Γ(kerF∗), which implies that

TN = F∗(ϕ(kerF∗))⊕ F∗(µ)

3.2. Example. Let (R5, g, ϕ0, ξ, η) denote the manifold R5 with its usual Sasakian struc-
ture given by

η =
1

2

(
dz − x2dx1 − x4dx3

)
, ξ = 2

∂

∂z
,

g = η ⊗ η +
1

4

(
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4

)
,
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ϕ0

(
X1

∂

∂x1
+X2

∂

∂x2
+X3

∂

∂x3
+X4

∂

∂x4
+ Z

∂

∂z

)
= X2

∂

∂x1
−X1

∂

∂x2
+X4

∂

∂x3
−X3

∂

∂x4
+
(
X2x

2 +X4x
4) ∂
∂z
,

where
(
x1, x2, x3, x4, z

)
are the Cartesian coordinates.

Let F : (R5, g, ϕ0, ξ, η) −→ R3 be a map defined by F
(
x1, x2, x3, x4, z

)
=
(

x1+x4
√
2
, x2+x3
√
2
, z
)

.

Then, by the direct computations, we have

kerF∗ = span

{
V =

∂

∂x1
− ∂

∂x4
, W =

∂

∂x2
− ∂

∂x3

}
,

and

(kerF∗)
⊥ = span

{
X =

∂

∂x1
+

∂

∂x4
+ x4

∂

∂z
, Y =

∂

∂x2
+

∂

∂x3
+ x2

∂

∂z
, ξ = 2

∂

∂z

}
.

Then it is easy to see that F is a Riemannian submersion. Moreover, since ϕ0(V ) =
−Y and ϕ0(W ) = X, ϕ0(kerF∗) ⊂ (kerF∗)

⊥. As a result, F is an anti-invariant ξ⊥-
Riemannian submersion.

3.3. Lemma. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ). Then we have

(3.3) gM (CY, ϕV ) = 0

and

(3.4) gM (∇XCY, ϕV ) = −gM (CY, ϕAXV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), using (2.2), we have

gM (CY, ϕV ) = gM (ϕY−BY,ϕV ) = gM (ϕY, ϕV ) = gM (Y, V )+η(Y )η(V ) = gM (Y, V ) = 0

since BY ∈ Γ(kerF∗) and ϕV, ξ ∈ Γ((kerF∗)
⊥). Differentiating (3.3) with respect to X,

we get

gM (∇XCY, ϕV ) = −gM (CY,∇XϕV )

= gM (CY, (∇Xϕ)V )− gM (CY, ϕ(∇XV ))

= −gM (CY, ϕ(∇XV ))

= −gM (CY, ϕAXV )− gM (CY, ϕV∇XV )

= −gM (CY, ϕAXV )

due to ϕV∇XV ∈ Γ(ϕ(kerF∗)). Our assertion is complete. �

We study the ingetgrability of the distribution (kerF∗)
⊥ and then we investigate the

geometry of leaves of kerF∗ and (kerF∗)
⊥. We note it is known that the distribution

kerF∗ is integrable.

3.4. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ). The followings are equiv-
alent.

(a) (kerF∗)
⊥ is integrable

(b)

gN ((∇F∗)(Y,BX), F∗ϕV ) = gN ((∇F∗)(X,BY ), F∗ϕV )

+ gM (CY, ϕAXV )− gM (CX,ϕAY V )

+ η(Y )gM (X,ϕV )− η(X)gM (Y, ϕV )
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(c)

gM (AXBY −AYBX,ϕV ) = gM (CY, ϕAXV )− gM (CX,ϕAY V )

+ η(Y )gM (X,ϕV )− η(X)gM (Y, ϕV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from Definition 3.1, ϕV ∈ Γ((kerF∗)

⊥)
and ϕY ∈ Γ(kerF∗ ⊕ µ). Using (2.2) and (2.3), we note that for X ∈ Γ((kerF∗)

⊥),

(3.5) gM (∇XY, V ) = gM (∇XϕY, ϕV )− η(Y )gM (X,ϕV )

Therefore, from (3.5), we get

gM ([X,Y ], V ) = gM (∇XϕY, ϕV )− gM (∇Y ϕX,ϕV )

− η(Y )gM (X,ϕV ) + η(X)gM (Y, ϕV )

= gM (∇XBY,ϕV ) + gM (∇XCY, ϕV )

− gM (∇YBX,ϕV )− gM (∇Y CX,ϕV )

− η(Y )gM (X,ϕV ) + η(X)gM (Y, ϕV ).

Since F is a Riemannian submersion, we obtain

gM ([X,Y ], V ) = gN (F∗∇XBY,F∗ϕV ) + gM (∇XCY, ϕV )

− gN (F∗∇YBX,F∗ϕV )− gM (∇Y CX,ϕV )

− η(Y )gM (X,ϕV ) + η(X)gM (Y, ϕV ).

Thus, from (2.13) and (3.4), we have

gM ([X,Y ], V ) = gN (−(∇F∗)(X,BY ) + (∇F∗)(Y,BX), F∗ϕV )

− gM (CY, ϕAXV ) + gM (CX,ϕAY V )

− η(Y )gM (X,ϕV ) + η(X)gM (Y, ϕV ),

which proves (a) ⇐⇒ (b).
On the other hand, using (2.12), we obtain

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(∇YBX −∇XBY ) = −F∗(AYBX −AXBY ),

which shows that (b) ⇐⇒ (c). �

3.5. Corollary. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊕ <
ξ >. Then the followings are equivalent.

(a) (kerF∗)
⊥ is integrable

(b) (∇F∗)(X,ϕY ) + η(X)F∗Y = (∇F∗)(Y, ϕX) + η(Y )F∗X
(c) AXϕY + η(X)Y = AY ϕX + η(Y )X, for X,Y ∈ Γ((kerF∗)

⊥).

3.6. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ). The followings are equiv-
alent.

(a) (kerF∗)
⊥ defines a totally geodesic foliation on M .

(b) gM (AXBY,ϕV ) = gM (CY, ϕAXV )− η(Y )gM (X,ϕV )
(c) gN ((∇F∗)(Y, ϕX), F∗ϕV ) = gM (CY, ϕAXV ) − η(Y )gM (X,ϕV ), for X,Y ∈

Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).
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Proof. For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from (3.5), we have

gM (∇XY, V ) = gM (AXBY,ϕV ) + gM (∇XCY, ϕV )− η(Y )gM (X,ϕV )

Then from (3.4), we have

gM (∇XY, V ) = gM (AXBY,ϕV )− gM (CY, ϕAXV )− η(Y )gM (X,ϕV ),

which shows (a) ⇐⇒ (b). On the other hand, from (2.10) and (2.12), we have
gM (AXBY,ϕV ) = gN (−(∇F∗)(X,BY ), F∗ϕV ), which proves (b) ⇐⇒ (c). �

3.7. Corollary. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊕ <
ξ >. Then the followings are equivalent.

(a) (kerF∗)
⊥ defines a totally geodesic foliation on M .

(b) AXϕY = η(Y )X
(c) (∇F∗)(Y, ϕX) = η(Y )F∗X, for X,Y ∈ Γ((kerF∗)

⊥).

3.8. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ). The followings are equiv-
alent.

(a) kerF∗ defines a totally geodesic foliation on M .
(b) gN ((∇F∗)(V, ϕX), F∗ϕW ) = 0
(c) TVBX + ACXV ∈ Γ(µ), for X ∈ Γ((kerF∗)

⊥) and V,W ∈ Γ(kerF∗).

Proof. For X ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), gM (W, ξ) = 0 implies that from (2.3)

gM (∇VW, ξ) = −gM (W,∇V ξ) = −g(W,ϕV ) = 0. Thus we have

gM (∇VW,X) = gM (ϕ∇VW,ϕX) + η(∇VW )η(X)

= gM (ϕ∇VW,ϕX)

= gM (∇V ϕW,ϕX)− gM ((∇V ϕ)W,ϕX)

= −gM (ϕW,∇V ϕX)

Since F is a Riemannian submersion, we have

gM (∇VW,X) = −gN (F∗ϕW,F∗∇V ϕX) = gN (F∗ϕW, (∇F∗)(V, ϕX)),

which proves (a) ⇐⇒ (b).
By direct calculation, we derive

gN (F∗ϕW, (∇F∗)(V, ϕX)) = −gM (ϕW,∇V ϕX)

= −gM (ϕW,∇VBX +∇V CX)

= −gM (ϕW,∇VBX + [V,CX] +∇CXV )

Since [V,CX] ∈ Γ(kerF∗), from (2.8) and (2.10), we obtain

gN (F∗ϕW, (∇F∗)(V, ϕX)) = −gM (ϕW,TVBX + ACXV ),

which proves (b) ⇐⇒ (c). �

As an analogue of a Lagrangian Riemannian submersion in [11], we have a similar
result;

3.9. Corollary. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊕ <
ξ >. Then the followings are equivalent.

(a) kerF∗ defines a totally geodesic foliation on M .
(b) (∇F∗)(V, ϕX) = 0
(c) TV ϕW = 0, for X ∈ Γ((kerF∗)

⊥) and V,W ∈ Γ(kerF∗).
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Proof. From Theorem 3.6, it is enough to show (b) ⇐⇒ (c). Using (2.12) and (2.9), we
have

gN (F∗ϕW, (∇F∗)(V, ϕX)) = gM (∇V ϕW,ϕX)

= gM (TV ϕW,ϕX)

Since TV ϕW ∈ Γ(kerF∗), the proof is complete. �

We note that a differentiable map F between two Riemannian manifolds is called to-
tally geodesic if ∇F∗ = 0. For the special Riemannian submersion, we have the following
characterization.

3.10. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊕ <
ξ >. Then F is a totally geodesic manp if and only if

(3.6) TV ϕW = 0 V,W ∈ Γ(kerF∗)

and

(3.7) AXϕW = 0 X ∈ Γ((kerF∗)
⊥)

Proof. First of all, we recall that the second fundamental form of a Riemannian submer-
sion satisfies

(3.8) (∇F∗)(X,Y ) = 0 ∀X,Y ∈ Γ((kerF∗)
⊥)

For V,W ∈ Γ(kerF∗), we get

(3.9) (∇F∗)(V,W ) = F∗(ϕTV ϕW ).

On the other hand, from (2.1), (2.2) and (2.12), we get

(3.10) (∇F∗)(X,W ) = F∗(ϕAXϕW ), X ∈ Γ((kerF∗)
⊥)

Therefore, F is totally geodesic if and only if

(3.11) ϕ(TV ϕW ) = 0, ∀V,W ∈ Γ(kerF∗)

and

(3.12) ϕ(AXϕW ) = 0, ∀X ∈ Γ((kerF∗)
⊥)

From (2.2), (2.4) and (2.5), we have

TV ϕW = 0, ∀V,W ∈ Γ(kerF∗)

and

AXϕW = 0, ∀X ∈ Γ((kerF∗)
⊥)

From (2.3), F is totally geodesic if and only if the equations (3.6) and (3.7) hold. �

Finally, in this section, we give a necessary and sufficient condition for a special Riemann-
ian submersion to be harmonic as an analogue of a Lagrangian Riemannian submersion
in [11];

3.11. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊥ <
ξ >. Then F is harmonic if and only if Trace(ϕTV ) = 0 for V ∈ Γ(kerF∗).
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Proof. From [5], we know that F is harmonic if and only if F has minimal fibers. Thus
F is harmonic if and only if

∑m1
i=1 Teiei = 0. On the other hand, from (2.3), (2.9) and

(2.8), we have

(3.13) TV ϕW = ϕTVW

due to ξ ∈ Γ((kerF∗)
⊥) for any V,W ∈ Γ(kerF∗). Using (3.13), we get

m1∑
i=1

gM (Teiϕei, V ) =

m1∑
i=1

gM (ϕTeiei, V ) = −
m1∑
i=1

gM (Teiei, ϕV )

for any V ∈ Γ(kerF∗). Thus skew-symmetric T implies that
m1∑
i=1

gM (ϕei,TeiV ) =

m1∑
i=1

gM (Teiei, ϕV ).

Using (2.6) and (2.2), we have
m1∑
i=1

gM (ei, ϕTV ei) = −
m1∑
i=1

gM (ϕei,TV ei) = −gM (

m1∑
i=1

Teiei, ϕV ),

which shows our assertion. �

4. Decomposition theorems

In this section, we obtain decompostion theorems by using the existence of anti-
invariant ξ⊥-Riemannian submersions. First, we recall the following.

4.1. Theorem. [10]. Let g be a Riemannian metric tensor on the manifold B = M ×N
and assume that the canonical foliations DM and DN intersect perpendicularly every-
where. Then g is the metric tensor of

(i) a twisted product M ×f N if and olny if DM is a totally geodesic foliation and
DN is a totally umbilical foliation.

(ii) a warped product M ×f N if and olny if DM is a totally geodesic foliation and
DN is a spheric foliation, i.e., it is umbilic and its mean curvature vector field
is parallel.

(iii) a usual product of Riemannian manifold if and only if DM and DN are totally
geodesic foliations.

Our first decomposition theorem for an anti-invariant ξ⊥-Riemannian submersion
comes from Theorem 3.4 and 3.6 in terms of the second fundamental forms of such
submersions.

4.2. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ). Then M is a locally
product manifold if and only if

gN ((∇F∗)(Y, ϕX), F∗ϕV ) = gM (CY, ϕAXV )− η(Y )gM (X,ϕV )

and
gN ((∇F∗)(V, ϕX), F∗ϕW ) = 0

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

From Corollary 3.5 and 3.7, we have the following decomposition theorem:

4.3. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊥ <
ξ >. Then M is a locally product manifold if and only if AXϕY = η(Y )X and TV ϕW = 0,
for X,Y ∈ Γ((kerF∗)

⊥) and V,W ∈ Γ(kerF∗).
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Next we obtain a decomposition theorem which is related to the notion of a twisted
product manifold.

4.4. Theorem. Let F be an anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, gM , ϕ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗)⊥ <
ξ >. Then M is locally twisted product manifold of the form M(kerF∗)⊥ ×f MkerF∗ if and
only if

TV ϕX = −gM (X,TV V )||V ||−2ϕV

and

AXϕY = η(Y )X

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), where M(kerF∗)⊥ and MkerF∗ are integral

manifolds of the distributions (kerF∗)
⊥ and kerF∗.

Proof. For X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) , from (2.3) and (2.9), we obtain

gM (∇VW,X) = gM (TV ϕW,ϕX)

= −gM (ϕW,TV ϕX)

since TV is skew-symmetric. This implies that kerF∗ is totally umbilical if and only if

TV ϕW = −X(λ)ϕV,

where λ is a function on M . By the direct computation,

TV ϕX = −gM (X,TV V )||V ||−2ϕV.

Then the proof follows from Corollary 3.5. �

However, in the sequel, we show that the notion of anti-invariant ξ⊥-Riemannian sub-
mersion puts some restrictions on the source manifold.

4.5. Theorem. Let (M, gM , ϕ, ξ, η) be a Sasakian manifold and (N, gN ) be a Riemannian
manifold. Then there does not exist an anti-invariant ξ⊥-Riemannian submersion from
M to N with (kerF∗)

⊥ = ϕ(kerF∗)⊥ < ξ > such that M is a locally proper twisted
product manifold of the form MkerF∗ ×f M(kerF∗)⊥ .

Proof. Suppose that F : (M, gM , ϕ, η, ξ) −→ (N, gN ) is an anti-invariant ξ⊥-Riemannian
submersion with (kerF∗)

⊥ = ϕ(kerF∗)⊥ < ξ > and M is a locally twisted product of th
form MkerF∗ ×f M(kerF∗)⊥ . Then MkerF∗ is a totally geodesic foliation and M(kerF∗)⊥

is a totally umbilical foliation. We denote the second fundamental form of M(kerF∗)⊥ by
h. Then we have

(4.1) gM (∇XY, V ) = gM (h(X,Y ), V ) X,Y ∈ Γ((kerF∗)
⊥), V ∈ Γ(kerF∗).

Since M(kerF∗)⊥ is a totally umbilical foliation, we have

gM (∇XY, V ) = gM (H,V )gM (X,Y ),

where H is the mean curvature vector field of M(kerF∗)⊥ .

On the other hand, from (3.5), we derive

gM (∇XY, V ) = −gM (ϕY,∇XϕV )− η(Y )gM (X,ϕV ).(4.2)

Using (2.11), we obtain

gM (∇XY, V ) = −gM (ϕY,AXϕV )− η(Y )gM (X,ϕV )(4.3)

= −gM (Y, ϕAXϕV + gM (X,ϕV )ξ)
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Therefore, from (4.1), (4.3) and (2.2), we have

AXϕV = gM (H,V )ϕX + η(AXϕV )ξ

Since AXϕV is in Γ(kerF∗), η(AXϕV ) = gM (AXϕV, ξ) = 0. Thus, we have

AXϕV = gM (H,V )ϕX.

Hence, we derive

gM (AXϕV, ϕX) = gM (H,V ){||X||2 − η2(X)}
Then using (2.11) we have

gM (∇XϕV, ϕX) = gM (H,V ){||X||2 − η2(X)}
Thus (3.5) implies that

gM (∇XX,V ) + η(X)gM (X,ϕV ) = gM (H,V ){||X||2 − η2(X)}
Then using (2.7), we have AXX = 0, which implies

η(X)gM (X,ϕV ) = gM (H,V ){||X||2−η2(X)},∀X ∈ Γ((kerF∗)
⊥), V ∈ Γ(kerF∗).

Choosing X which is orthogonal to ξ, 0 = gM (H,V )|X||2. Since gM is the Riemannian
metric and H ∈ Γ(kerF∗), we conclude that H = 0, which shows (kerF∗)

⊥ is totally
geodesic, so M is usual product of Riemannian manifolds. �
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