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Abstract

In this paper, we establish some new integral inequalities involving
Beta function via («,m)-convexity and quasi-convexity, respectively.
Our results in special cases recapture known results.

Keywords:  Hermite’s inequality, Euler Beta function, Holder’s inequality, (o, m)-
convexity, quasi-convexity

2000 AMS Classification: 26D15, 33B15, 26A51, 39B62.

1. Introduction
Let I be an interval in R. Then f: I — R is said to be convex (see [17, P.1]) if

flz+1-t)y) <tf(x)+1—-1)f(y)
holds for all z,y € I and ¢ € [0, 1].
In [27], Toader defined m-convexity as follows:

1.1. Definition. The function f : [0,b] — R, b > 0 is said to be m-convex, where
m € [0,1], if

[tz +m(1 —t)y) <tf(z)+m(l—1)f(y)
holds for all z,y € [0,b] and ¢ € [0, 1].We say that f is m—concave if —f is m—convex.
In [18], Mihesan defined (a, m)— convexity as follows:

1.2. Definition. The function f : [0,b] — R, b > 0, is said to be («a, m)— convex, where
(a,m) € [0,1]%, if

[tz +m(1 = t)y) <t°f(x) +m(l - %) f(y)
holds for all z,y € [0,b] and ¢ € [0,1].
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Denote by K (b) the class of all (o, m)— convex functions on [0, b] for which f(0) < 0.
It can be easily seen that for (o, m) = (1, m), (o, m)— convexity reduces to m— convexity
and for (a,m) = (1,1), (o, m)— convexity reduces to the concept of usual convexity
defined on [0, ], b > 0. For recent results and generalizations concerning m—convex and
(o, m)—convex functions see [4, 6, 10, 19, 21, 26].

We recall that the notion of quasi-convex functions generalizes the notion of convex
functions. More precisely, a function f : [a,b] — R is said to be quasi-convex on [a, b] if

fOz 4+ (1= A)y) <max{f(z), f(y)}

holds for any z,y € [a,b] and X € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex (see [14]).

One of the most famous inequalities for convex functions is Hadamard’s inequality.
This double inequality is stated as follows: Let f be a convex function on some nonempty
interval [a, b] of real line R, where a # b. Then

11)  f (a;b) < %a/abf(x)dm < +10)

2

Hadamard’s inequality for convex functions has received renewed attention in recent
years and a remarkable variety of refinements and generalizations have been found (see,
for example, [1]-[19], [22]-[26], [28]). In [4], Bakula et al. establish several Hadamard
type inequalities for differentiable m—convex and (a, m) —convex functions.

Recently, Ion [14] established two estimates on the Hermite-Hadamard inequality for
functions whose first derivatives in absolute value are quasi-convex. Namely, he obtained
the following results:

1.3. Theorem. Let f: 1 C R — R be a differentiable mapping on I, a,b € I with a < b.
If |f'] is quasi-convex on [a,b], then the following inequality holds:

'f )+ £(b) _a/f i

1.4. Theorem. Let f : I C R — R be a differentiable mapping on I, a,b € I with a <b
P
and let p > 1. If |f’\ P=1 s quasi-conver on [a,b], then the following inequality holds:

fla Jrf =25 / 7T pp;l
' _a/f du—m(m{” YIS

In [2], Alomari et al. obtained the following result.

< 7{maX’f )£ @)} -

1.5. Theorem. Let f: I CR — R be a differentiable mapping on I, a,b € I with a <b
and let ¢ > 1. If |f/|q 18 quasi—convez on [a,b], then the following inequality holds:

'f )+ f(b /f du

In [20], Ozdemir et al. used the following lemma in order to establish several integral
inequalities via some kinds of convexity.

b q
< 2 (max{|f'(@)|". [ £ Ik

1.6. Lemma. Let f : [a,b] C [0,00) — R be continuous on [a,b] such that f € L([a,b]),
a < b. Then the equality

b 1

(1.2) / (z —a)’(b— )7 f(z)dz = (b—a)P T / (1 =6)Pt1f(ta+ (1 —t)b)dt
a 0

holds for some fized p,q > 0.

Especially, Ozdemir et al. [20] discussed the following new results connecting with
m—convex function and quasi-convex function, respectively:
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1.7. Theorem. Let f : [a,b] — R be continuous on [a,b] such that f € L([a,b]), 0 < a <
b < oo. If f is m—convez on [a,b], for some fized m € (0,1] and p,q > 0, then

b
[ -y -

<=+ min {3la + 2.0+ 1)) + mla+ Lo+ 2)f ().

a

(1.3) Blg+1,p+2)f() + mB(g+2,p+1)f (E)}

where B(x,y) is the Euler Beta function.

1.8. Theorem. Let f : [a,b] — R be continuous on [a,b] such that f € L([a,b]), 0 < a <
b < oco. If f is quasi-convez on [a,b], then for some fized p,q > 0, we have

(1.4) / (& —a)’(b—2)"f(x)dz < (b—a)"" " max{f(a), f(0)}B(p + 1,4 +1).

The aim of this paper is to establish some new integral inequalities like those given in
Theorems 1.7 and 1.8 for (o, m)—convex functions (Section 2) and quasi-convex functions
(Section 3), respectively. Our results in special cases recapture Theorems 1.7 and 1.8,
respectively. That is, this study is a continuation and generalization of [20].

2. New integral inequalities for (o, m)— convex functions

2.1. Theorem. Let f : [a,b] = R be continuous on [a,b] such that f € L([a,b]), 0 < a <
b < co. If f is (o, m)—convez on |a,b], for some fized (o, m) € (0,1]* and p,q > 0, then

b
[ =y s
a1 b
<(0- @ min {B(q+ @+ 1,p+ D@+ mBla+ Lo+ 1) = Bla+at Lp+DIf (1),

(1) Bla+Llp+a+lf®)+mBp+1a+1)—Ba+Lp+a+Df (=)},
where B(x,y) is the Euler Beta function.

Proof. Since f is (o, m)—convex on [a, b], we know that for every t € [0, 1]

(2.2)  flta+ (1—t)) = f (m +m(l - t)%) <t f(a) +m(1—t*) f (%) .

Using Lemma 1.6, with z = ta + (1 — t)b, then we have
/b(x —a)’(b— ) f(z)dz
ptqg+1 ! D,q a o b
<(b—a) /0(1—t)t (t f(a)—l—m(l—t)f(E))dt
_ p+q+1 ! Pyqto b ! P14 @
=(b—a) {f(a)/o(lft)t dterf(E)/o(lft)t (1 —t%)dt|.

Now, we will make use of the Beta function which is defined for z,y > 0 as
1
Sy = [ -0 e
0

It is known that L
/ (1 —t)Pdt = Blg+a+1,p+1),
0
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1 1 1
L=’ (1—t)dt = [ t9(1—t)Pdt— [ t“"*(1—t)’d
/0( DR (1 — 1) dt /Ot( 1Pt /Ot (1—)Pdt
=plg+1Lp+1)—=Bla+a+1lp+1)]
Combining all obtained equalities we get
/ (&= a6 ) (@)
@3) <= {da+at Lo+ D@+ mldla+ Lo+ 1) =Bt a+ L+ 0lf () ]
If we choose x = tb + (1 — t)a, analogously we obtain
/b(x —a)?(b—x)!f(z)dx
24)  <(b-a" " {Blg+ Lp+a+DIO)+miBa+Lp+1) - Ba+Lp+a+f (=)}

Thus, by (2.3) and (2.4) we obtain (2.1), which completes the proof. O

2.2. Remark. As a special case of Theorem 2.1 for @ = 1, that is for f be m—convex
on [a, b], we recapture Theorem 1.7 due to the fact that

g+1
+1,p+1)—Blg+2,p+1)=B(g+1,p+1)— ——B(g+1,p+1
Blg+1,p+1)—-B(g+2,p+1)=Bg+1,p )p+q+2ﬁ(q p+1)
p+1
=PT° Bg+1,p+1)= 1,p+2
p+q+25(q p+1)=pg+1,p+2)

and
Bla+1,p+1)—Blg+Lp+a+l)=pg+2,p+1).
2.3. Corollary. In Theorem 2.1, if p = q, then (2.1) reduces to
b
[ =y -ay s
<(b- a>2p+lmin{ﬁ<p+a+ Lp+ 1)f(a) +m[B+ 1,p+1) - Bp+a+1,p+ DIf (%) ,

Blp+1Lp+a+)fO)+m[Bp+1Lp+1)—Bp+1lp+at+l)]f (%)} .

2.4. Theorem. Let f : [a,b] = R be continuous on [a,b] such that f € L([a,b]), 0 < a <

b<ooandletk>1. If |f\% is (o, m)—convez on [a,b], for some fized (o, m) € (0,1]°
and p,q > 0, then

/ (& — ) (b — ) f(x)de

_ g)Ptatl 1 e —= | *
gm[ﬁ(kp+1,kq+1)]kmin{[um)u1+am]f<;)] ] ,

23 IO e (%) ﬂ } |
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Proof. Since |f|*-1 is (o, m)—convex on [a,b] we know that for every ¢ € [0, 1]

f(ta+ (1 - t)b)| =T = 'f <ta+m(1 - t)%)

_k_
E—1

<t|f(@)| 7T +m (1 — )

Using Lemma 1.6, with z = ta + (1 — t)b, then we have

/ab(m —a)’(b— ) f(z)dx

<(b—a)P " [Blkq + 1, kp+ 1)) F [/ 121 (a)| 51 1dt+m/ (1%

=(b-a

f<%> )
Ol

P (B (kg + 1, kp + 1)) *

1 k o
- k—1
arif@IT +m +1
If we choose x = tb + (1 — t)a, analogously we obtain

/ (& — ) (b — )" f(x)da

1 1

< p+aq+1 1 ‘
<(b—-a) [Bkp + 1, kg + DIF | —[f(b)[F1 1+m7f( )
which completes the proof.

O
2.5. Corollary. In Theorem 2.4, if p = q, then (2.5) reduces to
b
[ =y -ay s

2p+1
_(b—a)

(a+1)5 - [Blkp +1, k’p-i-l)]kmm{[f( |t +am‘f( > kﬁ,l]k;l7
rones sl (2] )

2.6. Corollary. In Theorem 2.4, if a = 1, i.e
(2.5) reduces to

if |f|F=1 is m—convex on [a,b], then
b
[ = are- @i

_ yptatl
b 2‘1 B(kp + 1, kq + 1)

@17+ ] (2) ]}

R‘\»—A

o { o o ()]
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2.7. Remark. As a special case of Corollary 2.6 for m = 1, that is for |f|ﬁ be convex
on [a,b], we get
b +q+1 k1
b—a)P™? 1 _k_ _k_
[ @ are-ars@ie < CE s+ L+ it (@i 470 T
a k

2.8. Theorem. Let f : [a,b] — R be continuous on [a,b] such that f € L([a,b]), 0 <a <

b < oo andlet 1> 1. If |f|' is (o, m)—convex on [a,b], for some fired (a,m) € (0,1]*
and p,q > 0, then

b
[ = are- @

<(b—a)’ " [Bp+1,q+1)] T

Xmin{

(2:6) [ﬁ<q+ Lp+a+ DO +mlBla+1,p+1) = Ba+Lp+a+D)]|f (T‘;)\T} :

1
1

"

Bla-+at Lo+ D@ +mipla + Lo+ 1) = 5o +a+ 1+ 1] ()

Proof. Since |f|' is (o, m)—convex on [a, b], we know that for every ¢ € [0, 1]

l l

|f(ta+ (1 —t)b)|" = ‘f (ta+m(1 - t)%) <t f(a)]' +m (1 —t%)

/()

Using Lemma 1.6, with = = ta + (1 — t)b, then we have

b
/ (& — ) (b — 2) f(x)de

1
1

=(b—a)PT ! / = om0 - et flat (- e

<(b— a)pHH { ptth} [ (1 — )Pt f(ta + (1 — t)b)|ldt} !

<(b-a)P T [Blg+ Lp+ 1) T

1
[}

L
Bla+ ot 1+ DIF@ 4 mGa+ 1p+ 1) = S+t 1o )7 ()] ]
If we choose x = tb + (1 — t)a, analogously we obtain

/ (& — ) (b — ) f(x)de
<b—a)" T [Bp+1,g+1) T

x [,3(q+ Lp+a+D)f®) +m[Ba+1,p+1)—Blg+1L,p+a+1)] ‘f (%)H ;

which completes the proof. O
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2.9. Corollary. In Theorem 2.8, if p = q, then (2.6) reduces to

b
[ =y -ay s

-1

<(b—a) [Blp+1p+1)] T

Xmin{

{5(p+1,p+a+1)|f(b)\l+m[5(p+1,p+1)76(p+1yp+°‘+1)]‘f( )’T}'

Bo-+a+ 1+ D@ + i3+ Lo+ 1) = 8o+a+ 1+ 1] 7 ()

l:|z
b

a

m

2.10. Corollary. In Theorem 2.8, if o = 1, i.e., if | f|' is m—convez on [a, b], then (2.6)
reduces to

b
/ (& — ) (b — 2) f(x)de

L2
m

1
l:|l
b

<(b—a)P M [Bp+1,¢+1)] T min {

ﬁ<q+z,p+1>|f<a>|l+mﬂ<q+1,p+2>]f( )

{5(q+1,p+2)\f(b)ll+mﬂ(q+2ap+1) !f(,f)‘lr}'

2.11. Remark. As a special case of Corollary 2.10 for m = 1, that is for |f\l be convex
on [a,b], we get

b
/ (& — ) (b — 2) f(x)de

o~

<(b-a)P T Bp+1,g+1)] T [ﬁ(q +2,p+1)|f(a)' + B+ 1,p+2)|f (b)ll}

3. New integral inequalities for quasi-convex functions

3.1. Theorem. Let f : [a,b] — R be continuous on [a,b] such that f € L([a,b]), 0 < a <
b<ooandletk>1. If \f|ﬁ is quasi-convex on [a,b], for some fized p,q > 0, then

k—1

b 1 k k =
G1) [ @0 ) < (b - (5lhp + kg + D] (max {7 T, FIET}) T

Proof. By Lemma 1.6, Holder’s inequality, the definition of Beta function and the fact
k
that |f|*-T is quasi-convex on [a, b], we have

b
/ (& — ) (b — 2) f(x)de

<(b— q)Ptett {/01(1 _ t)kptkffdt} ' Uol (b + (1 — t)b)|%dt} o

k

<(b— 0y 30k + 1+ D] [ [ ma {17@1 T s ] T

=(b— a)p+q+1 [B(kq+1,kp+ 1)]% [max{\f(aﬂﬁ ) |f(b)‘ﬁ}] " )

which completes the proof. O
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3.2. Corollary. Let f be as in Theorem 3.1. Additionally, if
(1) f is increasing, then we have

/ (z — a)P(b— )  f(z)dz < (b— a)* " [B(kp + 1, kq + 1)]* £(b).

(2) f is decreasing, then we have
/b(ff»‘ — a)"(b— )" f(w)dz < (b—a)" T [Blkp + 1, kg + D]F f(a).
3.3. Theorem. Let f : [a,b] = R be continuous on [a,b] such that f € L([a,b]), 0 < a <
b < oo and let 1 > 1. If |f|" is quasi-convex on [a,b], for some fized p,q > 0, then
(3.2) / (o= @) (b - ) f(@)dx < (b - ) B(p+ g+ 1) (max { @I F01)
where B(x,y) is the Euler Beta function.

Proof. By Lemma 1.6, Holder’s inequality, the definition of Beta function and the fact
that |f|' is quasi-convex on [a, b], we have

b
[ = are- s

1
T

=(b—a)PT! / =P T 0= e (- o)t

=1

<(b—a)Ptett [/01(1 - t)ptth} N [/01(1 — )Pt f(ta + (1 — t)b)|ldt}

1
[}

-1
1

<(b—ay " Bla+ L+ 1] T [max {If(@)] I70)I'} Bla+ 1p+ 1))

1
=(b=a)"" "B+ 1,q+ 1) (max {|f(@)] lf®I'}) ",
which completes the proof. O

1
1

3.4. Corollary. Let f be as in Theorem 3.3. Additionally, if
(1) f is increasing, then we have

/ (z — )’ (b— 2)" f(z)dz < (b— )" " B(p + 1,4+ 1) F(b).

(2) f is decreasing, then we have
b
[ =yt -a) @ < 6- 0" 5+ 1a+ D).

References

[1] M. Alomari and M. Darus, On the Hadamard’s inequality for log-convex functions on the
coordinates, J. Inequal. Appl. 2009, Art. ID 283147 13 pp.

[2] M. Alomari, M. Darus and S.S. Dragomir, Inequalities of Hermite-Hadamard’s type for func-
tions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009),
Supp., No. 14.

[3] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28
(1994), no. 1, 7-12.

[4] M. K. Bakula, M. E. Ozdemir and J. Peéari¢, Hadamard type inequalities for m-convex and
(e, m)-convex functions, JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Article 96, 12
pp. (electronic).



New integral inequalities via («, m)-convexity and quasi-convexity 297

[6] M. K. Bakula and J. Pecarié, Note on some Hadamard-type inequalities, JIPAM. J. Inequal.
Pure Appl. Math. 5 (2004), no. 3, Article 74, 9 pp. (electronic).

[6] M. K. Bakula, J. Pecari¢ and M. Ribi¢i¢, Companion Inequalities to Jensen’s Inequality for
m-convex and (o, m)-convex Functions, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 5,
Article 194, 15 pp. (electronic).

[7] C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl. 2008, Art. ID
287947, 24 pp.

[8] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and
Applications, RGMIA Monographs, Victoria University, 2000.

[9] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and appli-
cations to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11
(1998), no. 5, 91-95.

[10] S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions,
Tamkang J. Math. 33 (2002), no. 1, 55-65.

[11] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the
second sense, Demonstratio Math. 32 (1999), no. 4, 687-696.

[12] P. M. Gill, C. E. M. Pearce and J. Pecari¢, Hadamard’s inequality for r-convex functions,
J. Math. Anal. Appl. 215 (1997), no. 2, 461-470.

[13] V. N. Huy and N. T. Chung, Some generalizations of the Fejér and Hermite-Hadamard
inequalities in Holder spaces, J. Appl. Math. Inform. 29 (2011), no. 3-4, 859-868.

[14] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex func-
tions, An. Univ. Craiova Ser. Mat. Inform. 34 (2007), 83-88.

[15] U. S. Kirmaci et al., Hadamard-type inequalities for s-convex functions, Appl. Math. Com-
put. 193 (2007), no. 1, 26-35.

[16] Z. Liu, Generalization and improvement of some Hadamard type inequalities for Lipschitzian
mappings, J. Pure Appl. Math. Adv. Appl. 1 (2009), no. 2, 175-181.

[17] D. S. Mitrinovi¢, J. E. Pecari¢ and A. M. Fink, Classical and new inequalities in analysis,
Mathematics and its Applications (East European Series), 61, Kluwer Acad. Publ., Dordrecht,
1993.

[18] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approz.
and Convez., Cluj-Napoca (Romania) (1993)

[19] M. E. Ozdemir, M. Ava and E. Set, On some inequalities of Hermite-Hadamard type via
m-convexity, Appl. Math. Lett. 23 (2010), no. 9, 1065-1070.

[20] M. E. Ozdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity,
Creat. Math. Inform. 20 (2011), no. 1, 62-73.

[21] M. E. Ozdemir, E. Set and M. Z. Sarikaya, Some new Hadamard type inequalities for co-
ordinated m-convex and (a,m)-convex functions, Hacet. J. Math. Stat. 40 (2011), no. 2,
219-229.

[22] J. E. Pecari¢, F. Proschan and Y. L. Tong, Convez functions, partial orderings, and sta-
tistical applications, Mathematics in Science and Engineering, 187, Academic Press, Boston,
MA, 1992.

[23] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type
involving h-convex functions, Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.

[24] E. Set, M. E. Ozdemir and S. S. Dragomir, On the Hermite-Hadamard inequality and other
integral inequalities involving two functions, J. Inequal. Appl. 2010, Art. ID 148102, 9 pp.

[25] E. Set, M. E. Ozdemir and S. S. Dragomir, On Hadamard-type inequalities involving several
kinds of convexity, J. Inequal. Appl. 2010, Art. ID 286845, 12 pp.

[26] E. Set, M. Sardari, M. E. Ozdemir and J. Rooin, On generalizations of the Hadamard
inequality for (o, m)-convex functions, RGMIA Res. Rep. Coll., 12 (4) (2009), No. 4.

[27] G. Toader, Some generalizations of the convexity, in Proceedings of the colloquium on ap-
prozimation and optimization (Cluj-Napoca, 1985), 329-338, Univ. Cluj-Napoca, Cluj.

[28] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, New Hermite-Hadamard-type inequalities
for convex functions (II), Comput. Math. Appl. 62 (2011), no. 1, 401-418.



