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Abstract

In this work, the Z3-graded differential calculus of the extended quan-
tum 3d space is constructed. By using this differential calculus, we
obtain the algebra of Cartan-Maurer forms and the corresponding quan-
tum Lie algebra. To give a Z3-graded Cartan calculus on the extended
quantum 3d space, the noncommutative differential calculus on this
space is extended by introducing inner derivations and Lie derivatives.
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1. Introduction

The noncommutative differential geometry of quantum groups was introduced by
Woronowicz [20],[21]. In this approach the differential calculus on the group is deduced
from the properties of the group and it involves functions on the group, differentials,
differential forms and derivatives. The other approach, initiated by Wess and Zumino
[19], followed Manin’s emphasis [10] on the quantum spaces as the primary objects. Dif-
ferential forms are defined in terms of noncommuting coordinates, and the differential
and algebraic properties of quantum groups acting on these spaces are obtained from the
properties of the spaces.

The differential calculus on the quantum 3d space similarly involves functions on the
3d space, differentials, differential forms and derivatives. The most important property
of this calculus is that the operator d satisfies d3 = 0 dl 6= 0, 1 ≤ l ≤ 2 and it contains
as a consequence, not only first differentials dxi, i = 1...3, but involves also higher order
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differentials dkxi, k = 1...2. The exterior differential d is an operator which gives the
mapping from the generators of the 3d space to the differentials:

(1.1) d : a 7→ da, a ∈ {x, y, z}.

We demand that the exterior differential d has to satisfy two properties:

(1.2) d ∧ d ∧ d =: d3 = 0. (d2 6= 0)

and the Z3-graded Leibniz rule

(1.3) d(fg) = (df)g + jgrad(f)f(dg)

where j = e
2πi
3 (i2 = −1) and grad(f) denotes the grade of f and also the exterior

differential d acts on the Cartan-Maurer one forms, i.e, for any forms ω1 and ω2

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + jgrad(ω1)ω1 ∧ (dω2).

There is a relationship of the exterior derivative with the Lie derivative and to describe
this relation, we introduce a new operator: the inner derivation. Hence the differential
calculus on the quantum 3d space can be extended into a large calculus. We call this
new calculus the Cartan calculus. The connection of the inner derivation denoted by ia
and the Lie derivative denoted by La is given by the Cartan formula:

La = ia ◦ d + d ◦ ia.

This and other formulae are explaned in [15]- [17]. In section 5, we shall give a brief
overview without much discussion.

The extended calculus on the quantum plane was introduced in [7] using the approach
of [15]. The Z3-graded differential calculus was studied in [11] - [13]. The Z3-graded
differential geometry of the quantum plane is introduced in [4] and later [9]. In this
work we explicitly set up Z3-graded differential calculus on the quantum 3d space using
approach of [4] and [5]. Also, the scope of the differential calculus was mainly enriched
in the series of papers [1], [2], [8], [14], [18].

Let us shortly give a general Z3-graded algebraic structure. Let z be a Z3-graded
variable. Then we say that the variable z satisfies the relation

z3 = 0.

If f is an arbitrary function of the variable z, then the f(z) becomes a polynomial of
degree two in z, that is,

f(z) = a0 + a1z + a2z
2,

where a0, a2, a1 denote three fixed numbers whose grades are grad(a0) = 0, grad(a2) = 1
and grad(a1) = 2, respectively.

The cyclic group Z3 can be represented in the complex plane by means of the cubic

roots of 1: let j = e
2πi
3 (i2 = −1). Then one has

j3 = 1 and j2 + j + 1 = 0.

One can define the Z3-graded commutator [A,B] as

[A,B]Z3 = AB − jabBA,

where grad(A) = a and grad(B) = b. If A and B are j-commutative, then we have

AB = jabBA.

Also,

grad(A.B) = grad(A) + grad(B).



Z3-graded differential calculus on the quantum space R3
q 103

2. Z3-graded differential algebra

The quantum 3d space is defined as an associative algebra generated by three noncom-
muting coordinates x, y and z with three quadratic relations [10]

(2.1) xy − qyx = 0, yz − qzy = 0, xz − qzx = 0,

where q is a non-zero complex number. Here, the coordinates x, y and z with respect
to the Z3-grading are of grade 0. This associative algebra over the complex numbers is
known as the algebra of polynomials over the quantum 3d space and we shall denote it
by Fun(R3

q). In the limit q → 1, this algebra is commutative and can be considered as
the algebra of polynomials C[x, y, z] over the usual three dimensional space, where x,
y and z are the three coordinate functions. We define the extended quantum 3d space
to be the algebra that contains R3

q, the unit and x−1, the inverse of x, which obeys

xx−1 = 1 = x−1x. We denote the unital extension of R3
q by A.

We now set up a differential calculus on the quantum space R3
q. In order to obtain

the commutation relations of the coordinates and their differentials, we shall use the
approach of [19] and [4]. In this manner we assume that

xdx = A1dxx, xdy = K11dyx+K12dxy,

ydx = K21dxy +K22dyx, ydy = A2dyy,

xdz = L11dzx+ L12dxz, zdx = L21dxz + L22dzx,(2.2)

zdz = A3dzz, ydz = M11dzy +M12dyz,

zdy = M21dyz +M22dzy,

where the coefficients A1, A2, A3, Kij ,Lij , Mij are related with deformation parameter(s).
Here, the first order differentials dx, dy, dz with respect to the Z3-grading are of grade 1.
To obtain these coefficients, we also demand that

(2.3) dx ∧ dy = F1dy ∧ dx, dx ∧ dz = F2dz ∧ dx, dy ∧ dz = F3dz ∧ dy,

where the coefficients F1, F2, F3 are related with deformation parameter(s). Since d3 = 0
(and d2 6= 0) in the Z3-graded space, in order to construct a self-consistent theory of
differential forms it is necessary to add to the first order differentials of coordinates
dx, dy, dz a set of second order differentials d2x, d2y, d2z, which are grade 2 with respect
to the Z3-grading. Appearance of higher order differentials is a peculiar property of a
proposed generalization of differential forms.

To obtain the coefficients appearing in (2.2) we shall apply to the exterior differential
d the relations (2.2). If we use first four relations in (2.2) and we differentiate them with
respect to the Z3-graded Leibniz rule (1.3) we get

xd2x = A1d
2xx+ (jA1 − 1)dxdx,

xd2y = K11d
2yx+K12d

2xy + (jK11 + jK12F1 − F1)dydx,

yd2x = K21d
2xy +K22d

2yx+ (jK21F1 + jK22 − 1)dydx,(2.4)

yd2y = A2d
2yy + (jA2 − 1)dydy.

These relations are not homogeneous in the sense that the commutation relations between
the coordinates and second order differentials include first order differentials as well. In
order to make homogenous the commutation relations between the coordinates and their
second order differentials, we must choose

A1 = j2, A2 = j2,

jK11 + jK12F1 − F1 = 0, jK21F1 + jK22 − 1 = 0.(2.5)
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Now, using the consistency of calculus and that d3 = 0 (but d2 6= 0) we have the
following relations

K12 − qK21 = −1, K11 − qK22 = q,

K22(K11 − qA1) = 0, K22K12 = 0,K12(A1 − qK21) = 0.(2.6)

If we assume that K12 = 0, from the relations (2.5) and (2.6), we easily find the
coefficients Kij and F1. With similar operations, it can be found other coefficients.
Consequently, we see that the commutation relations satisfied by the coordinates and
their first order differentials in the form

xdx = j2dxx, xdy = qj2dyx,

ydx = q−1dxy + (j2 − 1)dyx, ydy = j2dyy,

xdz = qj2dzx, zdx = q−1dxz + (j2 − 1)dzx,(2.7)

ydz = qj2dzy, zdy = q−1dyz + (j2 − 1)dzy,

zdz = j2dzz.

The commutation relations between the first order differentials as follows:

dx ∧ dy = qdy ∧ dx, dx ∧ dx ∧ dx = 0,

dx ∧ dz = qdz ∧ dx, dz ∧ dz ∧ dz = 0,(2.8)

dy ∧ dz = qdz ∧ dy, dy ∧ dy ∧ dy = 0.

Note that the above relations of differentials among themselves reduce to commutative
relations as q → 1. In fact, this situation is the natural result of the differential operator
with the rules (1.2) and (1.3). The commutation relations of the coordinates and their
second order differentials now have the form

xd2x = j2d2xx, xd2y = qj2d2yx,

yd2x = q−1d2xy + (j2 − 1)d2yx, yd2y = j2d2yy,

xd2z = qj2d2zx, zd2x = q−1d2xz + (j2 − 1)d2zx,(2.9)

yd2z = qj2d2zy, zd2y = q−1d2yz + (j2 − 1)d2zy,

zd2z = j2d2zz.

We now apply the exterior differential d to the relations (2.9) then we see that the com-
mutation relations between the first order differentials and the second order differentials
as follows:

dx ∧ d2x = jd2x ∧ dx, dx ∧ d2y = qjd2y ∧ dx,

dy ∧ d2x = q−1j2d2x ∧ dy + (j − j2)d2y ∧ dx,

dy ∧ d2y = jd2y ∧ dy, dz ∧ d2z = jd2z ∧ dz,

dx ∧ d2z = qjd2z ∧ dx, dy ∧ d2z = qjd2z ∧ dy,(2.10)

dz ∧ d2x = q−1j2d2x ∧ dz + (j − j2)d2z ∧ dx,

dz ∧ d2y = q−1j2d2y ∧ dz + (j − j2)d2z ∧ dy.

Applying the exterior differential d to the relations (2.10), we get the commutation rela-
tions between the second order differentials as

(2.11) d2x ∧ d2y = qd2y ∧ d2x, d2x ∧ d2z = qd2z ∧ d2x, d2y ∧ d2z = qd2z ∧ d2y.
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Consequently, we set up an exterior calculus of the higher order differential forms on
the quantum 3d space. Next step is to be constructed a structure with Cartan-Maurer
one-forms.

3. Cartan-Maurer one forms on A

In this section we shall define three forms using the generators of A and investigate their
relations with the coordinates, differentials and themselves.

If we call them wx, wy and wz then one can define these forms as follows:

(3.1) wx = dxx−1, wy = dyx−1 − dxx−1yx−1, wz = dz.

We denote the algebra of forms generated by three elements wx, wy and wz by Ω. We
can find the commutation relations of these forms with the coordinate functions using
the relations (2.7) and (2.1) as follows

xwx = j2wxx, xwy = qj2wyx,

ywx = j2wxy + (j2 − 1)wyx, ywy = qwyy,

xwz = qj2wzx, zwx = wxz + (j2 − 1)wz,(3.2)

ywz = qj2wzy, zwy = wyz, zwz = j2wzz.

Using together with (2.7) and (2.8) will give the following rules which satisfied by the
generators of the algebra Ω with the first order differentials

wx ∧ dx = jdx ∧ wx, wx ∧ dy = jdy ∧ wx,

wy ∧ dx = q−1j2dx ∧ wy, wy ∧ dy = q−1jdy ∧ wy,

wx ∧ dz = jdz ∧ wx, wz ∧ dx = q−1dx ∧ wz,(3.3)

wy ∧ dz = jdz ∧ wy, wz ∧ dy = q−1dy ∧ wz,

wz ∧ dz = dz ∧ wz.

We finally need the relations between the one forms and second order differentials and
they are

wx ∧ d2x = j2d2x ∧ wx, wx ∧ d2y = j2d2y ∧ wx,

wy ∧ d2x = q−1d2x ∧ wy, wy ∧ d2y = q−1j2d2y ∧ wy,

wx ∧ d2z = j2d2z ∧ wx, wy ∧ d2z = j2d2z ∧ wy,

wz ∧ d2x = q−1j2d2x ∧ wz + (j − j2)d2z ∧ dx,(3.4)

wz ∧ d2y = q−1j2d2y ∧ wz + (j − j2)d2z ∧ dy,

wz ∧ d2z = jd2z ∧ wz.

Using (3.2)-(3.4) we now find the commutation rules of the generators of Ω as follows

wx ∧ wy = j2wy ∧ wx, wx ∧ wx ∧ wx = 0,

wy ∧ wz = jwz ∧ wy, wy ∧ wy ∧ wy = 0,(3.5)

wx ∧ wz = jwz ∧ wx, wz ∧ wz ∧ wz = 0.

We know that the algebra Ω is a Z3-graded Hopf algebra [6].
Now, we introduce here the commutation relations between the coordinates of the

Z3-graded quantum 3d space and their partial derivatives. We know that the exterior
differential d can be expressed in the form

(3.6) df = (dx∂x + dy∂y + dz∂z)f.
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Then, for example,

d(xf) = dxf + xdf

= dx(1 + j2x∂x)f + dy(qj2x∂y)f + dz(qj2x∂z)f

= (dx∂xx+ dy∂yx+ dz∂zx)f

so that

∂xx = 1 + j2x∂x, ∂xy = q−1y∂x, ∂yx = qj2x∂y,

∂yy = 1 + j2y∂y + (j2 − 1)x∂x, ∂xz = q−1z∂x,

∂zx = qj2x∂z, ∂yz = q−1z∂y, ∂zy = qj2y∂z,(3.7)

∂zz = 1 + j2z∂z + (j2 − 1)x∂x + (j2 − 1)y∂y.

Using the fact that d3 = 0, we find

(3.8) ∂x∂y = qj2∂y∂x, ∂x∂z = qj2∂z∂x, ∂y∂z = qj2∂z∂y.

To complete the scheme, we need the relations partial differentials with first and second
order differentials. And it is computed as follows

∂xdx = jdx∂x + (j − 1)dy∂y + (j − 1)dz∂z,

∂xdy = q−1jdy∂x, ∂ydx = qdx∂y,

∂ydy = jdy∂y + (j − 1)dz∂z, ∂xdz = q−1jdz∂x,(3.9)

∂zdx = qdx∂z, ∂ydz = q−1jdz∂y,

∂zdy = qdy∂z, ∂zdz = jdz∂z,

and

∂xd
2x = jd2x∂x + (j − 1)d2y∂y + (j − 1)d2z∂z,

∂xd
2y = q−1jd2y∂x, ∂xd

2z = q−1jd2z∂x,

∂yd
2x = qd2x∂y, ∂yd

2y = jd2y∂y + (j − 1)d2z∂z,

∂yd
2z = q−1jd2z∂y, ∂zd

2x = qd2x∂z,(3.10)

∂zd
2y = qd2y∂z, ∂zd

2z = jd2z∂z.

4. Quantum Lie algebra

In this section, we construct an algebra generated by the Maurer-Cartan forms which are
subjected to certain commutation relations. In order to obtain the quantum Lie algebra
corresponding to the Maurer-Cartan forms we first write the Cartan-Maurer forms as

(4.1) dx = wxx, dy = wxy + wyx, dz = wz.

The differential d can then the expressed in the form

(4.2) d = wxTx + wyTy + wzTz.

Here Tx, Ty and Tz are the (quantum) Lie algebra generators. We now shall obtain the
commutation relations of these generators. Considering an arbitrary function f of the
coordinates of the Z3-graded quantum 3d space and using that d3 = 0 one has

d2f = (dwx)Txf + (dwy)Tyf + (dwz)Tzf + jwxdTxf + jwydTyf + jwzdTzf,
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and

d3f = (d2wx)Txf + (d2wy)Tyf + (d2wz)Tzf + j2wxd
2Txf+

j2wyd
2Tyf + j2wzd

2Tzf − (dwx)dTxf − (dwy)dTyf − (dwz)dTzf.

So we need the two-forms. Applying the exterior differential d to the expressions in (3.1)
one has

dwx = d2xx−1 − jwx ∧ wx, dwz = d2z,

dwy = d2yx−1 − d2xx−1yx−1 + j2wy ∧ wx.(4.3)

These two-forms with the one-forms satisfy the following relations

wx ∧ dwx = jdwx ∧ wx, wx ∧ dwy = jdwy ∧ wx + (j − j2)dwx ∧ wy,

wy ∧ dwx = j2dwx ∧ wy, wy ∧ dwy = jdwy ∧ wy,

wx ∧ dwz = j2dwz ∧ wx, wz ∧ dwx = jdwx ∧ wz + (j − j2)dwz ∧ wx,

wy ∧ dwz = j2dwz ∧ wy, wz ∧ dwy = jdwy ∧ wz + (j − j2)dwz ∧ wy,

wz ∧ dwz = jdwz ∧ wz.

Using these relations we get

(4.4) d2wx = 0, d2wy = 0, d2wz = 0.

After making this, it is easy to find the quantum Lie algebra:

(4.5) TxTy − TyTx = 0, TxTz − TzTx = 0, TyTz − TzTy = 0.

The commutation relation (4.5) of the Lie algebra generators should be consistent with
monomials of the coordinates of the Z3-graded quantum 3d space. To do this, we evaluate
the commutation relations between the generators of algebra and the coordinates. The
commutation relations of the generators with the coordinates can be extracted from the
Leibniz rule:

d(xf) = dxf + xdf

= wx(x+ j2xTx)f + wy(qj2xTy)f + wz(qj2xTz)f

= (wxTx + wyTy + wzTz)xf

This yields

Txx = x+ j2xTx, Txy = y + j2yTx, Tyx = qj2xTy,

Tyy = x+ qyTy + (j2 − 1)xTx, Txz = zTx, Tzx = qj2xTz,(4.6)

Tyz = zTy, Tzy = qj2yTz, Tzz = 1 + j2zTz + (j2 − 1)Tx.

Now, we illustrate the connection between the relations in this section, and the rela-
tions obtained at the end of the section 3.

We know that the exterior differential d can be expressed in the form (4.2), which we
repeat here,

(4.7) df = (wxTx + wyTy + wzTz)f.

Considering (3.6) together (4.7) and using (4.1) one has

(4.8) Tx ≡ x∂x + y∂y Ty ≡ x∂y Tz ≡ ∂z.

Using the relations (3.7) and (3.8) one can check that the relation of the generators in
(4.8) coincide with (4.5). It can also be verified that, the action of the generators in (4.8)
on the coordinates coincide with (4.6).
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5. Extended calculus on the quantum 3d space

The Lie derivative is closely related to the exterior derivative. The exterior derivative
and the Lie derivative are set to cover the idea of a derivative in different ways. These
differences can be hasped together by introducing the idea of an antiderivation which is
called an inner derivation.

5.1. Inner derivations. In order to obtain the commutation rules of the coordinates
with inner derivations, we shall use the approach of [4]. Similarly other relations can also
obtain.

Let us begin with some information about the inner derivations. Generally, for a
smooth vector field X on a manifold the inner derivation, denoted by iX , is a linear
operator which maps k-forms to (k − 1)-forms. If we define the inner derivation iX on
the set of all differential forms on a manifold, we know that iX is an antiderivation of
degree −1:

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ)

where α and β are both differential forms. The inner derivation iX acts on 0- and 1-forms
as follows:

iX(f) = 0, iX(df) = X(f).

We now wish to find the commutation relations between the coordinates x, y, z and
the inner derivations associated with them. In order to obtain the commutation rules
of the coordinates with inner derivations, we shall assume that they are of the following
form

ixx = A1xix +A2yiy +A3ziz, ixy = A4yix +A5xiy,

ixz = A6zix +A7xiz, iyx = A8xiy +A9yix,

iyy = A10yiy +A11xix +A12ziz, iyz = A13ziy +A14yiz,(5.1)

izx = A15xiz +A16zix, izy = A17yiz +A18ziy,

izz = A19ziz +A20xix +A21yiy.

The coefficients Ak (1 ≤ k ≤ 21) will be determined in terms of the deformation param-
eters q and j. But the use of the relations (2.1) does not give rise any solution in terms
of the parameters q and j. However, we have, at least, the system

A5(A1 − qA8) = 0, A2A11 − q2A5A9 = 0, A2A14 = 0,

A8(A10 − qA4) = 0, A3A20 − q2A7A16 = 0, A3A18 = 0, etc.

To find the coefficients, we need the commutation relations of the inner derivations with
the differentials of x, y and z. Since

iXi(dXj) = δij
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we can assume that the relations between the differentials and the inner derivations are
of the following form

ix ∧ dx = 1 + a1dx ∧ ix + a2dy ∧ iy + a3dz ∧ iz,

ix ∧ dy = a4dy ∧ ix + a5dx ∧ iy,

ix ∧ dz = a6dz ∧ ix + a7dx ∧ iz,

iy ∧ dx = a8dx ∧ iy + a9dy ∧ ix,

iy ∧ dy = 1 + a10dy ∧ iy + a11dx ∧ ix + a12dz ∧ iz,(5.2)

iy ∧ dz = a13dz ∧ iy + a14dy ∧ iz,

iz ∧ dx = a15dx ∧ iz + a16dz ∧ ix,

iz ∧ dy = a17dy ∧ iz + a18dz ∧ iy,

iz ∧ dz = 1 + a19dz ∧ iz + a20dx ∧ ix + a21dy ∧ iy.

Applying ix, iy and iz to the relations (2.7) one gets

A1 = j2, A2 = 0, A3 = 0, A4 = q−1,

A5 = 0, A6 = q−1, A7 = 0, A8 = qj2,

A9 = 0, A10 = j2, A11 = j2 − 1, A12 = 0,

A13 = q−1, A14 = 0, A15 = qj2, A16 = 0,

A17 = qj2, A18 = 0, A19 = j2, A20 = j2 − 1, A21 = j2 − 1,

and

a3(qA1 −A15) = 0, A2a9 − a2A9 = 0, A2a12 = 0,

A3(a15 − qa1) = 0, A3a16 − a3A16 = 0, A3A12 = 0, etc.

To find the coefficients ak (1 ≤ k ≤ 21), we use the expression

ia ◦ d− F1d ◦ ia = ∂a, for a ∈ {x, y, z}

For example, using the first relation in (5.1) with the relations (3.7) we obtain

F1 = 1, a1 = j2, a2 = 0 = a3.

Other coefficients can be similarly obtained. Consequently, we have the following com-
mutation relations:

• the commutation relations of the inner derivations with x, y and z

ixx = j2xix, ixy = q−1yix, ixz = q−1zix,

iyx = qj2xiy, iyy = j2yiy + (j2 − 1)xix, iyz = q−1ziy,

izx = qj2xiz, izy = qj2yiz,(5.3)

izz = j2ziz + (j2 − 1)xix + (j2 − 1)yiy.
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• the commutation relations between the first order differentials and the inner
derivations

ix ∧ dx = 1 + j2dx ∧ ix, ix ∧ dy = q−1dy ∧ ix,

ix ∧ dz = q−1dz ∧ ix, iy ∧ dx = qj2dx ∧ iy,

iy ∧ dy = 1 + j2dy ∧ iy + (j2 − 1)dx ∧ ix,(5.4)

iy ∧ dz = q−1dz ∧ iy, iz ∧ dx = qj2dx ∧ iz,

iz ∧ dy = qj2dy ∧ iz,

iz ∧ dz = 1 + j2dz ∧ iz + (j2 − 1)dx ∧ ix + (j2 − 1)dy ∧ iy.

• the commutation relations between the second order differentials and the inner
derivations

ix ∧ d2x = j2d2x ∧ ix + (j2 − j)d2y ∧ iy + (j2 − j)d2z ∧ iz,

ix ∧ d2y = q−1j2d2y ∧ ix, ix ∧ d2z = q−1j2d2z ∧ ix,

iy ∧ d2x = qjd2x ∧ iy,

iy ∧ d2y = j2d2y ∧ iy + (j2 − j)d2z ∧ iz,(5.5)

iy ∧ d2z = q−1j2d2z ∧ iy, iz ∧ d2x = qjd2x ∧ iz,

iz ∧ d2y = qjd2y ∧ iz, iz ∧ d2z = j2d2z ∧ iz.

• the relations of the inner derivations with the partial derivatives ∂x, ∂y, ∂z

ix∂x = j∂xix, ix∂y = q∂yix, ix∂z = q∂zix,

iy∂x = q−1j∂xiy + (j − 1)∂yix,

iy∂y = j∂yiy, iy∂z = q∂ziy,(5.6)

iz∂x = q−1j∂xiz + (j − 1)∂zix,

iz∂y = q−1j∂yiz + (j − 1)∂ziy,

iz∂z = j∂ziz.

5.2. Lie derivatives. In this section we find the commutation rules of the Lie deriva-
tives with functions, i.e. the elements of the algebra A, their differentials, etc., using the
approach of [5].

We know, from the classical differential geometry, that the Lie derivative L can be
defined as a linear map from the exterior algebra into itself which takes k-forms to
k-forms. For a 0-form, that is, an ordinary function f , the Lie derivative is just the
contraction of the exterior derivative with the vector field X:

LXf = iXdf.

For a general differential form, the Lie derivative is likewise a contraction, taking into
account the variation in X:

LXα = iXdα+ d(iXα).

For the Z3-graded differential form, the Lie derivative is obtained as the following
formula

Laα = iadα− jd(iaα).
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For example, if we apply this formula to the first relation in (5.3), using the relations
(5.4) we get

Lxx = (ixd− jdix)x

= 1 + j2x{ixd− jdix}+ (j2 − 1)dx ∧ ix

= 1 + j2xLx + (j2 − 1)dx ∧ ix.

Other relations can be similarly obtained. Consequently, we have the following commu-
tation relations:

• the relations between the Lie derivatives and the elements of A

Lxx = 1 + j2xLx + (j2 − 1)dx ∧ ix,

Lxy = q−1yLx + q−1(1− j)dy ∧ ix,

Lxz = q−1zLx + q−1(1− j)dz ∧ ix,

Lyx = qj2xLy + q(j2 − 1)dx ∧ iy,

Lyy = 1 + j2yLy + (j2 − 1)xLx

+ (j2 − 1)dy ∧ iy + (1− j2)(j − 1)dx ∧ ix,(5.7)

Lyz = q−1zLy + q−1(1− j)dz ∧ iy,

Lzx = qj2xLz + q(j2 − 1)dx ∧ iz,

Lzy = qj2yLz + q(j2 − 1)dy ∧ iz,

Lzz = 1 + j2zLz + (j2 − 1)xLx + (j2 − 1)yLy + (j2 − 1)dz ∧ iz

+ (1− j2)(j − 1)dx ∧ ix + (1− j2)(j − 1)dy ∧ iy.

• The relations of the Lie derivatives with the first order differentials

Lxdx = dxLx, Lxdy = q−1jdyLx, Lxdz = q−1jdzLx,

Lydx = qdxLy, Lydy = dyLy + (1− j)dxLx,

Lydz = q−1jdzLy, Lzdx = qdxLz, Lzdy = qdyLz,(5.8)

Lzdz = dzLz + (1− j)dxLx + (1− j)dyLy.

• The relations of the Lie derivatives with the second order differentials

Lxd
2x = jd2xLx + (j − 1)d2yLy + (j − 1)d2zLz,

Lxd
2y = q−1jd2yLx, Lxd

2z = q−1jd2zLx,

Lyd
2x = qd2xLy, Lyd

2y = jd2yLy + (j − 1)d2zLz,(5.9)

Lyd
2z = q−1jd2zLy, Lzd

2x = qd2xLz,

Lzd
2y = qd2yLz, Lzd

2z = jd2zLz.

Other commutation relations can be similarly obtained. To complete the description of
the above scheme, we get below the remaining commutation relations as follows:
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• the Lie derivatives and partial derivatives

Lx∂x = ∂xLx, Lx∂y = qj2∂yLx, Lx∂z = qj2∂zLx,

Ly∂x = q−1∂xLy + (1− j2)∂yLx,

Ly∂y = ∂yLy, Ly∂z = qj2∂zLy,(5.10)

Lz∂x = q−1∂xLz + (1− j2)∂zLx,

Lz∂y = q−1∂yLz + (1− j2)∂zLy,

Lz∂z = ∂zLz.

• the inner derivations

ix ∧ iy = qj2iy ∧ ix, ix ∧ ix ∧ ix = 0,

ix ∧ iz = qj2iz ∧ ix, iy ∧ iy ∧ iy = 0,(5.11)

iy ∧ iz = qj2iz ∧ iy, iz ∧ iz ∧ iz = 0.

• the Lie derivatives and the inner derivations

ixLx = Lxix, ixLy = qLyix, ixLz = qLzix,

iyLx = q−1j2Lxiy, iyLy = Lyiy, iyLz = qLziy,(5.12)

izLx = q−1j2Lxiz, izLy = q−1j2Lyiz, izLz = Lziz.

• the Lie derivatives

LxLy = qjLyLx, LxLz = qjLzLx, LyLz = qjLzLy.(5.13)

Appendix: Quantum matrices in Z3-graded space

In this appendix we shall investigate the quantum matrices in Z3-graded quantum space.
We know, from section 2, that the Z3-graded quantum space is generated by coordinates
x,y and z, and the commutation rules (2.1), which we repeat here,

xy − qyx = 0, yz − qzy = 0, xz − qzx = 0.(5.14)

These relations define a deformation of the algebra of functions on the space generated by
x, y, z and we have denoted it by A. The Z3-graded dual quantum space A∗ is generated
by dx, dy and dz with the relations

dx ∧ dy = qdy ∧ dx, dx ∧ dx ∧ dx = 0,

dx ∧ dz = qdz ∧ dx, dz ∧ dz ∧ dz = 0,(5.15)

dy ∧ dz = qdz ∧ dy, dy ∧ dy ∧ dy = 0.

Let T be a 3x3 matrix in Z3-graded space,

T =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

(5.16)

where aij i, j = 1, 2, 3 with respect to the Z3-grading are of grade 0.
We now consider linear transformations with the following properties:

T : A −→ A, T : A∗ −→ A
∗.(5.17)

The action on the elements of A of T is

 x̂
ŷ
ẑ

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x
y
z

. We

assume that the entries of T are commutative with the elements of A. As a consequence
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of the linear transformations in (5.17) the elements

x̂ = a11x+ a12y + a13z,

ŷ = a21x+ a22y + a23z,(5.18)

ẑ = a31x+ a32y + a33z

should satisfy the relations (5.14). Applying the exterior differential d to the relations
(5.18) one has

dx̂ = a11dx+ a12dy + a13dz,

dŷ = a21dx+ a22dy + a23dz,(5.19)

dẑ = a31dx+ a32dy + a33dz.

These elements must satisfy the relations (5.15). Consequently, we have the following
commutation relations between the matrix elements of T :

aijaik = qaikaij , j < k,

ajiaki = qakiaji, j < k,

aikalj = aljaik, i < l and j > k,(5.20)

aijalk − alkaij = (q − q−1)aikalj , i < l and j < k.

We know that GLq(3) is a quantum group with the above relations. We obtained the
same relations in our work in Z3-graded space. But there is a difference from GLq(3)
because of the property of the q-parameter. In our work q should satisfy the following
relations:

q2 + q + 1 = 0, q3 = 1.

An interesting problem is the construction of a differential calculus on the Z3-graded
quantum group GLq,j(3|0) using the methods of this paper and [3]. Work on this issue
is in progress.
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