A REMARK ON MEROMORPHICALLY MULTIVALENT FUNCTIONS WITH MISSING COEFFICIENTS

Jin-Lin Liu *

Received 02:08:2010 : Accepted 12:03:2012

Abstract

The purpose of the present paper is to derive certain properties of meromorphically multivalent functions with missing coefficients.

Keywords: Analytic function; meromorphically multivalent function, subordination, missing coefficient.

2000 AMS Classification: 30C45.

1. Introduction

Let $\Sigma_{p}(n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} z^{-p+k} \quad(p, n \in N=\{1,2,3, \cdots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disk $U^{*}=\{z: 0<|z|<1\}=U \backslash\{0\}$. For functions $f(z)$ and $g(z)$ analytic in U, we say that $f(z)$ is subordinate to $g(z)$ in U, and we write $f(z) \prec g(z)(z \in U)$, if there exists an analytic function $w(z)$ in U such that

$$
|w(z)| \leq|z| \quad \text { and } \quad f(z)=g(w(z)) \quad(z \in U) .
$$

Furthermore, if the function $g(z)$ is univalent in U, then

$$
f(z) \prec g(z) \quad(z \in U) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) .
$$

Many important properties and characteristics of various interesting subclasses of the class $\Sigma_{p}(n)$ of meromorphically multivalent functions were investigated extensively by several authors (see, e.g., $[1,2,3,4,5,6,7,9,10,11,13]$). In this note we shall derive certain properties of meromorphically multivalent functions with missing coefficients.

[^0]
2. Main results

Our main result is the following.
2.1. Theorem. Let $f(z)$ belong to the class $\Sigma_{p}(n)$ and satisfy

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{z^{-p}} \prec-p\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(0<\gamma \leq 1 ; z \in U) \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\delta)\left(\frac{z f^{\prime}(z)}{-p z^{-p}}\right)^{\frac{1}{\gamma}}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\rho \quad\left(|z|<r_{n}(p, \gamma, \delta, \rho)\right) \tag{2.2}
\end{equation*}
$$

where $0 \leq \rho<1,0<\delta<\frac{1-\rho}{1+p}$ and $r_{n}(p, \gamma, \delta, \rho)$ is the smallest root in $(0,1)$ of the equation

$$
[1+\rho+(p-1) \delta] r^{2 n}-2(1-\delta+n \delta \gamma) r^{n}+1-\rho-(p+1) \delta=0
$$

The result is sharp.
Proof. From (2.1) we can write

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{-p z^{-p}}\right)^{\frac{1}{\gamma}}=\frac{1+z^{n} \varphi(z)}{1-z^{n} \varphi(z)} \tag{2.3}
\end{equation*}
$$

where $\varphi(z)$ is analytic and $|\varphi(z)| \leq 1$ in U. Differentiating both sides of (2.3) logarithmically, we arrive at

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=-p+\frac{2 n \gamma z^{n} \varphi(z)}{1-\left(z^{n} \varphi(z)\right)^{2}}+\frac{2 \gamma z^{n+1} \varphi^{\prime}(z)}{1-\left(z^{n} \varphi(z)\right)^{2}} \quad(z \in U) \tag{2.4}
\end{equation*}
$$

Put $|z|=r<1$ and $\left(\frac{z f^{\prime}(z)}{-p z^{-p}}\right)^{\frac{1}{\gamma}}=u+i v(u, v \in R)$. Then (2.3) implies that

$$
\begin{equation*}
z^{n} \varphi(z)=\frac{u-1+i v}{u+1+i v} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-r^{n}}{1+r^{n}} \leq u \leq \frac{1+r^{n}}{1-r^{n}} \tag{2.6}
\end{equation*}
$$

With the help of the Carathéodory inequality(see also [8]):

$$
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-r^{2}}
$$

it follows from (2.5) that

$$
\begin{align*}
& \operatorname{Re}\left\{(1-\delta)\left(\frac{z f^{\prime}(z)}{-p z^{-p}}\right)^{\frac{1}{\gamma}}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \\
& \geq(1-\delta) u-p \delta+2 n \delta \gamma \operatorname{Re}\left\{\frac{z^{n} \varphi(z)}{1-\left(z^{n} \varphi(z)\right)^{2}}\right\}-2 \delta \gamma\left|\frac{z^{n+1} \varphi^{\prime}(z)}{1-\left(z^{n} \varphi(z)\right)^{2}}\right| \\
& \geq(1-\delta) u-p \delta+\frac{n \delta \gamma}{2}\left(u-\frac{u}{u^{2}+v^{2}}\right)+\frac{\delta \gamma}{2} \frac{(u-1)^{2}+v^{2}-r^{2 n}\left((u+1)^{2}+v^{2}\right)}{r^{n-1}\left(1-r^{2}\right)\left(u^{2}+v^{2}\right)^{1 / 2}} \\
& =F_{n}(u, v) \quad(s a y) \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial v} F_{n}(u, v)=\delta \gamma v G_{n}(u, v) \tag{2.8}
\end{equation*}
$$

where $0<r<1,0<\delta \leq 1$ and

$$
\begin{align*}
& G_{n}(u, v)=\frac{n u}{\left(u^{2}+v^{2}\right)^{2}}+\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)\left(u^{2}+v^{2}\right)^{\frac{1}{2}}} \tag{2.9}\\
&+\frac{r^{2 n}\left((u+1)^{2}+v^{2}\right)-\left((u-1)^{2}+v^{2}\right)}{2 r^{n-1}\left(1-r^{2}\right)\left(u^{2}+v^{2}\right)^{\frac{3}{2}}}>0
\end{align*}
$$

because of (2.5) and (2.6). Since $F_{n}(u, v)$ is a even function of v, from (2.7), (2.8) and (2.9), we see that

$$
\begin{align*}
F_{n}(u, v) \geq F_{n}(u, 0)=(1-\delta) u+p \delta+\frac{n \delta \gamma}{2}\left(u-\frac{1}{u}\right)+ \tag{2.10}\\
\frac{\delta \gamma}{2 r^{n-1}\left(1-r^{2}\right)}\left[\left(1-r^{2 n}\right)\left(u+\frac{1}{u}\right)-2\left(1+r^{2 n}\right)\right]
\end{align*}
$$

Let us now calculate the minimum value of $F_{n}(u, 0)$ on the closed interval $\left[\frac{1-r^{n}}{1+r^{n}}, \frac{1+r^{n}}{1-r^{n}}\right]$. Noting that

$$
\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)} \geq n \quad(\text { see }[12])
$$

and (2.6), we deduce from (2.10) that

$$
\begin{align*}
& \frac{d}{d u} F_{n}(u, 0)=1-\delta+\frac{\delta \gamma}{2}\left[\left(\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)}+n\right)-\frac{1}{u^{2}}\left(\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)}-n\right)\right] \tag{2.11}\\
& \geq 1-\delta+\frac{\delta \gamma}{2}\left[\left(\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)}+n\right)-\right. \\
& \left.\quad\left(\frac{1+r^{n}}{1-r^{n}}\right)^{2}\left(\frac{1-r^{2 n}}{r^{n-1}\left(1-r^{2}\right)}-n\right)\right]=1-\delta+\frac{2 \delta \gamma I_{n}(r)}{\left(1-r^{n}\right)^{2}}
\end{align*}
$$

where

$$
I_{n}(r)=\frac{n}{2}\left(1+r^{2 n}\right)-r\left(1+r^{2}+\cdots+r^{2 n-2}\right)
$$

Also

$$
I_{n}^{\prime}(r)=n^{2} r^{2 n-1}-\left(1+3 r^{2}+\cdots+(2 n-1) r^{2 n-2}\right)
$$

$I_{1}^{\prime}(r)=r-1<0$. Suppose that $I_{n}^{\prime}(r)<0$. Then

$$
\begin{aligned}
I_{n+1}^{\prime}(r) & =(n+1)^{2} r^{2 n+1}-(2 n+1) r^{2 n}-\left(1+3 r^{2}+\cdots+(2 n-1) r^{2 n-2}\right) \\
& <n^{2} r^{2 n}-\left(1+3 r^{2}+\cdots+(2 n-1) r^{2 n-2}\right) \\
& <I_{n}^{\prime}(r)<0
\end{aligned}
$$

Hence, by virtue of the mathematical induction, we have $I_{n}^{\prime}(r)<0$ for all $n \in N$ and $0 \leq r<1$. This implies that

$$
\begin{equation*}
I_{n}(r)>I_{n}(1)=0 \quad(n \in N ; 0 \leq r<1) \tag{2.12}
\end{equation*}
$$

In view of (2.11) and (2.12), we see that

$$
\begin{equation*}
\frac{d}{d u} F_{n}(u, 0)>0 \quad\left(\frac{1-r^{n}}{1+r^{n}} \leq u \leq \frac{1+r^{n}}{1-r^{n}}\right) \tag{2.13}
\end{equation*}
$$

Further it follows from (2.7), (2.10) and (2.13) that

$$
\begin{align*}
& \operatorname{Re}\left\{(1-\delta)\left(\frac{z f^{\prime}(z)}{-p z^{-p}}\right)^{\frac{1}{\gamma}}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}-\rho \geq F_{n}\left(\frac{1-r^{n}}{1+r^{n}}, 0\right)-\rho \\
& =(1-\delta) \frac{1-r^{n}}{1+r^{n}}+\delta \frac{-p-2 n \gamma r^{n}+p r^{2 n}}{1-r^{2 n}}-\rho \\
& =\frac{J_{n}(r)}{1-r^{2 n}} \tag{2.14}
\end{align*}
$$

where

$$
J_{n}(r)=[1+\rho+(p-1) \delta] r^{2 n}-2(1-\delta+n \delta \gamma) r^{n}+1-\rho-(p+1) \delta .
$$

Note that $J_{n}(0)=1-\rho-(p+1) \delta>0$ and $J_{n}(1)=-2 n \delta \gamma<0$. If we let $r_{n}(p, \gamma, \delta, \rho)$ denote the smallest root in $(0,1)$ of the equation $J_{n}(r)=0$, then (2.14) yields the desired result (2.2).

To see that the bound $r_{n}(p, \gamma, \delta, \rho)$ is the best possible, we consider the function

$$
\begin{equation*}
f(z)=-p \int_{0}^{z} t^{-p-1}\left(\frac{1+t^{n}}{1-t^{n}}\right)^{\gamma} d t \tag{2.15}
\end{equation*}
$$

It is clear that for $z=r \in\left(r_{n}(p, \gamma, \delta, \rho), 1\right)$,

$$
(1-\delta)\left(\frac{r f^{\prime}(r)}{-p r^{-p}}\right)^{\frac{1}{\gamma}}+\delta\left(1+\frac{r f^{\prime \prime}(r)}{f^{\prime}(r)}\right)-\rho=\frac{J_{n}(r)}{1-r^{2 n}}<0,
$$

which shows that the bound $r_{n}(p, \gamma, \delta, \rho)$ can not be increased.
Taking $\gamma=1$ in Theorem, we get the following.
2.2. Corollary. Let $f(z)$ belong to the class $\Sigma_{p}(n)$ and satisfy

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{z^{-p}} \prec-p\left(\frac{1+z}{1-z}\right) \quad(z \in U) . \tag{2.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\delta)\left(-\frac{z f^{\prime}(z)}{p z^{-p}}\right)+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\rho \quad\left(|z|<r_{n}(p, 1, \delta, \rho)\right) \tag{2.17}
\end{equation*}
$$

where $0 \leq \rho<1,0<\delta<\frac{1-\rho}{1+p}$ and $r_{n}(p, 1, \delta, \rho)$ is the smallest root in $(0,1)$ of the equation

$$
[1+\rho+(p-1) \delta] r^{2 n}-2(1-\delta+n \delta) r^{n}+1-\rho-(p+1) \delta=0 .
$$

The result is sharp.
Letting $p=1$ in Theorem, we have
2.3. Corollary. Let $f(z)$ belong to the class $\Sigma_{p}(n)$ and satisfy

$$
\begin{equation*}
\frac{f^{\prime}(z)}{z^{-2}} \prec-\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(0<\gamma \leq 1 ; z \in U) . \tag{2.18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\delta)\left(-\frac{f^{\prime}(z)}{z^{-2}}\right)^{\frac{1}{\gamma}}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\rho \quad\left(|z|<r_{n}(1, \gamma, \delta, \rho)\right), \tag{2.19}
\end{equation*}
$$

where $0 \leq \rho<1,0<\delta<\frac{1-\rho}{2}$ and $r_{n}(1, \gamma, \delta, \rho)$ is the smallest root in $(0,1)$ of the equation

$$
(1+\rho) r^{2 n}-2(1-\delta+n \delta \gamma) r^{n}+1-\rho-2 \delta=0
$$

The result is sharp.

3. Acknowledgement

The author would like to express sincere thanks to the referee for careful reading and suggestions which help me to improve the paper.

References

[1] Ali R. M.and Ravichandran, V. Differential subordination for meromorphic functions defined by a linear operator, J. Anal. Appl. 2, 149-158, 2004.
[2] Ali, R. M., Ravichandran V., Seenivasagan, N. Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Sci. Soc. 31 (2), 193-207, 2008.
[3] Ali, R. M. Ravichandran V., Seenivasagan, N. On subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. 33 (2), 311-324, 2010.
[4] Cho, N. E. Kwon O. S., Srivastava, H. M. Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct. 16, 647-659, 2005.
[5] Cho, N. E. Kwon O. S., Srivastava, H. M. Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300, 505-520, 2004.
[6] Cho N. E., Noor, K. I. Inclusion properties for certain classes of meromorphic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal. Appl. 320, 779-786, 2006.
[7] Liu J.-L., Srivastava, H. M. Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Appl. Math. Lett. 16, 13-16, 2003.
[8] MacGregor, T. H. The radius of univalence of certain analytic functions. II, Proc. Amer. Math. Soc. 14, 521-524, 1963.
[9] Ravichandran, V. Kumar S. S., Subramanian, K. G. Convolution conditions for spirallikeness and convex spirallikeness of certain meromorphic p-valent functions, JIPAM. J. Inequal. Pure Appl. Math. 5 (1), Article 11, 7 pp. (electronic), 2004.
[10] Ravichandran, V., Kumar S. S., Darus, M. On a subordination theorem for a class of meromorphic functions, JIPAM. J. Inequal. Pure Appl. Math. 5 (1), Article 8, 4 pp. (electronic), 2004.
[11] Supramaniam, S., Ali, R. M., Lee, S. K., Ravichandran, V. Convolution and differential subordination for multivalent functions, Bull. Malays. Math. Sci. Soc. 32 (2), 351-360, 2009.
[12] Yang D.-G. and Liu, J.-L. On a class of analytic functions with missing coefficients, Appl. Math. Comput. 215, 3473-3481, 2010.
[13] Yuan, S.-M., Liu Z.-M., Srivastava, H. M. Some inclusion relationship and integral preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl. 337, 505-515, 2008.

[^0]: *Department of Mathematics, Yangzhou University, Yangzhou, 225002, P.R.China
 E-mail: jlliu@yzu.edu.cn

