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Abstract

The purpose of the present paper is to derive certain properties of
meromorphically multivalent functions with missing coefficients.

Keywords: Analytic function; meromorphically multivalent function, subordination,
missing coefficient.

2000 AMS Classification: 30C45.

1. Introduction

Let ¥,(n) denote the class of functions of the form
(1) f)=z7P+> az " (pneN={1,23,--}),
k=n

which are analytic in the punctured open unit disk U* = {z: 0 < |z| < 1} = U\ {0}. For
functions f(z) and g(z) analytic in U, we say that f(z) is subordinate to g(z) in U, and
we write f(z) < g(z) (z € U), if there exists an analytic function w(z) in U such that
[w(2)| < 2] and f(2) =g(w(z)) (z€U).
Furthermore, if the function g(z) is univalent in U, then
f(z) <g(z) (z€U) <= f(0)=g(0) and [f(U)Cg(U).

Many important properties and characteristics of various interesting subclasses of the
class ¥p(n) of meromorphically multivalent functions were investigated extensively by
several authors (see, e.g., [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13]). In this note we shall derive
certain properties of meromorphically multivalent functions with missing coefficients.
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2. Main results
Our main result is the following.

2.1. Theorem. Let f(z) belong to the class ¥,(n) and satisfy
/ ¥
en HE (ﬁ) 0<y<1; z€U).

Z7P 1—-=2
Then
1
)\ F 21" (2)
2.2 1- —_ 1 (D, 7, 0, ,
(2.2 Re{< ) (ZLE) s (14 LEY s p (el <rtodin)
where 0 < p < 1,0 < 6§ < %Z and 1, (p,7,9d,p) is the smallest root in (0,1) of the
equation

[1+p+(p—1)8r*" =21 =5 +ndy)r" +1—p— (p+1)5 = 0.

The result is sharp.

Proof. From (2.1) we can write

1

(2.3) <f£z(2) = ii:igz;

where @(z) is analytic and |¢(z)| < 1 in U. Differentiating both sides of (2.3) logarith-
mically, we arrive at

2f"(2) 22" p(2) | 292" (2)
24) 1+ =—p+ + 2 eU).
S [ I O A e o)
1

Put |z| =7 < 1 and (%) " =u+iv (u,v € R). Then (2.3) implies that

n u—1+4+1w
2. ~4—-TW
(2:5) 2"e(z) u+ 14
and
(26) LT << lfT

Tt =4S 1
With the help of the Carathéodory inequality(see also [8]):

_ 2

() < Lo 1PEE
it follows from (2.5) that

2f(2)\ 7 e <z

Re{“ 0 (Z55) +o (1 5 }

>(1-4 5 + 2nd7R s Z) 2 (2)

_( - )ufp + noy e{ Z Z } ‘ ”@(Z))

no~y u 5y (u—1)2 4+ 0% — 2" ((u+ 1) + 0?)

2(1—5)“_1754'7(“_”2_“}2 +7 rn— 1(1—r2)(u2+v)1/2
(2.7) = Fo(u,v) (say)
and

9 b (u,v) = 570G (u,0),

28) 4
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where 0 <r<1,0<d§ <1 and

nu 1— 2"
(u2 + v2)2 + rr=1(1 — r2)(u2 + v2)3
. " (u+1)? + %) — ((u — 1)? +v7)
2rn=1(1 —r2)(u? + v?)2

(2.9)  Gn(u,v) =

>0

because of (2.5) and (2.6). Since F,(u,v) is a even function of v, from (2.7), (2.8) and
(2.9), we see that

(210)  Fu(u,v) > Fuw,0) = (1 - )u+ ps + "7 (u - i) +

sty |- (w 1)~z

1—r" 147"
1+T7L b 17T7L -

Let us now calculate the minimum value of F,, (u, 0) on the closed interval [
Noting that

1—7r"

714”71(1 ) >n  (see [12])

and (2.6), we deduce from (2.10) that

d _ Sy 1—72" 1 1—72n

Sy 1—72"
>1_ == _
Z1m0t s Kr"—lu—r?)”)

14+7\° 11— _ 201, (7)
(i55) (= )] =1 oo e

I,(r) = g(l + 7" — (L4 r° 4 7R,

where

Also
I(r) = n2p2n—t _ 1+ 32 4.4 (2n — 1)7’2"‘2).
Ii(r) = —1<0. Suppose that I;,(r) < 0. Then
()= (n+ 1) — @n+ 1)r® — (14377 + -+ (20— 1)r>"?)
< — (143 4+ (2n — 1)r*" )
< I(r) <O0.

Hence, by virtue of the mathematical induction, we have I,,(r) < 0 for all n € N and
0 < r < 1. This implies that

(2.12) In(r)>I1,(1)=0 (neN; 0<r<1).

In view of (2.11) and (2.12), we see that

d 1—r" 14+
21 —Fn(u, <u< .
(2.13) Tu (u,0) >0 (1—1—7“” u 1—7‘”)
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Further it follows from (2.7), (2.10) and (2.13) that

el (483) o[- F15) o (15500) -

1—r" —p — 2nyr™ 4 pr"
=(1-¢ ) -
( )1 +rr + 1—r2n P
Jn(7)
2.14 = —
1) =20
where

Jn(r) = [L+p+ (p—1)3]r*" —2(1 =5 +néy)r" +1—p— (p+ 1)b.

Note that J,(0) =1—p—(p+1)d > 0 and J,(1) = —2ndy < 0. If we let r,.(p,", 9, p)
denote the smallest root in (0, 1) of the equation J,(r) = 0, then (2.14) yields the desired
result (2.2).

To see that the bound 7, (p,~,d, p) is the best possible, we consider the function

z n\ v
(2.15)  f(z) = 7p/ T (1 Rl ) dt.
o 1—tn
It is clear that for z =7 € (rn(p,7, 9, p), 1),
1
rf(r)\” rf"(r) In(r)

1-0) | —= o1 —-p= 0

1= (I55) +s (4 ) o= i <o
which shows that the bound r,(p,~, d, p) can not be increased.

Taking v = 1 in Theorem, we get the following.

2.2. Corollary. Let f(z) belong to the class Xp(n) and satisfy
2f'(2) 1+ 2
Then
zf'(2) zf"(2)
2.1 1-6)(— 61 n(p, 1,0, R
ean) re{a - (<L) w5 (14 LN ) (el <ratp1.60)
where 0 < p < 1, 0 < § < 32 and 7.(p, 1,6, p) is the smallest root in (0,1) of the

i T+p
equation

lT+p+(p—1)8r"" =21 -6+ nd)r" +1—p— (p+1)5 = 0.

The result is sharp.
Letting p = 1 in Theorem, we have

2.3. Corollary. Let f(z) belong to the class ¥p(n) and satisfy

(2.18) J:Ez)—<—(ii—z>v (0<y<1; z€).

Then
1
MO zf"(2)
2.1 1-6) (- 1 (1,7, 8, p)),
(219) Re{< ) (- LG wo (14 LN >0 (el <ttt
where 0 < p < 1,0 <6 < % and r(1,7,9,p) is the smallest root in (0,1) of the
equation

(1+p)r*" =21 =5 +ndy)r" +1—p—26=0.

The result is sharp. O
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