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Abstract

In this paper, we introduce (g, αg′)-continuous functions, (g, σg′)-
continuous functions, (g, πg′)-continuous functions, and (g, βg′)-
continuous functions on generalized topological spaces. These gener-
alized continuous functions are defined by generalized open sets. We
discuss some characterizations and some applications of them.
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1. Introduction

In [1], Császár introduced the notions of generalized topological spaces and two kinds
of generalized continuous functions. By using these concepts, Min [8] introduced the no-
tions of (αg, g′)-continuity, (σg, g′)-continuity, (πg, g′)-continuity, (βg, g′)-continuity on
GTS. In this paper, we introduce the notions of (g, αg′)-continuous functions, (g, σg′)-
continuous functions, (g, πg′)-continuous functions, and (g, βg′)-continuous functions.
We investigate properties of such functions and the relationships among these conti-
nuities. Some applications of these functions are given too. For example, we discuss the
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properties of the product of generalized topological spaces, connectedness of generalized
topological spaces and compactness of generalized topological spaces.

Let we recall some notions of generalized topological space in [1]. Let X be a nonempty
set and g be a collection of subsets of X. Then g is called a generalized topology (briefly
GT) on X iff ∅ ∈ g and Gi ∈ g for i ∈ I 6= ∅ implies

⋃
i∈I Gi ∈ g. A set with a GT is said

to be a generalized topological space (briefly GTS). The elements of g are called g-open
sets and their complements are called g-closed sets. The generalized interior of a subset
A of X denoted by ig(A) is the union of generalized open sets included in A, and the
generalized closure of A denoted by cg(A) is the intersection of generalized closed sets
including A. It is easy to verify that cg(A) = X− ig(X−A) and ig(A) = X− cg(X−A).
Let Mg denote the union of all elements of g, we say g is strong [3] if Mg = X.

Throughout this paper X and X ′ mean GTS’s (X, g) and (X ′, g′). And the function
f : X → X ′ denotes a single valued function of a space (X, g) into a space (X ′, g′).

1.1. Definition. [4] Let (X, g) be a generalized topological space and A ⊂ X. Then A
is said to be

(1) g-α-open if A ⊂ ig(cg(ig(A)));
(2) g-σ-open (g-semiopen) if A ⊂ cg(ig(A));
(3) g-π-open (g-preopen) if A ⊂ ig(cg(A));
(4) g-β-open if A ⊂ cg(ig(cg(A))).

Let we denote by gX (resp., α(gX), σ(gX), β(gX), π(gX)) the class of all g-open (resp.,
g-α-open, g-σ-open, g-β-open, g-π-open) sets on X. Obviously gX ⊂ α(gX) ⊂ σ(gX) ⊂
β(gX) and α(gX) ⊂ π(gX) ⊂ β(gX).

The complement of g-α-open set (resp., g-σ-open, g-π-open, g-β-open set) is said to be
g-α-closed (resp., g-σ-closed, g-π-closed, g-β-closed). iα(A) (resp., iβ(A), iσ(A), iπ(A))
is denoted by the union of g-α-open (resp.,g-β-open, g-σ-open, g-π-open) sets included
in A, and cα(A) (resp., cβ(A), cσ(A), cπ(A)) is denoted by the intersection of g-α-closed
(resp., g-β-closed, g-σ-closed, g-π-closed) sets including A.

2. On generalized continuity

2.1. Definition. Let (X, g) and (X ′, g′) be GTS’s . Then a function f : X → X ′ is said
to be

(1)[1] (g, g′)-continuous if f−1(V ) is g-open set in X for every g-open set V of X ′.
(2) (g, αg′)-continuous if f−1(V ) is g-open set in X for every g-α-open set V of X ′.
(3) (g, σg′)-continuous if f−1(V ) is g-open set in X for every g-σ-open set V of X ′.
(4) (g, πg′)-continuous if f−1(V ) is g-open set in X for every g-π-open set V of X ′.
(5) (g, βg′)-continuous if f−1(V ) is g-open set in X for every g-β-open set V of X ′.

2.2. Remark. From the definitions stated above, we obtain the following relationship.
(g, βg′)-continuous→ (g, σg′)-continuous→ (g, αg′)-continuous→ (g, g′)-continuous
(g, βg′)-continuous→ (g, πg′)-continuous→ (g, αg′)-continuous→ (g, g′)-continuous

2.3. Example. Let X = X ′ = {a, b, c, d} and g = g′ = {∅, {a}, {a, b, c}} . Then

αg′ = {∅, {a}, {a, b}, {a, c}, {a, b, c}}.

We consider a function f : (X, g) → (X ′, g′) defined by f(a) = a, f(b) = b, f(c) =
c, f(d) = d. Then f is (g, g′)-continuous. However f−1({a, c}) = {a, c} is not in g. So f
is not (g, αg′)-continuous.

2.4. Example. Let X = X ′ = {a, b, c} and g′ = g = {∅, {a, b}} . Then

αg′ = {∅, {a, b}}, σg′ = {∅, {c}, {a, b}, X}, πg′ = {∅, {a}, {b}, {a, b}}.



Some generalized continuities functions on generalized topological spaces 161

We consider a function f : (X, g) → (X ′, g′) defined by f(a) = a, f(b) = b, f(c) = c.
Then f is (g, αg′)-continuous . However f−1({c}) = {c} is not in g and f−1({a}) = {a}
is not in g. So f is neither (g, σg′)-continuous nor (g, πg′)-continuous.

2.5. Example. Let X = X ′ = {a, b, c} and g = {∅, {a}, {b}, {a, b}}, g′ = {∅, {a, b}} .
Then

πg′ = {∅, {a}, {b}, {a, b}}, βg′ = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

We consider a function f : (X, g) → (X ′, g′) defined by f(a) = a, f(b) = b, f(c) = c.
Then f is (g, πg′)-continuous . However f−1({c}) = {c} is not in g. So f is not (g, βg′)-
continuous .

2.6. Example. Let X = X ′ = {a, b, c} and g = {∅, {c}, {a, b}, X}, g′ = {∅, {a, b}} .
Then

σg′ = {∅, {c}, {a, b}, X}, βg′ = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

We consider a function f : (X, g) → (X ′, g′) defined by f(a) = a, f(b) = b, f(c) = c.
Then f is (g, σg′)-continuous . However f−1({a, c}) = {a, c} is not in g. So f is not
(g, βg′)-continuous.

2.7. Theorem. For a function f : (X, g)→ (X ′, g′), the following are equivalent
(1) f is (g, αg′)-continuous (resp., (g, σg′)-continuous, (g, πg′)-continuous, (g, βg′)-

continuous).
(2) f−1(V ) is a g-open set in X, for each g-α-open (resp., g-σ-open, g-π-open, g-β-

open) set V in X ′.
(3) f−1(F ) is a g-closed set in X, for each g-α-closed (resp., g-σ-closed, g-π-closed,

g-β-closed) set F in X ′.
(4) cg(f

−1(B)) ⊂ f−1(cα(B)) (resp., cg(f
−1(B)) ⊂ f−1(cσ(B)), cg(f

−1(B)) ⊂ f−1(cπ(B)),
cg(f

−1(B)) ⊂ f−1(cβ(B))) for each subset B of X ′.
(5)f−1(iα(B)) ⊂ ig(f−1(B)) (resp., f−1(iσ(B)) ⊂ ig(f−1(B)), f−1(iπ(B)) ⊂ ig(f−1(B)),

f−1(iβ(B)) ⊂ ig(f−1(B))) for each subset B of X ′.
(6)f(cg(A)) ⊂ cα(f(A)) (resp., f(cg(A)) ⊂ cσ(f(A)), f(cg(A)) ⊂ cπ(f(A)), f(cg(A)) ⊂

cβ(f(A))) for each subset A of X.

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
(1)⇔ (2) It is obviously by definition.
(2)⇒ (3) Let F be any g-α-closed subset of X ′, set V = X ′−F , so V is a g-α-open set

in X ′. By (2) f−1(V ) is a g-open set in X. So f−1(F ) = X−f−1(X ′−F ) = X−f−1(V )
is a g-closed set in X. (3)⇒ (2) is similar.

(3) ⇒ (4) Let B be any subset of X ′, since cα(B) is a g-α-closed set in X ′. By (3)
f−1(cα(B)) is a g-closed set in X. Thus cg(f

−1(cα(B))) ⊂ f−1(cα(B)). So cg(f
−1(B)) ⊂

f−1(cα(B)).
(4) ⇔ (5) It follows from the conditions of cg(A) = X − ig(X − A) and ig(A) =

X − cg(X −A).
(4)⇒ (6) Let A be any subset of X. By (4)

cg(A) ⊂ cg(f−1(f(A))) ⊂ f−1(cα(f(A)))

Then we have f(cg(A)) ⊂ f(f−1(cα(f(A))) ⊂ cα(f(A)).
(6) ⇒ (3) For any g-α-closed set F in X ′, by (6) f(cg(f

−1(F ))) ⊂ cα(f(f−1(F ))) ⊂
cα(F ). This implies cg(f

−1(F )) ⊂ f−1(cα(F )) = f−1(F ). So f−1(F ) is a g-closed set in
X. �
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3. Some applications

Let K 6= ∅ be an index set and (Xk, gk)(k ∈ K) a class of GTS’s. X =
∏
k∈K Xk is

the Cartesian product of the sets Xk. Let us consider all sets of the form
∏
k∈K Bk where

Bk ∈ gk and, with the exception of a finite number of indices k, Bk = Mgk . We denote
B the collection of all these sets. We call g = g(B) having B as a base the product of the
GT’s gk and denote it by Pk∈Kgk. The GTS (X, g) is called the product of the GTS’s
(Xk, gk). We denote by pk the projection X → Xk and xk = pk(x) for each x ∈ X.

3.1. Lemma. [6] Let A =
∏
k∈K Ak ⊂

∏
k∈K Xk and K0 be a finite subset of K. If

Ak ∈ {Mgk , Xk} for each k ∈ K −K0, then iA =
∏
k∈K ikAk.

3.2. Lemma. [6] If every gk is strong, then each pk is (g, gk)-continuous (resp,. (αg, αgk)-
continuous, (βg, βgk)-continuous, (σg, σgk)-continuous, (πg, πgk)-continuous).

3.3. Theorem. Let X be a strong GTS. Let f : X → X ′ be a function and h : X →
X × X ′ be the graph function of f defined by h(x)=(x, f(x)) for each x ∈ X. If h is
(g, αg′)-continuous (resp,. (g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-continuous),
then f is (g, αg′)-continuous (resp., (g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-
continuous).

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
Let V be any g-α-open set of X ′. Then X×V is a g-α-open set of X×X ′ by Thorem

4.3[5]. Since h is (g, αg′)-continuous, h−1(X × V ) = f−1(V ) is a g-open set in X. Thus
f is (g, αg′)-continuous. �

3.4. Remark. When we assert that h is (g, βg′)-continuous ((g, σg′)-continuous), the
condition that X is strong can be omitted.

Question 1: When we assert that h is (g, αg′)-continuous ((g, πg′)-continuous), can
the condition that X is strong be omitted?

Question 2: Whether is the conclusion valid that if f is (g, αg′)-continuous (resp.,
(g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-continuous) then h is (g, αg′)-continuous
(resp,. (g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-continuous) ?

3.5. Theorem. If a function f : X →
∏
k∈K X

′
k is (g, αg′)-continuous (resp., (g, βg′)-

continuous, (g, σg′)-continuous, (g, πg′)-continuous), and every X ′k is strong, then pk◦f :
X → X ′k is (g, αg′)-continuous (resp., (g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-
continuous) for each k ∈ K, where pk is the projection of

∏
k∈K X

′
k onto X ′k.

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
Let Vk be any g-α-open set of X ′. By lemma 3.2 pk is (αg, αg′)-continuous, so p−1

k (Vk)

is a g-α-open set in
∏
k∈K X

′
k. Since f is (g, αg′)-continuous, then f−1(p−1

k (Vk)) =

(pk ◦ f)−1(Vk) is a g-open set in X. Therefore pk ◦ f is (g, αg′)-continuous. �

3.6. Theorem. Let Xk, X
′
k be strong GTS’s and fk : Xk → X ′k. If the product function

f :
∏
k∈K Xk →

∏
k∈K X

′
k is (g, αg′)-continuous (resp., (g, βg′)-continuous, (g, σg′)-

continuous, (g, πg′)-continuous), then fk : Xk → X ′k is (g, αg′)-continuous (resp., (g, βg′)-
continuous,(g, σg′)-continuous,(g, πg′)-continuous) for each k ∈ K.

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
Let k0 be an arbitrary fixed index in K and Vk0 be any g-α-open set of X ′k0 . Then∏
k 6=k0 X

′
k×Vk0 is a g-α-open set in

∏
k∈K X

′
k. Since f is (g, αg′)-continuous, so f−1(

∏
k 6=k0 X

′
k×

Vk0) =
∏
k 6=k0 Xk × f

−1
k0

(Vk0) is a g-open set in
∏
k∈K Xk. By Lemma 3.1 , f−1

k0
(Vk0) is

a g-open set in Xk0 . This implies that fk0 is (g, αg′)-continuous. �
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3.7. Definition. [7]A space X is said to be g-compact (resp., α-compact, β-compact,
σ-compact, π-compact if every g-open (resp., g-α-open, g-β-open, g-σ-open, g-π-open)
cover of X has a finite subcover.

3.8. Theorem. Let a function f : X → X ′ be (g, αg′)-continuous (resp., (g, βg′)-
continuous, (g, σg′)-continuous, (g, πg′)-continuous), and X is g-compact, then X ′ is
α-compact (resp., β-compact, σ-compact, π-compact)

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
Let χ be a cover of f(x) by g-α-open sets in X ′. Since f is (g, αg′)-continuous,

then {f−1(A) : A ∈ χ} is a g-open cover of X. For X is g-compact, so the cover of
X has a finite subcover {f−1(A) : A ∈ χ′} where χ′ is a finite subfamily of χ. Then
X ′ ⊂

⋃
A∈χ′ f(f−1(A)) =

⋃
A∈χ′ A . Therefore X ′ is α-compact. �

3.9. Definition. [2] A space X is said to be g-connected if there are no nonempty
disjoint sets U, V ⊂ X such that U ∪ V = X.

3.10. Definition. [7]A space (X, g) is said to be α-connected (resp., β-connected, σ-
connected, π-connected), if (X,αg) (resp.,(X,βg), (X,σg), (X,πg)) is connected.

3.11. Theorem. Let (X, g) and (X ′, g′) be GTS’s and the function f : X → X ′ be
(g, αg′)-continuous (resp., (g, βg′)-continuous, (g, σg′)-continuous, (g, πg′)-continuous),
If (X, g) is connected, (X ′, g′) is α-connected (resp., β-connected, σ-connected, π-connected).

Proof. We only prove the case of (g, αg′)-continuity. The others are similar.
Suppose there are two nonempty disjoint g′-α-open subsets U ′, V ′ of X ′, such that

U ′ ∪V ′ = X ′. For f is (g, αg′)-continuous, so f−1(U ′), f−1(V ′) are g-open subsets of X.
And f−1(U ′) ∩ f−1(V ′) = f−1(U ′ ∩ V ′) = ∅, f−1(U ′) ∪ f−1(V ′) = f−1(U ′ ∪ V ′) = X.
So (X, g) is disconnected. Therefore (X ′, g′) is α-connected. �

References
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