SOME GENERALIZED CONTINUITIES FUNCTIONS ON GENERALIZED TOPOLOGICAL SPACES

Chunfang Cao * † ||, Jing Yan [‡] ||, Weiqin Wang * [§] ||, Baoping Wang * ¶ ||

Received 12:23:2011: Accepted 12:03:2012

Abstract

In this paper, we introduce $(g, \alpha g')$ -continuous functions, $(g, \sigma g')$ continuous functions, $(g, \pi g')$ -continuous functions, and $(g, \beta g')$ continuous functions on generalized topological spaces. These generalized continuous functions are defined by generalized open sets. We discuss some characterizations and some applications of them.

Keywords: (g,g')-continuous functions, $(g, \alpha g')$ -continuous functions, $(g, \sigma g')$ - continuous functions, $(g, \pi g')$ -continuous functions, $(g, \beta g')$ -continuous functions

2000 AMS Classification: 54A05; 54D15

1. Introduction

In [1], Császár introduced the notions of generalized topological spaces and two kinds of generalized continuous functions. By using these concepts, Min [8] introduced the notions of $(\alpha g, g')$ -continuity, $(\sigma g, g')$ -continuity, $(\pi g, g')$ -continuity, $(\beta g, g')$ -continuity on GTS. In this paper, we introduce the notions of $(g, \alpha g')$ -continuous functions, $(g, \sigma g')$ continuous functions, $(g, \pi g')$ -continuous functions, and $(g, \beta g')$ -continuous functions. We investigate properties of such functions and the relationships among these continuities. Some applications of these functions are given too. For example, we discuss the

^{*}Department of Mathematics Physics and Information, Taizhou Teachers College, Taizhou 225300, Jiangsu, P.R.China

[†]Email: (C. Cao) ccf85@tom.com

 $^{^{\}ddagger} \rm Department$ of Mathematics and Physics , Jiangsu Teachers University of Technology, Changzhou 213001, Jiangsu, P.R.China

Email: (J. Yan) yanjing@jstu.edu.cn

[§]Email: (W. Wang) jswwq@tom.com

[¶]Email: (B. Wang) hellowangbp@163.com

Supported by the foundation of Taizhou Teachers College(No. 2009-ASL-05).

properties of the product of generalized topological spaces, connectedness of generalized topological spaces and compactness of generalized topological spaces.

Let we recall some notions of generalized topological space in [1]. Let X be a nonempty set and q be a collection of subsets of X. Then q is called a *generalized topology* (briefly GT) on X iff $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $\bigcup_{i \in I} G_i \in g$. A set with a GT is said to be a generalized topological space (briefly GTS). The elements of g are called g-open sets and their complements are called *g-closed* sets. The generalized interior of a subset A of X denoted by $i_q(A)$ is the union of generalized open sets included in A, and the generalized closure of A denoted by $c_q(A)$ is the intersection of generalized closed sets including A. It is easy to verify that $c_g(A) = X - i_g(X - A)$ and $i_g(A) = X - c_g(X - A)$. Let M_g denote the union of all elements of g, we say g is strong [3] if $M_g = X$.

Throughout this paper X and X' mean GTS's (X, g) and (X', g'). And the function $f: X \to X'$ denotes a single valued function of a space (X, g) into a space (X', g').

1.1. Definition. [4] Let (X, q) be a generalized topological space and $A \subset X$. Then A is said to be

(1) g- α -open if $A \subset i_g(c_g(i_g(A)));$

(2) g- σ -open (g-semiopen) if $A \subset c_q(i_q(A))$;

(3) g- π -open (g-preopen) if $A \subset i_g(c_g(A))$;

(4) g- β -open if $A \subset c_a(i_a(c_a(A)))$.

Let we denote by g_X (resp., $\alpha(g_X), \sigma(g_X), \beta(g_X), \pi(g_X)$) the class of all g-open (resp., g- α -open, g- σ -open, g- β -open, g- π -open) sets on X. Obviously $g_X \subset \alpha(g_X) \subset \sigma(g_X) \subset$ $\beta(q_X)$ and $\alpha(q_X) \subset \pi(q_X) \subset \beta(q_X)$.

The complement of g- α -open set (resp., g- σ -open, g- π -open, g- β -open set) is said to be q- α -closed (resp., q- σ -closed, q- π -closed, q- β -closed). $i_{\alpha}(A)$ (resp., $i_{\beta}(A), i_{\sigma}(A), i_{\pi}(A)$) is denoted by the union of g- α -open (resp., g- β -open, g- σ -open, g- π -open) sets included in A, and $c_{\alpha}(A)$ (resp., $c_{\beta}(A), c_{\sigma}(A), c_{\pi}(A)$) is denoted by the intersection of q- α -closed (resp., g- β -closed, g- σ -closed, g- π -closed) sets including A.

2. On generalized continuity

2.1. Definition. Let (X, q) and (X', q') be GTS's. Then a function $f: X \to X'$ is said to be

- (1)[1] (g,g')-continuous if $f^{-1}(V)$ is g-open set in X for every g-open set V of X'.
- (2) $(g, \alpha g')$ -continuous if $f^{-1}(V)$ is g-open set in X for every g- α -open set V of X'. (3) $(g, \sigma g')$ -continuous if $f^{-1}(V)$ is g-open set in X for every g- σ -open set V of X'.
- (4) $(g, \pi g')$ -continuous if $f^{-1}(V)$ is g-open set in X for every g- π -open set V of X'.
- (5) $(g, \beta g')$ -continuous if $f^{-1}(V)$ is g-open set in X for every g- β -open set V of X'.
- **2.2. Remark.** From the definitions stated above, we obtain the following relationship. $(g, \beta g')$ -continuous $\rightarrow (g, \sigma g')$ -continuous $\rightarrow (g, \alpha g')$ -continuous $\rightarrow (g, g')$ -continuous $(q, \beta q')$ -continuous $\rightarrow (q, \pi q')$ -continuous $\rightarrow (q, \alpha q')$ -continuous $\rightarrow (q, q')$ -continuous

2.3. Example. Let $X = X' = \{a, b, c, d\}$ and $g = g' = \{\emptyset, \{a\}, \{a, b, c\}\}$. Then

 $\alpha q' = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}.$

We consider a function $f: (X,g) \to (X',g')$ defined by f(a) = a, f(b) = b, f(c) = bc, f(d) = d. Then f is (g, g')-continuous. However $f^{-1}(\{a, c\}) = \{a, c\}$ is not in g. So f is not $(q, \alpha q')$ -continuous.

2.4. Example. Let $X = X' = \{a, b, c\}$ and $g' = g = \{\emptyset, \{a, b\}\}$. Then

 $\alpha q' = \{\emptyset, \{a, b\}\}, \quad \sigma q' = \{\emptyset, \{c\}, \{a, b\}, X\}, \quad \pi q' = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$

We consider a function $f : (X, g) \to (X', g')$ defined by f(a) = a, f(b) = b, f(c) = c. Then f is $(g, \alpha g')$ -continuous. However $f^{-1}(\{c\}) = \{c\}$ is not in g and $f^{-1}(\{a\}) = \{a\}$ is not in g. So f is neither $(g, \sigma g')$ -continuous nor $(g, \pi g')$ -continuous.

2.5. Example. Let $X = X' = \{a, b, c\}$ and $g = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, g' = \{\emptyset, \{a, b\}\}$. Then

$$\pi g' = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \quad \beta g' = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

We consider a function $f : (X,g) \to (X',g')$ defined by f(a) = a, f(b) = b, f(c) = c. Then f is $(g, \pi g')$ -continuous. However $f^{-1}(\{c\}) = \{c\}$ is not in g. So f is not $(g, \beta g')$ -continuous.

2.6. Example. Let $X = X' = \{a, b, c\}$ and $g = \{\emptyset, \{c\}, \{a, b\}, X\}, g' = \{\emptyset, \{a, b\}\}$. Then

$$\sigma g' = \{\emptyset, \{c\}, \{a, b\}, X\}, \quad \beta g' = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

We consider a function $f : (X,g) \to (X',g')$ defined by f(a) = a, f(b) = b, f(c) = c. Then f is $(g, \sigma g')$ -continuous. However $f^{-1}(\{a,c\}) = \{a,c\}$ is not in g. So f is not $(g, \beta g')$ -continuous.

2.7. Theorem. For a function $f: (X,g) \to (X',g')$, the following are equivalent

(1) f is $(g, \alpha g')$ -continuous (resp., $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous, $(g, \beta g')$ -continuous).

(2) $f^{-1}(V)$ is a g-open set in X, for each g- α -open (resp., g- σ -open, g- π -open, g- β -open) set V in X'.

(3) $f^{-1}(F)$ is a g-closed set in X, for each g- α -closed (resp., g- σ -closed, g- π -closed, g- β -closed) set F in X'.

 $\begin{array}{l} (4) \, c_g(f^{-1}(B)) \subset f^{-1}(c_{\alpha}(B)) \ (resp., \, c_g(f^{-1}(B)) \subset f^{-1}(c_{\sigma}(B)), \, c_g(f^{-1}(B)) \subset f^{-1}(c_{\pi}(B)), \\ c_g(f^{-1}(B)) \subset f^{-1}(c_{\beta}(B))) \ for \ each \ subset \ B \ of \ X'. \end{array}$

 $(5)f^{-1}(i_{\alpha}(B)) \subset i_{g}(f^{-1}(B)) \text{ (resp., } f^{-1}(i_{\sigma}(B)) \subset i_{g}(f^{-1}(B)), f^{-1}(i_{\pi}(B)) \subset i_{g}(f^{-1}(B)), f^{-1}(i_{\pi}(B)) \subset i_{g}(f^{-1}(B))) \text{ for each subset } B \text{ of } X'.$

 $(6)f(c_g(A)) \subset c_{\alpha}(f(A)) \ (resp., f(c_g(A)) \subset c_{\sigma}(f(A)), f(c_g(A)) \subset c_{\pi}(f(A)), f(c_g(A)) \subset c_{\beta}(f(A))) \ for each subset A of X.$

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

 $(1) \Leftrightarrow (2)$ It is obviously by definition.

(2) \Rightarrow (3) Let *F* be any *g*- α -closed subset of *X'*, set V = X' - F, so *V* is a *g*- α -open set in *X'*. By (2) $f^{-1}(V)$ is a *g*-open set in *X*. So $f^{-1}(F) = X - f^{-1}(X' - F) = X - f^{-1}(V)$ is a *g*-closed set in *X*. (3) \Rightarrow (2) is similar.

 $(3) \Rightarrow (4)$ Let B be any subset of X', since $c_{\alpha}(B)$ is a g- α -closed set in X'. By (3) $f^{-1}(c_{\alpha}(B))$ is a g-closed set in X. Thus $c_g(f^{-1}(c_{\alpha}(B))) \subset f^{-1}(c_{\alpha}(B))$. So $c_g(f^{-1}(B)) \subset f^{-1}(c_{\alpha}(B))$.

(4) \Leftrightarrow (5) It follows from the conditions of $c_g(A) = X - i_g(X - A)$ and $i_g(A) = X - c_g(X - A)$.

 $(4) \Rightarrow (6)$ Let A be any subset of X. By (4)

$$c_g(A) \subset c_g(f^{-1}(f(A))) \subset f^{-1}(c_\alpha(f(A)))$$

Then we have $f(c_g(A)) \subset f(f^{-1}(c_\alpha(f(A)))) \subset c_\alpha(f(A))$.

(6) \Rightarrow (3) For any g- α -closed set F in X', by (6) $f(c_g(f^{-1}(F))) \subset c_\alpha(f(f^{-1}(F))) \subset c_\alpha(F)$. This implies $c_g(f^{-1}(F)) \subset f^{-1}(c_\alpha(F)) = f^{-1}(F)$. So $f^{-1}(F)$ is a g-closed set in X.

3. Some applications

Let $K \neq \emptyset$ be an index set and $(X_k, g_k)(k \in K)$ a class of GTS's. $X = \prod_{k \in K} X_k$ is the Cartesian product of the sets X_k . Let us consider all sets of the form $\prod_{k \in K} B_k$ where $B_k \in g_k$ and, with the exception of a finite number of indices $k, B_k = M_{g_k}$. We denote \mathfrak{B} the collection of all these sets. We call $g = g(\mathfrak{B})$ having \mathfrak{B} as a base the product of the GT's g_k and denote it by $P_{k \in K} g_k$. The GTS (X, g) is called the product of the GTS's (X_k, g_k) . We denote by p_k the projection $X \to X_k$ and $x_k = p_k(x)$ for each $x \in X$.

3.1. Lemma. [6] Let $A = \prod_{k \in K} A_k \subset \prod_{k \in K} X_k$ and K_0 be a finite subset of K. If $A_k \in \{M_{g_k}, X_k\}$ for each $k \in K - K_0$, then $iA = \prod_{k \in K} i_k A_k$.

3.2. Lemma. [6] If every g_k is strong, then each p_k is (g, g_k) -continuous (resp., $(\alpha g, \alpha g_k)$ -continuous, $(\beta g, \beta g_k)$ -continuous, $(\sigma g, \sigma g_k)$ -continuous, $(\pi g, \pi g_k)$ -continuous).

3.3. Theorem. Let X be a strong GTS. Let $f : X \to X'$ be a function and $h : X \to X \times X'$ be the graph function of f defined by h(x)=(x, f(x)) for each $x \in X$. If h is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous), then f is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous).

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

Let V be any g- α -open set of X'. Then $X \times V$ is a g- α -open set of $X \times X'$ by Thorem 4.3[5]. Since h is $(g, \alpha g')$ -continuous, $h^{-1}(X \times V) = f^{-1}(V)$ is a g-open set in X. Thus f is $(g, \alpha g')$ -continuous.

3.4. Remark. When we assert that h is $(g, \beta g')$ -continuous $((g, \sigma g')$ -continuous), the condition that X is strong can be omitted.

Question 1: When we assert that h is $(g, \alpha g')$ -continuous $((g, \pi g')$ -continuous), can the condition that X is strong be omitted?

Question 2: Whether is the conclusion valid that if f is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous) then h is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous) ?

3.5. Theorem. If a function $f : X \to \prod_{k \in K} X'_k$ is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous), and every X'_k is strong, then $p_k \circ f : X \to X'_k$ is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ continuous) for each $k \in K$, where p_k is the projection of $\prod_{k \in K} X'_k$ onto X'_k .

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

Let V_k be any g- α -open set of X'. By lemma 3.2 p_k is $(\alpha g, \alpha g')$ -continuous, so $p_k^{-1}(V_k)$ is a g- α -open set in $\prod_{k \in K} X'_k$. Since f is $(g, \alpha g')$ -continuous, then $f^{-1}(p_k^{-1}(V_k)) = (p_k \circ f)^{-1}(V_k)$ is a g-open set in X. Therefore $p_k \circ f$ is $(g, \alpha g')$ -continuous.

3.6. Theorem. Let X_k, X'_k be strong GTS's and $f_k : X_k \to X'_k$. If the product function $f : \prod_{k \in K} X_k \to \prod_{k \in K} X'_k$ is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous), then $f_k : X_k \to X'_k$ is $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous, $(g, \pi g')$ -continuous) for each $k \in K$.

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

Let k_0 be an arbitrary fixed index in K and V_{k_0} be any g- α -open set of X'_{k_0} . Then $\prod_{k \neq k_0} X'_k \times V_{k_0}$ is a g- α -open set in $\prod_{k \in K} X'_k$. Since f is $(g, \alpha g')$ -continuous, so $f^{-1}(\prod_{k \neq k_0} X'_k \times V_{k_0}) = \prod_{k \neq k_0} X_k \times f^{-1}_{k_0}(V_{k_0})$ is a g-open set in $\prod_{k \in K} X_k$. By Lemma 3.1, $f^{-1}_{k_0}(V_{k_0})$ is a g-open set in X_{k_0} . This implies that f_{k_0} is $(g, \alpha g')$ -continuous. \Box

162

3.7. Definition. [7]A space X is said to be g-compact (resp., α -compact, β -compact, σ -compact, π -compact if every g-open (resp., g- α -open, g- β -open, g- σ -open, g- π -open) cover of X has a finite subcover.

3.8. Theorem. Let a function $f : X \to X'$ be $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous), and X is g-compact, then X' is α -compact (resp., β -compact, σ -compact, π -compact)

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

Let χ be a cover of f(x) by g- α -open sets in X'. Since f is $(g, \alpha g')$ -continuous, then $\{f^{-1}(A) : A \in \chi\}$ is a g-open cover of X. For X is g-compact, so the cover of X has a finite subcover $\{f^{-1}(A) : A \in \chi'\}$ where χ' is a finite subfamily of χ . Then $X' \subset \bigcup_{A \in \chi'} f(f^{-1}(A)) = \bigcup_{A \in \chi'} A$. Therefore X' is α -compact. \Box

3.9. Definition. [2] A space X is said to be *g*-connected if there are no nonempty disjoint sets $U, V \subset X$ such that $U \cup V = X$.

3.10. Definition. [7]A space (X,g) is said to be α -connected (resp., β -connected, σ -connected), if $(X, \alpha g)$ (resp., $(X, \beta g), (X, \sigma g), (X, \pi g)$) is connected.

3.11. Theorem. Let (X,g) and (X',g') be GTS's and the function $f : X \to X'$ be $(g, \alpha g')$ -continuous (resp., $(g, \beta g')$ -continuous, $(g, \sigma g')$ -continuous, $(g, \pi g')$ -continuous), If (X,g) is connected, (X',g') is α -connected (resp., β -connected, σ -connected, π -connected).

Proof. We only prove the case of $(g, \alpha g')$ -continuity. The others are similar.

Suppose there are two nonempty disjoint g'- α -open subsets U', V' of X', such that $U' \cup V' = X'$. For f is $(g, \alpha g')$ -continuous, so $f^{-1}(U'), f^{-1}(V')$ are g-open subsets of X. And $f^{-1}(U') \cap f^{-1}(V') = f^{-1}(U' \cap V') = \emptyset$, $f^{-1}(U') \cup f^{-1}(V') = f^{-1}(U' \cup V') = X$. So (X, g) is disconnected. Therefore (X', g') is α -connected. \Box

References

- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351–357, 2002.
- [2] Á. Császár, γ-connected sets, Acta Math. Hungar., 101, 273–279, 2003.
- [3] Á. Császár, Exremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47, 91–96, 2004.
- [4] A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, 53– 66, 2005.
- [5] Á. Császár, Product of generalized topologies, Acta Math. Hungar., 134, 132–138, 2009.
- [6] R. Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124, 363–369, 2009.
- [7] R. Shen, A note on generalized connectedness, Acta Math. Hungar., 122, 231–235, 2009.
- [8] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128, 299–306, 2010.