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Abstract

We deal with soft rings based on some fuzzy sets, in particular, by
using the so called ∈ −soft sets and q-soft sets. Some characterization
theorems of soft rings defined on soft sets are given and soft regular
rings are hence characterized by special soft sets.
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1. Introduction

In dealing with the complicated problems in economics, engineering and environmental
sciences, we are usually unable to apply the classical methods because there are various
uncertainties in these problems. There are three theories involved, namely, the theory of
probability, the theory of fuzzy sets and the interval mathematics which are considered
as the fundamental tools in dealing with uncertainties, however all these theories have
their own difficulties. Since uncertainties cannot be simply handled by using traditional
mathematics, one has to apply a wider range of existing theories such as probability,
intuitionistic fuzzy sets, vague sets, interval mathematics, rough sets and so on to deal
with the situation. It is noted that all these theories have their own difficulties which
have been pointed out in [13]. Maji et al. [12] and Molodtsov [13] have observed that
one reason for these difficulties may be due to the inadequacy of the parametrization
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tools of the theory. In order to overcome these difficulties, Molodtsov [13] introduced the
concept of soft set which can be regarded as a new mathematical tool in dealing with
uncertainties. Molodtsov also pointed out several directions for the applications of soft
sets. In recent years, research on soft set theory has been developed rapidly. Maji et al.
[11] described the application of soft set theory to a decision making problem. Chen et
al. [3] have recently presented a new definition of soft set parametrization reduction and
compared their definition to the related concept of attributes reduction in rough sets.
The algebraic structure of set theories dealing with uncertainties has been investigated
by some authors and the algebraic theories dealing with uncertainties have also been
studied by them. The most appropriate theories for dealing with uncertainties are based
on the theory of fuzzy sets established by Zadeh in 1965 (see [18, 19]).

The notion of soft sets for BCK/BCI-algebras was considered by Jun in [5]. He
introduced the notions of soft BCK/BCI-algebras and investigated their basic properties
[6]. Aktas et al. [1] further studied the basic concept of soft set theory and compared
soft sets to fuzzy and rough sets, providing some examples to clarify their differences. It
is noteworthy that Feng et al. have started to investigate the structure of soft semirings
in [4].

After the concept of fuzzy sets introduced by Zadeh [8] in 1965, there are many pa-
pers devoted to fuzzify the classical mathematics into fuzzy mathematics. Because the
importance of group theory in mathematics as well as its applications in many disci-
plines, the notion of fuzzy subgroups was defined by Rosenfeld in 1971. Fuzzy algebraic
structures then play a prominent role in mathematics with a wider range of applications
in many disciplines such as theoretical physics, computer sciences, control engineering,
information sciences, coding theory, topological spaces and so on. These applications
provide sufficient motivation for researchers to review various concepts and results from
the realm of abstract algebra to a broader framework of fuzzy setting. Some recent
research on algebras can be found in [9, 10, 16, 17, 20-22].

The definition of soft rings has been recently proposed in [8]. Some properties of soft
rings were described and isomorphism theorems were established [8]. As a continuation
of the above paper, we now continue to study the soft rings by using some special soft
sets. The concepts of idealistic soft rings, bi-idealistic soft rings and quasi-idealistic soft
rings generated by soft sets are introduced. As a consequence, the relationships between
soft rings and their fuzzy subrings (ideals) are described. As a result, the regular rings
and soft regular rings are characterized by using special soft sets.

The notions, definitions and terminology used in this paper are standard. For some
definitions and notations not given in this paper, the reader is referred to [8] and [18] if
necessary.

2. Preliminaries

In this section, for the sake of completeness, we first cite some useful definitions and
results.

Throughout this paper, R is a ring.

2.1. Definition ([7]). A subring B of R is called a bi-ideal of R if BRB ⊂ B. A subring
Q of R is called a quasi-ideal of R if RQ

⋂
QR ⊂ Q.

It is clear that any left (right) ideal of R is a quasi-ideal of R, and any quasi-ideal of
R is a bi-ideal of R.

2.2. Definition ([10]). A fuzzy subset µ in a set X is a function µ : X −→ [0, 1]. If λ
and µ are two fuzzy subsets in X, then the intrinsic product λ ∗ µ is a fuzzy subset in X
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defined by
(λ ∗ µ)(x) = sup

x=Σfiniteaibi

(min{λ(ai), µ(bi)}) .

2.3. Definition ([10]). A fuzzy subset µ in a set X of the form

µ(y) =

{
t ∈ (0, 1] if y = x,

0 if y 6= x.

is called a fuzzy point with support x and value t, denoted by xt.

2.4. Definition ([10]). A fuzzy point xt is said to “belong to” (resp., be quasicoincident
with) a fuzzy set µ, written by xt ∈ µ (resp., xtqµ) if µ(x) ≥ t (resp., µ(x) + t > 1).

If xt ∈ µ or xtqµ, then we write xt ∈ ∨qµ. If µ(x) < t (resp., µ(x) + t ≤ 1), then we
write xt∈µ (resp., xtqµ). The symbol ∈ ∨q is to mean that ∈ ∨q does not hold.

2.5. Definition ([14]). A fuzzy set µ in a ring R is said to be a fuzzy subring of R if
the following conditions hold for all x, y ∈ R : (1) µ(x − y) ≥ min{µ(x), µ(y)}, and (2)
µ(xy) ≥ min{µ(x), µ(y)}.

2.6. Definition ([7, 14]). (i) A fuzzy set µ in a ring R is said to be a fuzzy left (right)
ideal of R if the following conditions hold for all x, y ∈ R : (1) µ(x−y) ≥ min{µ(x), µ(y)},
and (3) µ(xy) ≥ µ(y) (µ(xy) ≥ µ(x)).

(ii) A fuzzy set µ is said to be a fuzzy ideal of R if it is both a fuzzy left ideal of R
and a fuzzy right ideal of R.

(iii) A fuzzy set µ is called a fuzzy bi-ideal of R if it satisfies conditions (1), (2) and
(4) µ(xyz) ≥ min{µ(x), µ(z)}, for all x, y, z ∈ R.

(iv) A fuzzy set µ is said to be a fuzzy quasi-ideal of R if the conditions (1) and (5)
(µ ∗ χR)

⋂
(χR ∗ µ)(x) ≤ µ(x) hold for all x ∈ R, where χR is the characteristic function

of R.

We next cite the following result.

2.7. Proposition ([7, 14]). A fuzzy set µ in a ring R is a fuzzy subring(ideal, bi-ideal,
quasi-ideal) of R if and only if U(µ, α) = {x ∈ R | µ(x) ≥ α) is a subring(ideal, bi-ideal,
quasi-ideal) of R, respectively.

3. Soft rings

The concept of soft set was first defined by Molodtsov in 1999 (see [13]).

3.1. Definition. (i) [13] Let P (U) be the power set of U and A ⊂ E, where E is a set
of parameters. Then a pair (F,A) is called a soft set over U if F is a mapping given by
F : A→ P (U).

(ii) [13] Let (F,A) and (G,B) be two soft sets over U . Then (F,A) is said to be a soft
subset of (G,B) if the following conditions are satisfied:

(1) A ⊂ B and
(2) for all x ∈ A, F (x) ⊂ G(x).

We now denote the above inclusion relationship by (F,A)⊂̃(G,B). Similarly, we call
(F,A) a soft superset of (G,B) if (G,B) is a soft subset of (F,A). Denoted the above
relationship by (F,A)⊃̃(G,B).

3.2. Definition. (i) [13] Two soft sets (F,A) and (G,B) over U are said to be soft equal
if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of (F,A).

(ii) [1] The product of two soft sets (F,A) and (G,B) over U is the soft set (H,A×B),
where H(x, y) = F (x)G(y), (x, y) ∈ A×B. This product is denoted by (F,A) ∗ (G,B) =
(H,A×B).
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(iii) [1] If (F,A) and (G,B) are soft sets over U , then we define the soft set (F,A) ∧
(G,B), where (F,A) ∧ (G,B) is defined as (H,A × B), where H(x, y) = F (x) ∩ G(y),
(x, y) ∈ A×B.

Let A be a nonempty set. We now use ρ to denote an arbitrary binary relation between
an element of A and an element of the ring R. Then, a set-valued function F : A→ P (R)
can be defined by F (x) = {y ∈ R | (x, y) ∈ ρ, x ∈ A}.

3.3. Definition. (i) [8] Let (F,A) be a soft set over R. Then (F,A) is said to be a soft
ring over R if and only if F (x) is a subring of R for all x ∈ A. For the sake of convenience,
the empty set ∅ here is regarded as a subring of R.

(ii) [8] Let (F,A) be a soft ring over a ring R. Then (F,A) is said to be an absolute
soft ring over R if F (x) = R for all x ∈ A.

3.4. Definition. Given a fuzzy set µ in any ring R and A ⊂ [0, 1], consider the following
two set-valued functions

F : A→ P(R), t 7→ {x ∈ R | xt ∈ µ}

and

Fq : A→ P(R), t 7→ {x ∈ R | xt qµ}.

Then (F , A) and (Fq, A) are called an “∈-soft set” and “q-soft set” over R, respec-
tively.

In the following propositions, we characterize the soft rings over R by fuzzy subrings
of R.

The following proposition follows directly from Proposition 2.7.

3.5. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (F , A) is a
soft ring over R if and only if µ is a fuzzy subring of R.

3.6. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (Fq, A) is a
soft ring over R if and only if µ is a fuzzy subring of R.

Proof. Assume that (Fq, A) is a soft ring over R. Then for all t ∈ A, Fq(t) is a subring
of R. If there exist a, b ∈ R such that µ(a − b) < min{µ(a), µ(b)}, then we can choose
t ∈ A such that µ(a − b) + t ≤ 1 < min{µ(a), µ(b)} + t. Hence, µ(a) + t > 1 and
µ(b)+ t > 1, but µ(a− b)+ t ≤ 1, i.e., a, b ∈ Fq(t). However, we have a− b∈Fq(t), which
is a contradiction. Thus, µ(x− y) ≥ min{µ(x), µ(y)}, for all x, y ∈ R. In the same way,
we can also prove that µ(xy) ≥ min{µ(x), µ(y)}, for all x, y ∈ R. Therefore, µ is a fuzzy
subring of R.

Conversely, suppose that µ is a fuzzy subring of R. Let t ∈ A and x, y ∈ Fq(t). Then
µ(x − y) + t ≥ min{µ(x), µ(y)} + t > 1 and µ(xy) + t ≥min{µ(x), µ(y)} + t > 1, and
so x − y ∈ Fq(t) and xy ∈ Fq(t). This proves that Fq(t) is a subring of R and hence
(Fq, A) is a soft ring over R. �

We now introduce a special fuzzy subring of R.

3.7. Definition ([2]). We call a fuzzy set µ an (∈,∈ ∨q)-fuzzy subring of R if for all
t, r ∈ (0, 1] and x, y ∈ R, the following conditions hold:

(A1) xt ∈ µ and yr ∈ µ imply (x− y)min(t,r) ∈ ∨qµ,
(A2) xt ∈ µ and yr ∈ µ imply (xy)min(t,r) ∈ ∨qµ.

In view of the above definition, we have the following lemma.
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3.8. Lemma ([2]). A fuzzy set µ in a ring R is an (∈,∈ ∨q)-fuzzy subring of R if and
only if for all x, y ∈ R, the following conditions hold:

(B1) µ(x− y) ≥ min{µ(x), µ(y), 0.5},
(B2) µ(xy) ≥ min{µ(x), µ(y), 0.5}

In the following theorem, we show that the soft rings can be described by the (∈,∈ ∨q)-
fuzzy subrings of R.

3.9. Theorem. Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (F , A) is a soft
ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy subring of R.

Proof. Assume that (F , A) is a soft ring over R. Then F (t) is a subring of R for all
t ∈ A. If there exist x, y ∈ R such that µ(x − y) < min{µ(x), µ(y), 0.5}, then we can
choose t ∈ (0, 1] such that µ(x − y) < t ≤ min{µ(x), µ(y), 0.5}. Thus 0 < t ≤ 0.5,
µ(x) ≥ t, µ(y) ≥ t and µ(x − y) < t, that is, x, y ∈ F (t), but x − y∈F (t) which is
a contradiction. Hence, µ(x − y) ≥ min{µ(x), µ(y), 0.5}. In the same way, we can also
prove that µ(xy) ≥ min{µ(x), µ(y), 0.5}. By Lemma 3.8, µ is an (∈,∈ ∨q)-fuzzy subring
of R.

Conversely, suppose that µ is an (∈,∈ ∨q)-fuzzy subring of R. Let t ∈ A. Then,
by Lemma 3.8, we can deduce that µ(x − y) ≥ min{µ(x), µ(y), 0.5} and µ(xy) ≥
min{µ(x), µ(y), 0.5}, for all x, y ∈ R. If x, y ∈ F (t), then µ(x) ≥ t and µ(y) ≥ t.
These imply that µ(x− y) ≥ min{µ(x), µ(y), 0.5} ≥ min{t, 0.5} = t and so x− y ∈ F (t).
We can also show that xy ∈ F (t). Thus F (t) is a subring of R and (F , A) is indeed a
soft ring over R. �

The (∈,∈ ∨ q)-fuzzy subring of R can be defined as the same as an (∈,∈ ∨ q)-fuzzy
h-bi-ideals of R in [10].

3.10. Definition. A fuzzy set µ is said to be an (∈,∈ ∨ q)-fuzzy subring of R if for all
t, r ∈ (0, 1] and x, y ∈ R, the following conditions hold:

(C1) (x− y)min(t,r)∈µ implies xt∈ ∨ qµ or yr∈ ∨ qµ
(C2) (xy)min(t,r)∈µ implies xt∈ ∨ qµ or yr∈ ∨ qµ.

We have the following same conclusion as in [10].

3.11. Lemma. A fuzzy set µ in a ring R is an (∈,∈∨ q)-fuzzy subring of R if and only
if for all x, y ∈ R, the following conditions hold:

(D1) max{µ(x− y), 0.5} ≥ min{µ(x), µ(y)},
(D2) max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}.

3.12. Theorem. Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (F , A) is a
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy subring of R.

Proof. Let (F , A) be a soft ring over R. Then F (t) is a subring of R for all t ∈ A. If
there exist x, y ∈ R such that max{µ(x − y), 0.5} < t ≤ min{µ(x), µ(y)}, then t ∈ A,
x, y ∈ F (t), but x − y∈F (t), which is a contradiction. Hence, max{µ(x − y), 0.5} ≥
min{µ(x), µ(y)}. In the same way, we can prove that max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}.
Hence, by Lemma 3.11, µ is an (∈,∈ ∨ q)-fuzzy subring of R.

Conversely, suppose that µ is an (∈,∈∨q)-fuzzy subring ofR. Then x, y ∈ R,max{µ(x−
y), 0.5} ≥ min{µ(x), µ(y)} and max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}. If we let t ∈ A with
x, y ∈ F (t), then µ(x) ≥ t > 0.5, µ(y) ≥ t > 0.5, and hence max{µ(x − y), 0.5} ≥
min{µ(x), µ(y)} ≥ t,max{µ(xy), 0.5} ≥ min{µ(x), µ(y)} ≥ t. Thus, µ(x − y) ≥ t and
µ(xy) ≥ t, that is, x− y ∈ F (t) and xy ∈ F (t). These show that F (t) is a subring of R
and (F , A) is a soft ring over R. �

We next formulate the following theorems by using q-soft sets.
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3.13. Theorem. Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (Fq, A) is a
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy subring of R.

Proof. Assume that (Fq, A) is a soft ring over R. Then Fq(t) is a subring of R for all
t ∈ A. If there exist x, y ∈ R such that max{µ(x − y), 0.5} < min{µ(x), µ(y)}, then we
can select t ∈ A such that max{µ(x−y), 0.5}+ t ≤ 1 < min{µ(x), µ(y)}+ t, x, y ∈ Fq(t),
but x−y∈Fq(t), which is a contradiction. Hence, max{µ(x−y), 0.5} ≥ min{µ(x), µ(y)}.
In the same way, we can also prove that max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}. It hence
follows from Lemma 3.11 that µ is an (∈,∈ ∨ q)-fuzzy subring of R.

Conversely, suppose that µ is an (∈,∈∨q)-fuzzy subring ofR. Then x, y ∈ R,max{µ(x−
y), 0.5} ≥ min{µ(x), µ(y)} and max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}. Let t ∈ A so that
x, y ∈ Fq(t). Then µ(x) + t > 1, µ(y) + t > 1, hence, max{µ(x − y), 0.5} + t ≥
min{µ(x), µ(y)}+ t, max{µ(xy), 0.5}+ t ≥ min{µ(x), µ(y)}+ t. Thus, µ(x− y) + t > 1
and µ(xy) + t > 1, i.e., x − y ∈ Fq(t) and xy ∈ Fq(t), and so Fq(t) is a subring of R
and (Fq, A) is a soft ring over R. �

3.14. Theorem. Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (Fq, A) is a
soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy subring of R.

Proof. Let (Fq, A) be a soft ring over R. Then Fq(t) is a subring of R, for all t ∈ A.
If there exist x, y ∈ R such that µ(x − y) < min{µ(x), µ(y), 0.5}, then we can choose
t ∈ (0.5, 1] such that µ(x− y) + t ≤ 1 < min{µ(x), µ(y), 0.5}+ t. Thus x, y ∈ Fq(t), but
x− y∈Fq(t). This is a contradiction. Hence, µ(x− y) ≥ min{µ(x), µ(y), 0.5}. By using
the same arguments, we can prove that µ(xy) ≥ min{µ(x), µ(y), 0.5}. It follows from
Lemma 3.8 that µ is an (∈,∈ ∨q)-fuzzy subring of R.

Conversely, suppose that µ is an (∈,∈ ∨q)-fuzzy subring of R. Using Lemma 3.8, we
have µ(x − y) ≥ min{µ(x), µ(y), 0.5} and µ(xy) ≥ min{µ(x), µ(y), 0.5} for all x, y ∈ R.
Let t ∈ A, x, y ∈ Fq(t), then µ(x) + t > 1 and µ(y) + t > 1. These imply that
µ(x− y) + t ≥ min{µ(x), µ(y), 0.5}+ t > 1, and so x− y ∈ Fq(t). We can also similarly
prove that xy ∈ Fq(t). Thus Fq(t) is a subring of R and (Fq, A) is a soft ring over
R. �

Same as the definition in [10], we give the following definition.

3.15. Definition. Let α, β ∈ (0, 1] with α < β. Then a fuzzy set µ is called an (α, β)-
fuzzy subring of R if the following conditions are satisfied for any x, y ∈ R:

(E1) max{µ(x− y), α} ≥ min{µ(x), µ(y), β},
(E2) max{µ(xy), α} ≥ min{µ(x), µ(y), β}.

3.16. Theorem. Let µ be a fuzzy set in a ring R with A = (α, β]. Then (F , A) is a soft
ring over R if and only if µ is an (α, β)-fuzzy subring of R.

Proof. Assume that (F , A) is a soft ring over R. Then F (t) is a subring of R for all
t ∈ A. If there exist x, y ∈ R such that max{µ(x − y), α} < min{µ(x), µ(y), β}, then
we can select t ∈ (α, β] such that max{µ(x − y), α} < t ≤ min{µ(x), µ(y), β}. Thus
µ(x) ≥ t and µ(y) ≥ t, but µ(x− y) < t, that is , x, y ∈ F (t), but x− y∈F (t), which is
a contradiction. Hence, max{µ(x− y), α} ≥ min{µ(x), µ(y), β}. Similarly, we can prove
that max{µ(xy), α} ≥ min{µ(x), µ(y), β}. Consequently, µ is an (α, β)-fuzzy subring of
R.

Conversely, suppose that µ is an (α, β)-fuzzy subring of R. For any t ∈ A, if
x, y ∈ F (t), then µ(x) ≥ t and µ(y) ≥ t. These imply that max{µ(x − y), α} ≥
min{µ(x), µ(y), β} ≥ t and max{µ(xy), α} ≥ min{µ(x), µ(y), β} ≥ t. Thus, µ(x− y) ≥ t
and µ(xy) ≥ t, that is, x− y ∈ F (t) and xy ∈ F (t), and so F (t) is a subring of R and
(F , A) is indeed a soft ring over R. �
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4. Idealistic soft rings, bi-idealistic soft rings and quasi-idealistic
soft rings

We divide this section into three parts. In Subsection 4.1, we describe the idealistic
soft rings. In Subsection 4.2, we describe the bi-idealistic soft rings. In Subsection 4.3,
we consider the quasi-idealistic soft rings.

4.1. Idealistic soft rings.

4.1. Definition. Let (F,A) be a soft set over a ring R. Then (F,A) is said to be a left
(right) idealistic soft ring over R if and only if F (x) is a left (right) ideal of R, for all
x ∈ A. We now call (F,A) an idealistic soft ring over R if and only if (F,A) is both a
right idealistic soft ring over R and a left idealistic soft ring over R.

For the sake of convenience, we now regard the empty set ∅ here as an ideal of R.

4.2. Example. Let Z6 = {0, 1, 2, 3, 4, 5} and (F,A) be a soft set over Z6, where A =
{2, 3, 4, 5} and F : A → P (Z6) is defined by F (x) = {y ∈ Z6 | xρy ⇐⇒ xy = 0}, for
all x ∈ A. Then it is clear that F (2) = {0, 3}, F (3) = {0, 2, 4}, F (4) = {0, 3} and
F (5) = {0} are ideals of Z6. Clearly, (F,A) is an idealistic soft ring over Z6.

The proofs of the following propositions are easy (refer to Proposition 2.7 and Propo-
sition 3.6, respectively).

4.3. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (F , A) is a
left (right) idealistic soft ring over R if and only if µ is a fuzzy left (right) ideal of R.

4.4. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (Fq, A) is a
left (right) idealistic soft ring over R if and only if µ is a fuzzy left (right) ideal of R.

We now consider the following special fuzzy left (right) ideals of R.

4.5. Definition. A fuzzy set µ is called an (∈,∈ ∨q)-fuzzy left (right) ideal of R if for
all t, r ∈ (0, 1] and x, y ∈ R, the following conditions are satisfied:

(F1) xt ∈ µ and yr ∈ µ imply (x− y)min(t,r) ∈ ∨qµ,
(F2) yt ∈ µ (xt ∈ µ) imply (xy)t ∈ ∨qµ.

By the above definition, we have the following lemma.

4.6. Lemma. A fuzzy set µ in a ring R is an (∈,∈ ∨q)-fuzzy left (right) ideal of R if
and only if for x, y ∈ R, the following conditions are satisfied:

(G1) µ(x− y) ≥ min{µ(x), µ(y), 0.5},
(G2) µ(xy) ≥ min{µ(y), 0.5} (µ(xy) ≥ min{µ(x), 0.5}).

Proof. In view of Definition 4.5, we need to prove that conditions (F1) and (F2) are
equivalent to conditions (G1) and (G2). Clearly, (F1)⇐⇒ (G1) by Lemma 3.8. We only
prove that (F2)⇐⇒ (G2).

To prove that (F2) =⇒ (G2): Assume that there exist x, y ∈ R with µ(xy) < t ≤
min{µ(y), 0.5} (µ(xy) < t ≤ min{µ(x), 0.5}). Then 0 < t ≤ 0.5 and yt ∈ µ (xt ∈ µ), but
xytµ. Since µ(xy) + t ≤ 1, (xy)tqµ. It follows that (xy)t∈ ∨qµ, which is a contradiction.
Hence (G2) holds.

To prove that (G2) =⇒ (F2): Let yt ∈ µ (xt ∈ µ). Then µ(y) ≥ t (µ(x) ≥ t). Now
µ(xy) ≥ min {µ(y), 0.5} ≥ min{t, 0.5}(µ(xy) ≥ min{µ(x), 0.5} ≥ min{t, 0.5}). If t > 0.5,
then µ(xy) ≥ 0.5. This implies that µ(xy) + t > 1. If t ≤ 0.5, then µ(xy) ≥ t. Therefore,
(xy)t ∈ ∨qµ. �

The proof of the following theorem is similar to the proof of Theorem 3.9 and is hence
omitted.
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4.7. Theorem. Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (F , A) is a left
(right) idealistic soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy left (right) ideal
of R.

Same as in [10], we give the following definition.

4.8. Definition. A fuzzy set µ is said to be an (∈,∈ ∨ q)-fuzzy left (right) ideal of R if
for all t, r ∈ (0, 1] and x, y ∈ R, the following conditions hold :

(H1) (x− y)min(t,r)∈µ implies xt∈ ∨ qµ or yr∈ ∨ qµ,
(H2) (xy)t∈µ implies yt∈ ∨ qµ (xt∈ ∨ qµ).

The following lemma describes the properties of (∈,∈ ∨ q)-fuzzy left (right) ideals of
R.

4.9. Lemma. A fuzzy set µ in a ring R is an (∈,∈ ∨ q)-fuzzy left (right) ideal of R if
and only if the following conditions hold for all x, y ∈ R:

(I1) max{µ(x− y), 0.5} ≥ min{µ(x), µ(y)},
(I2) max{µ(xy), 0.5} ≥ µ(y) (max{µ(xy), 0.5} ≥ µ(x)).

Proof. It is known that (H1)⇐⇒ (I1), we only need to prove (H2)⇐⇒ (I2).
To prove (H2) =⇒ (I2): If there exist x, y ∈ R such that max{µ(xy), 0.5} < µ(y)

(max{µ(xy), 0.5} < µ(x)), then we can select t ∈ (0, 1] such that max{µ(xy), 0.5} < t ≤
µ(y)(max{µ(xy), 0.5} < t ≤ µ(x)), and so 0.5 < t ≤ 1 and yt ∈ µ (xt ∈ µ), but (xy)t∈µ.
By H(2), we have ytqµ (xtqµ). This implies µ(y) + t ≤ 1 (µ(x) + t ≤ 1), a contradiction.

To prove (I2) =⇒ (H2): Let t ∈ (0, 1] and (xy)t∈µ. Then µ(xy) < t.
(a) If µ(xy) ≥ µ(y) (µ(xy) ≥ µ(x)), then µ(y) < t (µ(x) < t). It follows that yt∈µ

(xt∈µ). Thus, yt∈ ∨ qµ (xt∈ ∨ qµ).
(b) If µ(xy) < µ(y) (µ(xy) < µ(x)), then by (I2), 0.5 ≥ µ(y)(0.5 ≥ µ(x)). Now, if

for µ(y) < t (µ(x) < t), then yt∈µ (xt∈µ) and if µ(y) ≥ t (µ(x) ≥ t), then µ(y) + t ≤ 1
(µ(x) + t ≤ 1). It follows that ytqµ (xtqµ). Thus, yt∈ ∨ qµ (xt∈ ∨ qµ). �

4.10. Theorem. Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (F , A) is a
left (right) idealistic soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy left (right)
ideal of R.

Proof. The proof is similar to Theorem 3.12 and is hence omitted. �

We now characterize the left (right) idealistic soft rings over R by using q-soft sets.

4.11. Theorem. Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (Fq, A) is a
left (right) idealistic soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy left (right)
ideal of R.

Proof. Let (Fq, A) be a left (right) idealistic soft ring over R. Then Fq(t) is a left
(right) ideal of R for every t ∈ A. If there exist x, y ∈ R such that max{µ(x− y), 0.5} <
min{µ(x), µ(y)}, then we can select t ∈ A such that max{µ(x − y), 0.5} + t ≤ 1 <
min{µ(x), µ(y)} + t and x, y ∈ Fq(t), but x − y∈Fq(t), this is a contradiction. Hence,
max{µ(x−y), 0.5} ≥ min{µ(x), µ(y)}. If there exist c, d ∈ R such that max{µ(cd), 0.5} <
µ(d)(max{µ(cd), 0.5} < µ(c)}), then we can select t ∈ A such that max{µ(cd), 0.5} +
t ≤ 1 < µ(d) + t(max{µ(cd), 0.5} + t ≤ 1 < µ(c) + t). This leads to d ∈ Fq(t),
c ∈ R (c ∈ Fq(t), d ∈ R), but cd∈Fq(t), a contradiction. Hence, max{µ(xy), 0.5} ≥
µ(y)(max{µ(xy), 0.5} ≥ µ(x)) for all x, y ∈ R. It follows that µ is a left (right) (∈,∈∨q)-
fuzzy ideal of R.

Conversely, suppose that µ is an (∈,∈ ∨ q)-fuzzy left (right) ideal of R. Then x, y ∈
R,max{µ(x−y), 0.5} ≥ min{µ(x), µ(y)} and max{µ(xy), 0.5} ≥ µ(y)(max{µ(xy), 0.5} ≥
µ(x)). For t ∈ A, if x, y ∈ Fq(t), then µ(x) + t > 1 and µ(y) + t > 1. These lead to
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max{µ(x − y), 0.5} + t ≥ min{µ(x), µ(y)} + t > 1, i.e., x − y ∈ Fq(t). Let x ∈ Fq(t),
z ∈ R. Then max{µ(zx), 0.5} + t ≥ µ(x) + t > 1(max{µ(xz), 0.5} + t ≥ µ(x) + t > 1).
Thus, µ(zx) + t > 1(µ(xz) + t > 1), i.e., zx ∈ Fq(t) (xz ∈ Fq(t)), and hence Fq(t) is a
left (right) ideal of R and (Fq, A) is a left (right) idealistic soft ring over R. �

4.12. Theorem. Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (Fq, A) is a
left (right) idealistic soft ring over R if and only if µ is a (∈,∈ ∨q)-fuzzy left (right) ideal
of R.

Proof. Assume that (Fq, A) is a left (right) idealistic soft ring over R. Then Fq(α)
is a left (right) ideal of R, for all α ∈ A. If there exist x, y ∈ R such that µ(x −
y) < min{µ(x), µ(y), 0.5}, then we can select t ∈ A such that µ(x − y) + t ≤ 1 <
min{µ(x), µ(y), 0.5}+t. Thus µ(x)+t > 1, µ(y)+t > 1, µ(x−y)+t ≤ 1. i.e., x, y ∈ Fq(t),
but x−y∈Fq(t). This is a contradiction. Hence we have µ(x−y) ≥ min{µ(x), µ(y), 0.5}.
If there exist a, b ∈ R such that µ(ab) < min{µ(b), 0.5} (µ(ab) < min{µ(a), 0.5}), then
we can select t ∈ A such that µ(ab) + t ≤ 1 < min{µ(b), 0.5} + t (µ(ab) + t ≤ 1 <
min{µ(a), 0.5} + t), then b ∈ Fq(t), a ∈ R (a ∈ Fq(t), b ∈ R) , but ab∈Fq(t), which
is absurd. Hence, we have µ(xy) ≥ min{µ(y), 0.5} (µ(xy) ≥ min{µ(x), 0.5}), and this
proves that µ is an (∈,∈ ∨q)-fuzzy left (right)ideal of R.

Conversely, let µ be an (∈,∈ ∨q)-fuzzy left (right) ideal of R. If t ∈ A, then, by
Lemma 4.6, we can get µ(x − y) ≥ min{µ(x), µ(y), 0.5} and µ(xy) ≥ min{µ(y), 0.5}
(µ(xy) ≥ min{µ(x), 0.5}) for all x, y ∈ R. If x, y ∈ Fq(t), then µ(y) + t > 1 and
µ(x) + t > 1. These imply that µ(x − y) + t ≥ min{µ(x), µ(y), 0.5} + t > 1, and
so x − y ∈ Fq(t). If x ∈ Fq(t) and z ∈ R, then Fq(x) + t > 1. This leads to
µ(zx) + t ≥ min{µ(x), 0.5} + t > 1 (µ(xz) + t ≥ min{µ(x), 0.5} + t > 1). Hence,
zx ∈ Fq(t) (xz ∈ Fq(t)). Thus Fq(t) is a left (right) ideal of R and (Fq, A) is a left
(right) idealistic soft ring over R. �

We now introduce the concept of (α, β)-fuzzy left (right) ideals of R.

4.13. Definition. Let α, β ∈ (0, 1] with α < β. Then a fuzzy set µ is called an (α, β)-
fuzzy left (right) ideal of R if for x, y ∈ R, the following conditions are satisfied:

(J1) max{µ(x− y), α} ≥ min{µ(x), µ(y), β},
(J2) max{µ(xy), α} ≥ min{µ(y), β}(max{µ(xy), α} ≥ min{µ(x), β}).

The following proposition follows from Theorem 3.16.

4.14. Theorem. Let µ be a fuzzy set in a ring R and A = (α, β]. Then (F , A) is a left
(right) idealistic soft ring over R if and only if µ is an (α, β)-fuzzy left (right) ideal of R.

4.2. Bi-idealistic soft rings.

4.15. Definition. Let (F,A) be a soft set over a ring R. Then (F,A) is said to be a
bi-idealistic soft ring over R if and only if F (x) is a bi-ideal of R for all x ∈ A. For the
sake of convenience, we now regard the empty set ∅ as a bi-ideal of R.

4.16. Example. In Example 4.2, (F,A) is a bi-idealistic soft ring over Z6.

The proofs of following propositions are straightforward and are omitted.

4.17. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (F , A) is a
bi-idealistic soft ring over R if and only if µ is a fuzzy bi-ideal of R.

4.18. Proposition. Let µ be a fuzzy set in a ring R and A = [0, 1]. Then (Fq, A) is a
bi-idealistic soft ring over R if and only if µ is a fuzzy bi-ideal of R.

As the same as [10], we also have the following definitions and lemmas.
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4.19. Definition. A fuzzy set µ is said to be an (∈,∈ ∨q)-fuzzy bi-ideal of R if for all
t, r ∈ (0, 1] and x, y, z ∈ R, the following conditions hold:

(K1) xt ∈ µ and yr ∈ µ imply (x− y)min(t,r) ∈ ∨qµ,
(K2) xt ∈ µ and yr ∈ µ imply (xy)min(t,r) ∈ ∨qµ,
(K3) xt ∈ µ and zr ∈ µ imply (xyz)min(t,r) ∈ ∨qµ.

4.20. Lemma. A fuzzy set µ in a ring R is an (∈,∈ ∨q)-fuzzy bi-ideal of R if and only
if the following conditions hold for any x, y, z ∈ R:

(L1) µ(x− y) ≥ min{µ(x), µ(y), 0.5},
(L2) µ(xy) ≥ min{µ(x), µ(y), 0.5},
(L3) µ(xyz) ≥ min{µ(x), µ(z), 0.5}.

4.21. Definition. A fuzzy set µ is said to be an (∈,∈ ∨ q)-fuzzy bi-ideal of R if for all
t, r ∈ (0, 1], the following conditions hold for x, y ∈ R:

(M1) (x− y)min(t,r)∈µ implies xt∈ ∨ qµ or yr∈ ∨ qµ,
(M2) (xy)min(t,r)∈µ implies xt∈ ∨ qµ or yr∈ ∨ qµ,
(M3) (xyz)min(t,r)∈µ implies xt∈ ∨ qµ or zr∈ ∨ qµ.

It is easy to see that the (∈,∈ ∨ q)-fuzzy bi-ideal of R has the following properties:

4.22. Lemma. A fuzzy set µ in R is an (∈,∈ ∨ q)-fuzzy bi-ideal of R if and only if for
all x, y ∈ R, the following conditions hold:

(N1) max{µ(x− y), 0.5} ≥ min{µ(x), µ(y)},
(N2) max{µ(xy), 0.5} ≥ min{µ(x), µ(y)}.
(N3) max{µ(xyz), 0.5} ≥ min{µ(x), µ(z)}.

4.23. Definition. Let α, β ∈ (0, 1] with α < β. Then a fuzzy set µ is called an (α, β)-
fuzzy bi-ideal of R if x, y, z ∈ R, the following conditions hold:

(O1) max{µ(x− y), α} ≥ min{µ(x), µ(y), β},
(O2) max{µ(xy), α} ≥ min{µ(x), µ(y), β},
(O3) max{µ(xyz), α} ≥ min{µ(x), µ(z), β}.

In the following theorem, the properties of the bi-idealistic soft rings will be described.
The proofs are similar to Theorem 3.9, Theorem 3.12, Theorem 3.13, Theorem 3.14 and
Theorem 3.16, respectively.

4.24. Theorem. (i) Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (F , A) is
a bi-idealistic soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy bi-ideal of R.

(ii) Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (F , A) is a bi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy bi-ideal of R.

(iii) Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (Fq, A) is a bi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy bi-ideal of R.

(iv) Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (Fq, A) is a bi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy bi-deal of R.

(v) Let µ be a fuzzy set in a ring R and A = (α, β]. Then (F , A) is a bi-idealistic soft
ring over R if and only if µ is an (α, β)-fuzzy bi-ideal of R.

4.3. Quasi-idealistic soft rings.

4.25. Definition. Let (F,A) be a soft set over a ring R. Then (F,A) is said to be a
quasi-idealistic soft ring over R if and only if F (x) is a quasi-ideal of R for all x ∈ A.

For the sake of convenience, we now regard the empty set ∅ here as a quasi-ideal of R.
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4.26. Example. Let R = M2(R), A =

{(
a 0
0 0

)
|a 6= 0

}
and F (x) = {y ∈ R | xy = 0}.

Then (F,A) is a soft ring over R. ∀x ∈ A, F (x) =

{(
0 0
x1 x2

)
|x1, x2 ∈ R

}
. Let(

y1 y2

y3 y4

)
∈ R. Then(

y1 y2

y3 y4

)(
0 0
x1 x2

)
=

(
x1y2 x2y2

x1y4 x2y4

)
and(

0 0
x1 x2

)(
y1 y2

y3 y4

)
=

(
0 0

x1y1 + x2y3 x1y2 + x2y4

)
. Then

F (x)R ∩RF (x) =

{(
0 0
m n

)
|m,n ∈ R

}
. Because(

a 0
0 0

)(
0 0
m n

)
=

(
0 0
0 0

)
and

F (x)R ∩RF (x) ⊂ F (x), (F,A) is a quasi-idealistic soft ring over R.

Since any left (right) ideal of a ring R is a quasi-ideal of R and any quasi-ideal of R is
a bi-ideal of R, by Proposition 2.7 and Proposition 3.6 we can easily deduce the following
proposition.

4.27. Proposition. (i) Any left (right) idealistic soft ring over R is a quasi-idealistic
soft ring over R.

(ii) Any quasi-idealistic soft ring over R is a bi-idealistic soft ring over R.
(iii) Let µ be a fuzzy set in a ring R and (F , A) a soft set over R with A = [0, 1].

Then (F,A) is a quasi-idealistic soft ring over R if and only if µ is a fuzzy quasi-ideal of
R.

(iv) Let µ be a fuzzy set in a ring R and (Fq, A) a soft set over R with A = [0, 1].
Then (Fq, A) is a quasi-idealistic soft ring over R if and only if µ is a fuzzy quasi-ideal
of R.

Same as in [10], we have the following definitions and lemmas.

4.28. Definition. A fuzzy set µ is said to be an (∈,∈ ∨q)-fuzzy quasi-ideal of R if for
all t, r ∈ (0, 1], the following conditions hold for x, y ∈ R:

(P1) xt ∈ µ and yr ∈ µ imply (x− y)min(t,r) ∈ ∨qµ,
(P2) xt ∈ (µ ∗ χR)

⋂
(χR ∗ µ)implies xt ∈ ∨qµ.

The following lemma follows from the definition.

4.29. Lemma. A fuzzy set µ in a ring R is an (∈,∈ ∨q)-fuzzy quasi-ideal of R if and
only if the following conditions hold for x, y ∈ R:

(Q1) µ(x− y) ≥ min{µ(x), µ(y), 0.5},
(Q2) µ(x) ≥ min{((µ ∗ χR)

⋂
(χR ∗ µ))(x), 0.5)}.

4.30. Definition. A fuzzy set µ is said to be an (∈,∈ ∨ q)-fuzzy quasi-ideal of R if for
all t, r ∈ (0, 1] and x, y ∈ R, the following conditions hold:

(R1) (x− y)min(t,r)∈µ, implies xt∈ ∨ qµ or yr∈ ∨ qµ,
(R2) xt∈µ, implies xt∈ ∨ q(µ ∗ χR)

⋂
(χR ∗ µ).

The proof of the following lemma is easy and is hence omitted.

4.31. Lemma. A fuzzy set µ in a ring R is an (∈,∈ ∨ q)-fuzzy quasi-ideal of R if and
only if for all x, y ∈ R, the following conditions hold:

(S1) max{µ(x− y), 0.5} ≥ min{µ(x), µ(y)},
(S2) max{µ(x), 0.5} ≥ ((µ ∗ χR)

⋂
(χR ∗ µ))(x).
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4.32. Definition. Let α, β ∈ (0, 1] and α < β. Then a fuzzy set µ is called an (α, β)-
fuzzy quasi-ideal of R if for x, y ∈ R, the following conditions hold:

(T1) max{µ(x− y), α} ≥ min{µ(x), µ(y), β},
(T2) max{µ(x), α} ≥ min{((µ ∗ χR)

⋂
(χR ∗ µ))(x), β}.

The proofs of the following theorem follow from Theorem 3.9, Theorem 3.12, Theorem
3.13, Theorem 3.14 and Theorem 3.16, respectively.

4.33. Theorem. (i) Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (F , A) is
a quasi-idealistic soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy quasi-ideal of R.

(ii) Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (F , A) is a quasi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy quasi-ideal of R.

(iii) Let µ be a fuzzy set in a ring R and A = (0, 0.5]. Then (Fq, A) is a quasi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨ q)-fuzzy quasi-ideal of R.

(iv) Let µ be a fuzzy set in a ring R and A = (0.5, 1]. Then (Fq, A) is a quasi-idealistic
soft ring over R if and only if µ is an (∈,∈ ∨q)-fuzzy quasi-deal of R.

(v) Let µ be a fuzzy set in a ring R and A = (α, β]. Then (F , A) is an quasi-idealistic
soft ring over R if and only if µ is an (α, β)-fuzzy quasi-ideal of R.

5. Soft regular rings

5.1. Definition ([7]). A ring R is called regular if for each element a of R, there exists
an element x such that a = axa.

5.2. Definition. A soft ring (F,A) over R is called regular if for ∀x ∈ A, F (x) is regular.

5.3. Example. In example 4.2, (F,A) is a regular soft ring.

5.4. Definition. A ring R is called soft regular if every soft ring (F,A) over R is a
regular soft ring.

5.5. Example. Let R = Z6 = {0, 1, 2, 3, 4, 5}. Then every subring of R is regular, and
so every soft ring (F,A) over R is a regular soft ring. Thus, R is soft regular.

We now characterize the regular rings by using soft sets.

5.6. Theorem. A ring R is regular if and only if (F,A) ∗ (G,B) = (F,A) ∧ (G,B) for
every right idealistic soft ring (F,A) over R and every left idealistic soft ring (G,B) over
R.

Proof. Assume that R is a regular ring. Let (F,A) and (G,B) be any right idealistic soft
ring over R and any left idealistic soft ring over R, respectively. Then for all x ∈ A and
for all y ∈ B, F (x) is a right ideal of R and G(y) is a left ideal of R. Let a ∈ F (x)∩G(y).
Then there exists r ∈ R such that a = ara ∈ F (x)G(y). Thus F (x) ∩G(y) ⊂ F (x)G(y).
On the other hand, if a ∈ F (x)G(y), then a = bc, b ∈ F (x), c ∈ G(y), and hence,
there exist r, s ∈ R such that a = brbcsc. In this case, we have a ∈ F (x) ∩ G(y) and
F (x)G(y) ⊂ F (x) ∩ G(y). It hence follows that F (x)G(y) = F (x) ∩ G(y) for every
(x, y) ∈ A×B, that is, (F,A) ∗ (G,B) = (F,A) ∧ (G,B).

Conversely, if we let a be an element of R such that F (x) = aR for all x ∈ A and
G(y) = Ra for all y ∈ B, then (F,A) is a right idealistic soft ring over R and (G,B) is a
left idealistic soft ring over R. Since (F,A) ∗ (G,B) = (F,A) ∧ (G,B), aR ∩Ra = aRRa
and hence a ∈ aR ∩Ra. Thus a ∈ aRRa ⊂ aRa. This shows that R is regular. �

5.7. Lemma ([15]). A ring R is regular if and only if Q = QRQ for every quasi-ideal
Q of R.
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5.8. Theorem. If R is a ring and (F,A)∧ (G,B)∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A) for
every quasi-idealistic soft ring (F,A) over R, where (G,B) is an absolute soft ring over
R, then R is regular.

Proof. Let Q be any quasi-ideal of R and F (x) = Q for all x ∈ A. Then (F,A) is a
quasi-idealistic soft ring over R. Since (F,A)∧ (G,B)∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A),
Q = QRQ. It follows that R is regular. �

5.9. Corollary. If R is a ring and (F,A)∧ (G,B)∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A) for
every bi-idealistic soft ring (F,A) over R, where (G,B) is an absolute soft ring over R,
then R is regular.

5.10. Theorem. If R is a regular ring and (G,B) is an absolute soft ring over R, then
(F,A)∧(G,B)∧(H,C) = (F,A)∗(G,B)∗(H,C) for every right idealistic soft ring (F,A)
over R and every left idealistic soft ring (H,C) over R.

Proof. For all y ∈ B with G(y) = R, let (F,A) and (H,C) be any right idealistic soft ring
over R and left idealistic soft ring over R, respectively. Then, for all x ∈ A and z ∈ C,
we have F (x)RH(z) ⊂ F (x)RR ⊂ F (x) and F (x)RH(z) ⊂ RRH(z) ⊂ H(z). Hence, we
deduce that F (x)RH(z) ⊂ F (x) ∩H(z) and (F,A) ∗ (G,B) ∗ (H,C)⊂̃(F,A) ∧ (G,B) ∧
(H,C).

On the other hand, let x ∈ A and z ∈ C. Since R is regular, ∀a ∈ F (x) ∩ R ∩
H(z) ⊂ R, there exists r ∈ R such that a = ara ∈ F (x)RH(z). Hence, we deduce that
F (x) ∩ R ∩ H(z) ⊂ F (x)RH(z) and (F,A) ∧ (G,B) ∧ (H,C)⊂̃(F,A) ∗ (G,B) ∗ (H,C).
Thus, (F,A) ∧ (G,B) ∧ (H,C) = (F,A) ∗ (G,B) ∗ (H,C). �

5.11. Lemma ([15]). A ring R is regular if and only if I ∩ Q = QIQ holds for every
ideal I of R and every quasi-ideal Q of R.

5.12. Theorem. If (F,A) ∧ (G,B) ∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A) holds for every
quasi-idealistic soft ring (F,A) over R and every idealistic soft ring (G,B) over R, then
the ring R is regular.

Proof. Assume that I is an ideal ofR andQ is a quasi-ideal ofR. If F (x) = Q for all x ∈ A
and G(y) = I for all y ∈ B, then (F,A) is a quasi-idealistic soft ring over R and (G,B)
is an idealistic soft ring over R. Since (F,A) ∧ (G,B) ∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A),
I ∩Q = QIQ. This shows that R is regular. �

5.13. Corollary. If (F,A) ∧ (G,B) ∧ (F,A) = (F,A) ∗ (G,B) ∗ (F,A) holds for every
bi-idealistic soft ring (F,A) and every idealistic soft ring (G,B) over a ring R, then R is
a regular ring.

5.14. Theorem. If R is a regular ring, then (F,A)∧ (G,B)∧ (H,C) = (F,A) ∗ (G,B) ∗
(H,C) holds for every right idealistic soft ring (F,A) over R, every idealistic soft ring
(G,B) over R and every left idealistic soft ring (H,C) over R.

Proof. Let (F,A), (G,B) and (H,C) be a right idealistic soft ring over R, an idealistic soft
ring over R and a left idealistic soft ring over R, respectively. Then for all x ∈ A, for all
y ∈ B, and for all z ∈ C, we have F (x)G(y)H(z) ⊂ F (x)RR ⊂ F (x), F (x)G(y)H(z) ⊂
RRH(z) ⊂ H(z) and F (x)G(y)H(z) ⊂ RG(y)R ⊂ G(y). Hence, F (x)G(y)H(z) ⊂
F (x) ∩G(y) ∩H(z).

On the other hand, if for all a ∈ F (x)∩G(y)∩H(z) ⊂ R, there exists r ∈ R such that
a = ara = arara ∈ F (x)G(y)H(z), then this leads to F (x)G(y)H(z) ⊃ F (x) ∩ G(y) ∩
H(z). Hence, F (x)G(y)H(z) = F (x) ∩ G(y) ∩ H(z) and so (F,A) ∧ (G,B) ∧ (H,C) =
(F,A) ∗ (G,B) ∗ (H,C). �



64 X. Liu, D. Xiang, K. P. Shum, J. Zhan

5.15. Theorem. For a ring R, the following conditions are equivalent:
(1) R is regular.
(2) (F,A) ∧ (G,B)⊂̃(F,A) ∗ (G,B) for every right idealistic soft ring (F,A) over R

and every bi-idealistic soft ring (G,B) over R.
(3) (F,A) ∧ (G,B)⊂̃(F,A) ∗ (G,B) for every right idealistic soft ring (F,A) over R

and every quasi-idealistic soft ring (G,B) over R.
(4) (F,A) ∧ (H,C)⊂̃(F,A) ∗ (H,C) for every bi-idealistic soft ring (F,A) over R and

every left idealistic soft ring (H,C) over R.
(5) (F,A) ∧ (H,C)⊂̃(F,A) ∗ (H,C) for every quasi-idealistic soft ring (F,A) over R

and every left idealistic soft ring (H,C) over R.
(6) (F,A)∧ (G,B)∧ (H,C)⊂̃(F,A)∗ (G,B)∗ (H,C) for every right idealistic soft ring

(F,A) over R, every bi-idealistic soft ring (G,B) over R and every left idealistic soft ring
(H,C) over R.

(7) (F,A)∧ (G,B)∧ (H,C)⊂̃(F,A)∗ (G,B)∗ (H,C) for every right idealistic soft ring
(F,A) over R, every quasi-idealistic soft ring (G,B) over R and every left idealistic soft
ring (H,C) over R.

Proof. Assume that (1) holds. Let x ∈ A, y ∈ B. Since R is regular, for all a ∈
F (x) ∩G(y) ⊂ R, there exists r ∈ R such that a = ara = (ar)a ∈ F (x)G(y). This leads
to (F,A) ∧ (G,B)⊂̃(F,A) ∗ (G,B) and so (2) holds. Thus,(1) implies (2).

It can be similarly proved that (1) implies (4). Since any quasi-idealistic soft ring over
R is a bi-idealistic soft ring over R, (2) also implies (3), and (4) implies (5).

Assume that (3) holds. Since any left idealistic soft ring over R is a quasi-idealistic
soft ring, by Theorem 5.6, R is regular, and so (3) implies (1).

Similarly, we can prove (5) implies (1).
Assume that (1) holds. Let (F,A), (G,B) and (H,C) be any right idealistic soft ring

over R, any bi-idealistic soft ring over R and any left idealistic soft ring over R. Let
x ∈ A, y ∈ B and z ∈ C. Since R is regular, for all a ∈ F (x) ∩ G(y) ∩ H(z) ⊂ R,
there exists r ∈ R such that a = ara = arara = (ar)a(ra) ∈ F (x)G(y)G(z). Hence,
(F,A) ∧ (G,B) ∧ (H,C)⊂̃(F,A) ∗ (G,B) ∗ (H,C) and (6) holds. Thus (1) implies (6).

It is clear that (6) implies (7).
Finally, we assume that (7) holds. Let (F,A) and (H,C) be any right idealistic soft

ring over R and any left idealistic soft ring over R, respectively. If (G,B) is an absolute
soft ring over R, then (G,B) is a quasi-idealistic soft ring over R. This implies that
(F,A)∧ (G,B)∧ (H,C)⊂̃(F,A)∗ (G,B)∗ (H,C). Let x ∈ A, z ∈ C. Then F (x)∩H(z) =
F (x)∩R∩H(z) ⊂ F (x)RH(z) ⊂ F (x)H(z) and (F,A)∧ (H,C)⊂̃(F,A) ∗ (H,C). Hence,
it follows that R is regular and so (7) implies (1). �

Finally, we state the following theorem of regular rings to be soft regular.

5.16. Theorem. If a ring R is soft regular, then R is regular.

Proof. If (F,A) is an absolute soft ring over R, then F (x) = R is a regular ring. �

5.17. Corollary. If a ring R is soft regular, then (F,A) ∗ (G,B) = (F,A) ∧ (G,B) for
every right idealistic soft ring (F,A) over R and every left idealistic soft ring (G,B) over
R.

5.18. Corollary. If R is a soft regular ring and (G,B) is an absolute soft ring over R,
then (F,A)∧ (G,B)∧ (H,C) = (F,A) ∗ (G,B) ∗ (H,C) for every right idealistic soft ring
(F,A) over R and every left idealistic soft ring (H,C) over R.

5.19. Corollary. If R is a soft regular ring, then (F,A) ∧ (G,B) ∧ (H,C) = (F,A) ∗
(G,B) ∗ (H,C) for every right idealistic soft ring (F,A) over R, every idealistic soft ring
(G,B) over R and every left idealistic soft ring (H,C) over R.
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5.20. Corollary. If a ring R is soft regular, then the following conditions hold:
(1) (F,A) ∧ (G,B)⊂̃(F,A) ∗ (G,B) for every right idealistic soft ring (F,A) over R

and every bi-idealistic soft ring (G,B) over R.
(2) (F,A) ∧ (G,B)⊂̃(F,A) ∗ (G,B) for every right idealistic soft ring (F,A) over R

and every quasi-idealistic soft ring (G,B) over R.
(3) (F,A) ∧ (H,C)⊂̃(F,A) ∗ (H,C) for every bi-idealistic soft ring (F,A) over R and

every left idealistic soft ring (H,C) over R.
(4) (F,A) ∧ (H,C)⊂̃(F,A) ∗ (H,C) for every quasi-idealistic soft ring (F,A) over R

and every left idealistic soft ring (H,C) over R.
(5) (F,A)∧ (G,B)∧ (H,C)⊂̃(F,A) ∗ (G,B) ∗ (H,C) for for every right idealistic soft

ring (F,A) over R, every bi-idealistic soft ring (G,B) over R and every left idealistic soft
ring (H,C) over R.

(6) (F,A)∧ (G,B)∧ (H,C)⊂̃(F,A)∗ (G,B)∗ (H,C) for every right idealistic soft ring
(F,A) over R, every quasi-idealistic soft ring (G,B) over R and every left idealistic soft
ring (H,C) over R.

In order to answer when will a regular ring be soft regular, we give the following
lemma.

5.21. Lemma. If a ring R is regular, then every idealistic soft ring over R is regular.

Proof. Let (F,A) be any idealistic soft ring over R. Then ∀x ∈ A, F (x) is an ideal of R.
If a ∈ F (x), then a ∈ R and there exists an element r ∈ R such that a = ara = arara =
a(rar)a ∈ aF (x)a. Thus F (x) is regular and (F,A) is a regular soft ring over R. �

By using the above lemma, we obtain the following theorem for regular rings to be
soft regular.

5.22. Theorem. If a ring R is regular and every soft ring (F,A) over R is an idealistic
soft ring, then R is soft regular.

Proof. If (F,A) is a soft ring over R, then (F,A) is an idealistic soft ring over R. Hence,
by Lemma 5.21, (F,A) is regular and consequently R is soft regular. �
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