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Abstract

Let R be a prime ring, H a generalized derivation of R, L a noncentral
Lie ideal of R, and 0 6= a ∈ R. Suppose that aus(H(u))nut = 0 for
all u ∈ L, where s, t ≥ 0 and n > 0 are fixed integers. If s = 0, then
H(x) = bx for all x ∈ R, where b ∈ U , the right Utumi quotient ring
of R, with ab = 0 unless R satisfies s4, the standard identity in four
variables. If s > 0, then H = 0 unless R satisfies s4.
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1. Introduction

Throughout this paper, R is always a prime ring with extended centended C, right
Utumi quotient ring U , and two-sided Martindale quotient ring Q. The definitions and
properties of these objects can be found in [3, Chapter 2]. Denote s4 as the standard
identity in four variables.

By a generalized derivation on R one usually means an additive map H : R→ R such
that H(xy) = H(x)y + xd(y), for some derivation d of R. Obviously any derivation is a
generalized derivation. Another basic example of generalized derivations is the following:
H(x) = ax+ xb for a, b ∈ R. Hvala [12] initiated the study of generalized derivations on
prime rings. Lee proved the following essential result: every generalized derivation H on a
dense left ideal of R can be uniquely extended to U and assume the form H(x) = bx+d(x)
for some b ∈ U and a derivation d on U [16, Theorem 3]. In recent years, a number of
articles discussed generalized derivations in the context of prime and semiprime rings
(see [1, 5, 9, 10, 11, 18, 19, 21, 22]).
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Dhara and Sharma [6] proved that, if a ∈ R such that ausd(u)nut = 0 for all u ∈ L,
a noncommutative Lie ideal of R, where d a derivation of R, s ≥ 0, t ≥ 0, n ≥ 1 are fixed
integers, then either a = 0 or d = 0 unless char R = 2 and R satisfies s4. Dhara and
Filippis [5] proved that, if usH(u)ut = 0 for all u ∈ L, where L a noncommutative Lie
ideal of R, H a generalized derivation of R, and s, t ≥ 0 are fixed integers, then H = 0
unless char R = 2 and R satisfies s4. Recently, the second author [22] investigated the
situation when ausH(u)ut = 0 for all u ∈ L, where L a noncentral Lie ideal of R.

In the present paper we shall generalize the above results in a full general situation.
More precisely, we shall prove the following main result of this paper.

1.1. Theorem. Let R be a prime ring, H a generalized derivation of R, L a noncentral
Lie ideal of R, and 0 6= a ∈ R. Suppose that aus(H(u))nut = 0 for all u ∈ L, where
s, t ≥ 0 and n > 0 are fixed integers. If s = 0, then H(x) = bx for all x ∈ R, where b ∈ U
with ab = 0 unless R satisfies s4. If s > 0, then H = 0 unless R satisfies s4.

2. The proof of the main result

We begin with the following result, which will be used in the proof of our main result.

2.1. Lemma. Let R be a prime ring with dimCRC > 4. Let 0 6= a ∈ R and b ∈ U such
that

a[x, y]s(b[x, y])n[x, y]t = 0

for all x, y ∈ R, where s, t ≥ 0 and n > 0 are fixed integers. If s = 0, then ab = 0. If
s > 0, then b = 0.

Proof. Suppose first that b ∈ C, by assumption we have

abn[x, y]s+n+t = 0

for all x, y ∈ R. It is easy to check that either abn = 0 or R is commutative (see the
proof of [17, Theorem 1] or [6, Theorem 2.2]). Hence b = 0 as a 6= 0 and dimCRC > 4.

Suppose next that b 6∈ C. Since R and U satisfy the same generalized polynomial
identity [4, Theorem 2], we have

(2.1) a[x, y]s(b[x, y])n[x, y]t = 0

for all x, y ∈ U . In case C is infinite, the GPI (2.1) is also satisfied by U ⊗C C̄ where C̄
is the algebraic closure of C. Since both U and U ⊗C C̄ are prime and centrally closed
[7], we may replace R by U or U ⊗C C̄ according as C is finite or infinite. Thus we may
assume that R is centrally closed over C which is either finite or algebraically closed such
that a[x, y]s(b[x, y])n[x, y]t = 0 for all x, y ∈ R.

If s = 0 and ab 6= 0, then a(b[X,Y ])n[X,Y ]t is a nonzero GPI on R as it has nonzero
monomial a(bXY )n(XY )t. By Martindale’s theorem in [20] R is a primitive ring having
nonzero socle and the commuting division D is a finite dimensional central division
algebra over C. Since C is either finite or algebraically closed, D must coincide with C.
Thus R is isomorphic to a dense subring of EndCV for some vector space V over C. Since
dimCRC > 4, it is obvious that dimCV ≥ 3. We will show that, for any given v ∈ V ,
v and bv are C-dependent. Assume on the contrary that v and bv are C-independent
and set W = Cv + Cbv. Since dimCV ≥ 3, there exists u ∈ V such that v, bv, u are also
C-independent. If abv 6= 0, by the density of R in EndCV there exist two elements r1
and r2 in R such that

r1v = 0, r1bv = 0, r1u = v; r2v = u, r2bv = u, r2u = 0

and so

[r1, r2]v = v and [r1, r2]bv = v.
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Hence,

0 = a(b[r1, r2])n[r1, r2]tv = abv,

a contradiction.
Suppose that abv = 0. Since ab 6= 0, there exists w ∈ V such that abw 6= 0 and so

ab(v − w) 6= 0. By the previous argument we have that there exist β, γ ∈ C such that

bw = βw and b(w − v) = γ(w − v).

This yields that (β−γ)w ∈W . Now β = γ implies the contradiction that bv = βv. Thus
β 6= γ and so w ∈ W . But if u ∈ V with abu = 0, then ab(w + u) 6= 0. So w + u ∈ W
forcing u ∈W . Thus V = W and so dimCV = 2, a contradiction.

If s ≥ 1, it is easy to see that a[X,Y ]s(b[X,Y ])n[X,Y ]t is a nonzero GPI on R. By the
previous argument R is isomorphic to a dense subring of EndCV with dimCV ≥ 3. We
will show that, for any given v ∈ V , v and bv are C-dependent. Assume on the contrary
that v and bv are C-independent and set W = Cv+Cbv. Since dimCV ≥ 3, there exists
u ∈ V such that v, bv, u are also C-independent. If av 6= 0, by the density of R in EndCV
there exist two elements r1 and r2 in R such that

r1v = 0, r1bv = 0, r1u = v; r2v = u, r2bv = u, r2u = 0

and so

[r1, r2]v = v and [r1, r2]bv = v.

Hence,

0 = a[r1, r2]s(b[r1, r2])n[r1, r2]tv = av,

a contradiction.
Suppose that av = 0. Since a 6= 0, there exists w ∈ V such that aw 6= 0 and so

a(v − w) 6= 0. By the previous argument we have that there exist β, γ ∈ C such that

bw = βw and b(w − v) = γ(w − v).

This yields that (β−γ)w ∈W . Now β = γ implies the contradiction that bv = βv. Thus
β 6= γ and so w ∈ W . But if u ∈ V with au = 0, then a(w + u) 6= 0. So w + u ∈ W
forcing u ∈W . Thus V = W and so dimCV = 2, a contradiction.

Hence, in any case, for all v ∈ V , v and bv are linearly C-dependent. Thus, standard
arguments show that b ∈ C, which contradicts our hypothesis. �

We are in a position to give

The proof of Theorem 1.1. We assume that R does not satisfy s4. That is, dimCRC > 4.
By a theorem of Lanski and Montgomery [15, Theorem 13] we have 0 6= [I, R] ⊆ L, where
I is a nonzero ideal of R. Hence we may assume without loss of generality that L = [I, I].
By [16, Theorem 3] we may assume that H(x) = bx + d(x) for all x ∈ U , where b ∈ U
and d a derivation of U . Thus

a[x1, x2]s(b[x1, x2] + d([x1, x2]))n[x1, x2]t = 0

for all x1, x2 ∈ I. Since I and U satisfy the same differential identities [4], we have

a[x1, x2]s(b[x1, x2] + d([x1, x2]))n[x1, x2]t = 0

for all x1, x2 ∈ U . Assume first that d is Q-inner, i.e., there exists b, c ∈ U such that
H(x) = bx+ xc for all x ∈ U . So

(2.2) f(x1, x2) = a[x1, x2]s(b[x1, x2] + [x1, x2]c)n[x1, x2]t = 0

for all x1, x2 ∈ U . In case C is infinite, the GPI (2.2) is also satisfied by U ⊗C C̄ where
C̄ is the algebraic closure of C. Since both U and U ⊗C C̄ are prime and centrally closed
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[7], we may replace R by U or U ⊗C C̄ according as C is finite or infinite. Thus we may
assume that R is centrally closed over C which is either finite or algebraically closed such
that f(x1, x2) = 0 for all x1, x2 ∈ R.

Suppose first that c 6∈ C. Then f(X1, X2) is a nonzero GPI for R as it has a nonzero
monomial a(X1X2)s(X1X2c)

n(X1X2)t. By Martindale’s theorem in [20] R is a primitive
ring having nonzero socle and the commuting division D is a finite dimensional central
division algebra over C. Since C is either finite or algebraically closed, D must coincide
with C. Thus R is isomorphic to a dense subring of EndCV for some vector space V
over C. Since dimCR > 4, it is obvious that dimCV ≥ 3. We will show that, for any
given v ∈ V , v and cv are C-dependent. Assume on the contrary that v and cv are
C-independent and set W = Cv + Ccv. Since dimCV ≥ 3, there exists u ∈ V such that
v, cv, u are also C-independent. If av 6= 0, by the density of R in EndCV there exist two
elements r1 and r2 in R such that

r1v = 0, r1cv = u, r1u = v and r2v = u, r2cv = 0, r2u = bv − v

and so

[r1, r2]v = v and [r1, r2]cv = −bv + v.

Hence,

0 = a[r1, r2]s(b[r1, r2] + [r1, r2]c)n[r1, r2]tv = av,

a contradiction.
Suppose that av = 0. Since a 6= 0, there exists w ∈ V such that aw 6= 0 and so

a(v − w) 6= 0. By the previous argument we have that there exist β, γ ∈ C such that

cw = βw and c(w − v) = γ(w − v).

This yields that (β−γ)w ∈W . Now β = γ implies the contradiction that cv = βv. Thus
β 6= γ and so w ∈ W . But if u ∈ V with au = 0, then a(w + u) 6= 0. So w + u ∈ W
forcing u ∈W . Thus V = W and so dimCV = 2, a contradiction.

Hence, in any case, for all v ∈ V , v and cv are linearly C-dependent. Thus, standard
arguments show that c ∈ C which contradicts our hypothesis.

Suppose next that c ∈ C. By our assumption we have

a[x1, x2]s((b+ c)[x1, x2])n[x1, x2]t = 0

for all x1, x2 ∈ U . Then the result follows from Lemma 2.1.
Assume next that d is not Q-inner. Then

a[x1, x2]s(b[x1, x2] + [d(x1), x2] + [x1, d(x2)])n[x1, x2]t = 0

for all x1, x2 ∈ U . In view of the powerful Kharchenko’s theorem [14] we have

a[x1, x2]s(b[x1, x2] + [x3, x2] + [x1, x4])[x1, x2]t = 0

for all x1, x2, x3, x4 ∈ U . Setting x3 = ix1 and x4 = 0, where i = 1, 2, we have

(2.3) a[x1, x2]s((b+ i)[x1, x2])n[x1, x2]t = 0

for all x1, x2 ∈ R. If s = 0, we get from Lemma 2.1 that a(b + i) = 0. It follows that
a = 0, contradicting our assumption. If s > 0, we get from Lemma 2.1 that b+ i = 0, a
contradiction. The proof of the result is complete. �
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