A RESULT ON GENERALIZED DERIVATIONS IN PRIME RINGS

Yiqiu Du* and Yu Wang ${ }^{\dagger \ddagger}$

Received 13:12:2010 : Accepted 12:08:2012

Abstract

Let R be a prime ring, H a generalized derivation of R, L a noncentral Lie ideal of R, and $0 \neq a \in R$. Suppose that $a u^{s}(H(u))^{n} u^{t}=0$ for all $u \in L$, where $s, t \geq 0$ and $n>0$ are fixed integers. If $s=0$, then $H(x)=b x$ for all $x \in R$, where $b \in U$, the right Utumi quotient ring of R, with $a b=0$ unless R satisfies s_{4}, the standard identity in four variables. If $s>0$, then $H=0$ unless R satisfies s_{4}.

Keywords: prime ring, derivation, generalized derivation, extended centroid, right Utumi quotient ring.
2000 AMS Classification: 16W25, 16N60, 16R50.

1. Introduction

Throughout this paper, R is always a prime ring with extended centended C, right Utumi quotient ring U, and two-sided Martindale quotient ring Q. The definitions and properties of these objects can be found in [3, Chapter 2]. Denote s_{4} as the standard identity in four variables.

By a generalized derivation on R one usually means an additive map $H: R \rightarrow R$ such that $H(x y)=H(x) y+x d(y)$, for some derivation d of R. Obviously any derivation is a generalized derivation. Another basic example of generalized derivations is the following: $H(x)=a x+x b$ for $a, b \in R$. Hvala [12] initiated the study of generalized derivations on prime rings. Lee proved the following essential result: every generalized derivation H on a dense left ideal of R can be uniquely extended to U and assume the form $H(x)=b x+d(x)$ for some $b \in U$ and a derivation d on U [16, Theorem 3]. In recent years, a number of articles discussed generalized derivations in the context of prime and semiprime rings (see [1, 5, 9, 10, 11, 18, 19, 21, 22]).

[^0]Dhara and Sharma [6] proved that, if $a \in R$ such that $a u^{s} d(u)^{n} u^{t}=0$ for all $u \in L$, a noncommutative Lie ideal of R, where d a derivation of $R, s \geq 0, t \geq 0, n \geq 1$ are fixed integers, then either $a=0$ or $d=0$ unless char $R=2$ and R satisfies s_{4}. Dhara and Filippis [5] proved that, if $u^{s} H(u) u^{t}=0$ for all $u \in L$, where L a noncommutative Lie ideal of R, H a generalized derivation of R, and $s, t \geq 0$ are fixed integers, then $H=0$ unless char $R=2$ and R satisfies s_{4}. Recently, the second author [22] investigated the situation when $a u^{s} H(u) u^{t}=0$ for all $u \in L$, where L a noncentral Lie ideal of R.

In the present paper we shall generalize the above results in a full general situation. More precisely, we shall prove the following main result of this paper.
1.1. Theorem. Let R be a prime ring, H a generalized derivation of R, L a noncentral Lie ideal of R, and $0 \neq a \in R$. Suppose that $a u^{s}(H(u))^{n} u^{t}=0$ for all $u \in L$, where $s, t \geq 0$ and $n>0$ are fixed integers. If $s=0$, then $H(x)=b x$ for all $x \in R$, where $b \in U$ with $a b=0$ unless R satisfies s_{4}. If $s>0$, then $H=0$ unless R satisfies s_{4}.

2. The proof of the main result

We begin with the following result, which will be used in the proof of our main result.
2.1. Lemma. Let R be a prime ring with $\operatorname{dim}_{C} R C>4$. Let $0 \neq a \in R$ and $b \in U$ such that

$$
a[x, y]^{s}(b[x, y])^{n}[x, y]^{t}=0
$$

for all $x, y \in R$, where $s, t \geq 0$ and $n>0$ are fixed integers. If $s=0$, then $a b=0$. If $s>0$, then $b=0$.

Proof. Suppose first that $b \in C$, by assumption we have

$$
a b^{n}[x, y]^{s+n+t}=0
$$

for all $x, y \in R$. It is easy to check that either $a b^{n}=0$ or R is commutative (see the proof of [17, Theorem 1] or [6, Theorem 2.2]). Hence $b=0$ as $a \neq 0$ and $\operatorname{dim}_{C} R C>4$.

Suppose next that $b \notin C$. Since R and U satisfy the same generalized polynomial identity [4, Theorem 2], we have

$$
\begin{equation*}
a[x, y]^{s}(b[x, y])^{n}[x, y]^{t}=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in U$. In case C is infinite, the GPI (2.1) is also satisfied by $U \otimes_{C} \bar{C}$ where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed [7], we may replace R by U or $U \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed such that $a[x, y]^{s}(b[x, y])^{n}[x, y]^{t}=0$ for all $x, y \in R$.

If $s=0$ and $a b \neq 0$, then $a(b[X, Y])^{n}[X, Y]^{t}$ is a nonzero GPI on R as it has nonzero monomial $a(b X Y)^{n}(X Y)^{t}$. By Martindale's theorem in [20] R is a primitive ring having nonzero socle and the commuting division D is a finite dimensional central division algebra over C. Since C is either finite or algebraically closed, D must coincide with C. Thus R is isomorphic to a dense subring of $E^{2}{ }_{C} V$ for some vector space V over C. Since $\operatorname{dim}_{C} R C>4$, it is obvious that $\operatorname{dim}_{C} V \geq 3$. We will show that, for any given $v \in V$, v and $b v$ are C-dependent. Assume on the contrary that v and $b v$ are C-independent and set $W=C v+C b v$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in V$ such that $v, b v, u$ are also C-independent. If $a b v \neq 0$, by the density of R in $\operatorname{End}_{C} V$ there exist two elements r_{1} and r_{2} in R such that

$$
r_{1} v=0, r_{1} b v=0, r_{1} u=v ; \quad r_{2} v=u, r_{2} b v=u, r_{2} u=0
$$

and so

$$
\left[r_{1}, r_{2}\right] v=v \quad \text { and } \quad\left[r_{1}, r_{2}\right] b v=v .
$$

Hence,

$$
0=a\left(b\left[r_{1}, r_{2}\right]\right)^{n}\left[r_{1}, r_{2}\right]^{t} v=a b v,
$$

a contradiction.
Suppose that $a b v=0$. Since $a b \neq 0$, there exists $w \in V$ such that $a b w \neq 0$ and so $a b(v-w) \neq 0$. By the previous argument we have that there exist $\beta, \gamma \in C$ such that

$$
b w=\beta w \text { and } b(w-v)=\gamma(w-v)
$$

This yields that $(\beta-\gamma) w \in W$. Now $\beta=\gamma$ implies the contradiction that $b v=\beta v$. Thus $\beta \neq \gamma$ and so $w \in W$. But if $u \in V$ with $a b u=0$, then $a b(w+u) \neq 0$. So $w+u \in W$ forcing $u \in W$. Thus $V=W$ and so $\operatorname{dim}_{C} V=2$, a contradiction.

If $s \geq 1$, it is easy to see that $a[X, Y]^{s}(b[X, Y])^{n}[X, Y]^{t}$ is a nonzero GPI on R. By the previous argument R is isomorphic to a dense subring of $\operatorname{End}_{C} V$ with $\operatorname{dim}_{C} V \geq 3$. We will show that, for any given $v \in V, v$ and $b v$ are C-dependent. Assume on the contrary that v and $b v$ are C-independent and set $W=C v+C b v$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in V$ such that $v, b v, u$ are also C-independent. If $a v \neq 0$, by the density of R in $\operatorname{End}_{C} V$ there exist two elements r_{1} and r_{2} in R such that

$$
r_{1} v=0, r_{1} b v=0, r_{1} u=v ; \quad r_{2} v=u, r_{2} b v=u, r_{2} u=0
$$

and so

$$
\left[r_{1}, r_{2}\right] v=v \quad \text { and } \quad\left[r_{1}, r_{2}\right] b v=v
$$

Hence,

$$
0=a\left[r_{1}, r_{2}\right]^{s}\left(b\left[r_{1}, r_{2}\right]\right)^{n}\left[r_{1}, r_{2}\right]^{t} v=a v,
$$

a contradiction.
Suppose that $a v=0$. Since $a \neq 0$, there exists $w \in V$ such that $a w \neq 0$ and so $a(v-w) \neq 0$. By the previous argument we have that there exist $\beta, \gamma \in C$ such that

$$
b w=\beta w \text { and } b(w-v)=\gamma(w-v)
$$

This yields that $(\beta-\gamma) w \in W$. Now $\beta=\gamma$ implies the contradiction that $b v=\beta v$. Thus $\beta \neq \gamma$ and so $w \in W$. But if $u \in V$ with $a u=0$, then $a(w+u) \neq 0$. So $w+u \in W$ forcing $u \in W$. Thus $V=W$ and so $\operatorname{dim}_{C} V=2$, a contradiction.

Hence, in any case, for all $v \in V, v$ and $b v$ are linearly C-dependent. Thus, standard arguments show that $b \in C$, which contradicts our hypothesis.

We are in a position to give
The proof of Theorem 1.1. We assume that R does not satisfy s_{4}. That is, $\operatorname{dim}_{C} R C>4$. By a theorem of Lanski and Montgomery [15, Theorem 13] we have $0 \neq[I, R] \subseteq L$, where I is a nonzero ideal of R. Hence we may assume without loss of generality that $L=[I, I]$. By [16, Theorem 3] we may assume that $H(x)=b x+d(x)$ for all $x \in U$, where $b \in U$ and d a derivation of U. Thus

$$
a\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in I$. Since I and U satisfy the same differential identities [4], we have

$$
a\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in U$. Assume first that d is Q-inner, i.e., there exists $b, c \in U$ such that $H(x)=b x+x c$ for all $x \in U$. So

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=a\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] c\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0 \tag{2.2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in U$. In case C is infinite, the GPI (2.2) is also satisfied by $U \otimes_{C} \bar{C}$ where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed
[7], we may replace R by U or $U \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed such that $f\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in R$.

Suppose first that $c \notin C$. Then $f\left(X_{1}, X_{2}\right)$ is a nonzero GPI for R as it has a nonzero monomial $a\left(X_{1} X_{2}\right)^{s}\left(X_{1} X_{2} c\right)^{n}\left(X_{1} X_{2}\right)^{t}$. By Martindale's theorem in [20] R is a primitive ring having nonzero socle and the commuting division D is a finite dimensional central division algebra over C. Since C is either finite or algebraically closed, D must coincide with C. Thus R is isomorphic to a dense subring of $\operatorname{End}_{C} V$ for some vector space V over C. Since $\operatorname{dim}_{C} R>4$, it is obvious that $\operatorname{dim}_{C} V \geq 3$. We will show that, for any given $v \in V, v$ and $c v$ are C-dependent. Assume on the contrary that v and $c v$ are C-independent and set $W=C v+C c v$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in V$ such that $v, c v, u$ are also C-independent. If $a v \neq 0$, by the density of R in $\operatorname{End}_{C} V$ there exist two elements r_{1} and r_{2} in R such that

$$
r_{1} v=0, r_{1} c v=u, r_{1} u=v \quad \text { and } \quad r_{2} v=u, r_{2} c v=0, r_{2} u=b v-v
$$

and so

$$
\left[r_{1}, r_{2}\right] v=v \quad \text { and } \quad\left[r_{1}, r_{2}\right] c v=-b v+v
$$

Hence,

$$
0=a\left[r_{1}, r_{2}\right]^{s}\left(b\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] c\right)^{n}\left[r_{1}, r_{2}\right]^{t} v=a v
$$

a contradiction.
Suppose that $a v=0$. Since $a \neq 0$, there exists $w \in V$ such that $a w \neq 0$ and so $a(v-w) \neq 0$. By the previous argument we have that there exist $\beta, \gamma \in C$ such that

$$
c w=\beta w \text { and } c(w-v)=\gamma(w-v) .
$$

This yields that $(\beta-\gamma) w \in W$. Now $\beta=\gamma$ implies the contradiction that $c v=\beta v$. Thus $\beta \neq \gamma$ and so $w \in W$. But if $u \in V$ with $a u=0$, then $a(w+u) \neq 0$. So $w+u \in W$ forcing $u \in W$. Thus $V=W$ and so $\operatorname{dim}_{C} V=2$, a contradiction.

Hence, in any case, for all $v \in V, v$ and $c v$ are linearly C-dependent. Thus, standard arguments show that $c \in C$ which contradicts our hypothesis.

Suppose next that $c \in C$. By our assumption we have

$$
a\left[x_{1}, x_{2}\right]^{s}\left((b+c)\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in U$. Then the result follows from Lemma 2.1.
Assume next that d is not Q-inner. Then

$$
a\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in U$. In view of the powerful Kharchenko's theorem [14] we have

$$
a\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[x_{3}, x_{2}\right]+\left[x_{1}, x_{4}\right]\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in U$. Setting $x_{3}=i x_{1}$ and $x_{4}=0$, where $i=1$, 2 , we have

$$
\begin{equation*}
a\left[x_{1}, x_{2}\right]^{s}\left((b+i)\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0 \tag{2.3}
\end{equation*}
$$

for all $x_{1}, x_{2} \in R$. If $s=0$, we get from Lemma 2.1 that $a(b+i)=0$. It follows that $a=0$, contradicting our assumption. If $s>0$, we get from Lemma 2.1 that $b+i=0$, a contradiction. The proof of the result is complete.

Acknowledgements

The author would like to express his sincere thanks to the referee for valuable suggestions.

References

[1] Albas, B., Argac, N. and Fillippis, V. D. Generalized derivations with Engel conditions on one-sided ideals, Comm. Algebra 36, 2063-2071, 2008.
[2] Albert A. A. and Muckenhoupt, B. On matrices of trace zero Michigan J. Math. 1, 1-3, 1957.
[3] Beidar, K. I., Martindale W.S. and Mikhalev, A. V. Rings with Generalized Identities, Marcel Dekker, New York-Basel-Hong Kong, 1996.
[4] Chuang, C. L. GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 723-728, 1988.
[5] Dhara, B. and De Filippis, V. Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc. 46 (3), 599-605, 2009.
[6] Dhara, B and Sharma, R. K. Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen 71 (1), 11-20, 2007.
[7] Erickson, T.S., Martindale, W S. and Osborn, J. M. Prime nonassociative algebras, Pacific J. Math. 60 (1), 49-63, 1975.
[8] Faith, C. and Utumi, Y. On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14, 369-371, 1963.
[9] De Filippis, V. An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162, 93-108, 2007.
[10] De Filippis, V. Posner's second theorem and an annihilator condition with generalized derivations, Turk J. Math. 32, 197-211, 2008.
[11] De Filippis, V. Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45, 621-629, 2008.
[12] Hvala, B. Generalized derivations in rings, Comm. Algebra 26, 1147-1166, 1998.
[13] Jacobson, N. Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[14] Kharchenko, V. K. Differential identities of prime rings, Algebra and Logic 17 155-168, 1978.
[15] Lanski, C. and Montgomery, S. Lie structure of prime rings of characteristic 2, Pacific J. Math. 42, 117-136, 1972.
[16] Lee, T. K. Generalized derivations of left faithful rings, Comm. Algebra 27, 4057-4073, 1999.
[17] Lee, T. K. and Lin, J. S. A result on derivations, Proc. Amer. Math. Soc. 124, 16871691, 1996.
[18] Lee, T. K. Lee and Shiue, W. K. Identities with generalized derivations, Comm. Algebra 29, 4437-4450, 2001.
[19] Lin, J. S. and Liu, C. K. Generalized derivations with invertible or nilpotent on multilinear polynomials values, Comm. Algebra 34, 633-640, 2006.
[20] Martindale 3rd, W. S. Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584, 1969.
[21] Wang, Y. Generalized derivations with power-central values on multilinear polynomials, Algebra Colloq. 13, 405-410, 2006.
[22] Wang, Y. Annihilator conditions with generalized derivations in prime rings, Bull. Korean Math. Soc. 48, 917-922, 2011.

[^0]: *Jilin Normal University, College of Mathematics, Siping 136000, China. E-mail:duyiqiu-2006@163.com
 ${ }^{\dagger}$ Shanghai Normal University, Department of Mathematics, Shanghai, 200234, China. E-mail: ywang2004@162.com
 ${ }^{\ddagger}$ Corresponding Author.

