
Hacettepe Journal of Mathematics and Statistics
Volume 41 (6) (2012), 795 – 812

SOME RANDOM FIXED POINT THEOREMS

FOR (θ, L)-WEAK CONTRACTIONS

Mantu Saha∗ and Debashis Dey†‡

Received 03 : 11 : 2010 : Accepted 01 : 01 : 2012

Abstract

In the present paper, stochastic generalizations of some fixed point
theorems for operators satisfying a (θ, L)-weak contraction condition
and some other contractive conditions have been proved.
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1. Introduction

Fixed point theory has the diverse applications in different branches of mathematics,
statistics, engineering, and economics in dealing with the problems arising in approx-
imation theory, potential theory, game theory, theory of differential equations, theory
of integral equations, and others. Developments in the investigation on fixed points of
nonexpansive mapings, contractive mappings in different spaces like metric spaces, Ba-
nach spaces, Fuzzy metric spaces, Cone metric spaces have almost been saturated. After
the study of random fixed point theorems initiated by the Prague school of Probability
in the 1950’s, considerable attention has been given to the study of random fixed point
theorems because of its importance in probabilistic functional analysis and probabilistic
models with numerous applications. The introduction of randomness however leads to
several new questions of measurability of solutions, probabilistic and statistical aspects
of random solutions.

It is well known that random fixed point theorems are stochastic generalization of clas-
sical fixed point theorems what are known as deterministic results. Random fixed point
theorems for random contraction mappings on separable complete metric spaces were first
proved by Špaček [34] and Hanš (see [13]-[14]). The survey article by Bharucha-Reid [9]
in 1976 attracted the attention of several mathematicians and gave wings to this theory.
Itoh [16] extended Špaček ’s and Hanš’s theorems to multivalued contraction mappings.
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A. Mukherjee [22] gave a random version of Schaduer’s fixed point Theorem on an atomic
probability measure space while Bharucha-Reid ([9]-[10]), generalized Mukherjee’s result
on a general probability measure space. Random fixed point theorems with an applica-
tion to Random differential equations in Banach spaces are obtained by Itoh [16]. Sehgal
and Waters [33] had obtained several random fixed point theorems including a random
analogue of the classical results due to Rothe [27]. In some recent papers of Saha et
al. ([31], [32]), some random fixed point theorems over separable Banach spaces and
separable Hilbert spaces have been established.

On the other hand, the first fundamental fixed point theorem in deterministic form
was due to S. Banach [4]. In a metric space setting this theorem runs as follows:

1.1. Theorem. (Banach contraction principle) Let (X, d) be a complete metric space,
c ∈ (0, 1) and T : X → X a mapping such that for each x, y ∈ X,

d(Tx, Ty) ≤ cd(x, y).

Then T has a unique fixed point a ∈ X, such that for each x ∈ X, lim
n→∞

Tnx = a. �

After this classical result, Kannan [19] gave a substantially new contractive mapping
where the mapping T need not be continuous on X, (but continuous at their fixed points,
see [26]). He considered the contractive condition as follows: there exists a constant
b ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X.

Following Kannan’s theorem, a lot of papers were devoted to obtaining fixed points
for a class of contractive type conditions that do not require the continuity of T (see
for examples [6, 30]). Another fixed point theorem due to Chatterjea [11] is based on a
similar condition to Kannan: there exists constant a c ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)]

for all x, y ∈ X.

Picking up these results obtained by Banach, Kannan and Chatterjea, Zamfirescu [37]
successfully generalized these fixed point theorems in 1972. Another generalization was

obtained by Ćirić [12] in 1974: there exists 0 < h < 1 such that for all x, y ∈ X,

d(Tx, Ty) ≤ hmax {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

This mapping is commonly known as a Ćirić quasi contraction. It is obvious that the

contractive conditions in each of Banach, Kannan and Chatterjea’s results do imply Ćirić
quasi contraction. The contractive condition considered in Zamfirescu’s [37] fixed point
theorem has been further extended to the class of weak contraction by V. Berinde [5] in
2004. In several papers (see for details [5, 7, 8]), weak contraction is commonly termed
an almost contraction.

1.1. Weak contractions. Let (X, d) be a metric space. A mapping T : X → X is called
a weak contraction or (θ, L)-weak contraction if there exist two constants θ ∈ (0, 1) and
L ≥ 0 such that

(1.1) d(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx) for all x, y ∈ X.

Due to the symmetry of the distance, the weak contraction condition (1.1) implicitly
includes the following dual inequality:

(1.2) d(Tx, Ty) ≤ θd(x, y) + Ld(x, Ty) for all x, y ∈ X.
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which is obtained formally by interchanging x and y in (1.1). Therefore, in order to check
the weak contractiveness of a given operator, it is necessary to check both conditions (1.1)
and (1.2). It was shown in [5] that any strict contraction, the Kannan [19] and Zamfirescu
[37] operators, as well as a large class of quasi-contractions [12], are all weak contractions.

A weak contraction has always at least one fixed point and there exist weak contrac-
tions that have infinitely many fixed points (see [5, Example 4]). Note also that the weak
contraction condition (1.1) implies the so called Banach orbital condition

d(Tx, T 2x) ≤ θd(x, Tx), for all x ∈ X,

studied by various authors in the context of fixed point theorems, see for example Hicks
and Rhoades [15], Ivanov [17], Rus ([28, 29, 30]) and Taskovic [35].

Some examples of weak contractions are cited here for ready references.

1.2. Example. (see [20, 24]) Let [0, 1] be the unit interval with the usual norm and let
T : [0, 1] → [0, 1] be given by Tx = 2

3
for all x ∈ [0, 1) and T1 = 0. Then T satisfies the

inequality (1.1) with 1 > θ ≥ 2
3
and L ≥ θ. Note that T has a unique fixed point x = 2

3

and also T is not continuous at that point.

1.3. Example. [5] Any quasi contraction, i.e. any operator for which there exists 0 <
h < 1 such that

d(Tx, Ty) ≤ hmax {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X, is a weak contraction if h < 1
2
.

All these operators, namely the Chattrejea [11], Kannan [19], Zamfirescu [37], or
Quasi-contraction, have a unique fixed point. Berinde also showed in the same paper [5],
that a weak contraction may have infinitely many fixed points.

Berinde [5] introduced the notion of a (θ, L)-weak contraction and proved that a lot
of well-known contractive conditions do imply (θ, L)-weak contraction. The concept of
(θ, L)-weak contraction does not require θ + L to be less than 1 as happens in many
kinds of fixed point theorems for contractive conditions that involve one or more of the
displacements d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx). For more details, we refer
to [20, 25] and allied references cited therein.

Our main aim of this paper is to define the random analogue of a (θ, L)-weak contrac-
tion and thereby prove the stochastic version of the deterministic fixed point theorem
in a separable Banach space. Also some more random fixed point theorems have been
established in separable Banach space to investigate this relatively new field of research
extensively.

These results are stochastic generalizations of earlier results in the literature (see
[4, 19, 11, 37, 5]) of deterministic fixed point theorems.

2. Some basic ideas and definitions

In order to prove our main results, we need to recall the following concepts and results.

Let (X,βX ) be a separable Banach space where βX is a σ-algebra of Borel subsets of
X, and let (Ω, β, µ) denote a complete probability measure space with measure µ, and
let β be a σ-algebra of subsets of Ω. For more details one can see Joshi and Bose [18].

2.1. Definition. A mapping x : Ω → X is said to be an X-valued random variable, if
the inverse image under the mapping x of every Borel set B of X belongs to β; that is,
x−1 (B) ∈ β for all B ∈ βX .
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2.2. Definition. A mapping x : Ω → X is said to be a finitely valued random variable,
if it is constant on each of a finite number of disjoint sets Ai ∈ β and is equal to

0 on Ω −

(

n
⋃

i=1

Ai

)

. X is called a simple random variable if it is finitely valued and

µ {ω : ‖x (ω)‖ > 0} < ∞.

2.3. Definition. A mapping x : Ω → X is said to be a strong random variable, if there
exists a sequence {xn (ω)} of simple random variables which converges to x (ω) almost
surely, i.e., there exists a set A0 ∈ β with µ (A0) = 0 such that lim

n→∞

xn (ω) = x (ω),

ω ∈ Ω− A0.

2.4. Definition. A mapping x : Ω → X is said to be a weak random variable, if the
function x∗ (x (ω)) is a real valued random variables for each x∗ ∈ X∗, the space X∗

denoting the first normed dual space of X.

In a separable Banach space X, the notions of strong and weak random variables
x : Ω → X coincide (see Joshi and Bose [18, Corollary 1]) and in respect of such a space
X, x is called as a random variable. We recall the following results.

2.5. Theorem. (Joshi and Bose [18, Theorem 6.1.2 (a)]) Let x, y : Ω → X be a strong

random variables and α, β constants. Then the following statement holds:

(a) αx (ω) + β y (ω) is a strong random variable.

(b) If f (ω) is a real valued random variable and x (ω) is a strong random variable,

then f (ω)x (ω) is a strong random variable.

(c) If {xn (ω)} is a sequence of strong random variables converging strongly to x (ω)
almost surely, i.e., if there exists a set A0 ∈ β with µ (A0) = 0 such that

lim
n→∞

‖xn (ω)− x (ω)‖ = 0 for every ω /∈ A0, then x (ω) is a strong random

variable. �

2.6. Remark. If X is a separable Banach space, then the σ-algebra generated by the
class of all spherical neighourhoods of X is equal to the σ-algebra of all Borel sets of
X and hence every strong and also weak random variable is measurable in the sense of
Definition 2.1.

Let Y be another Banach space. We also need the following definitions from Joshi
and Bose [18].

2.7. Definition. A mapping F : Ω × X → Y is said to be a random mapping if
F (ω, x) = Y (ω) is a Y -valued random variable for every x ∈ X.

2.8. Definition. A mapping F : Ω×X → Y is said to be a continuous random mapping

if the set of all ω ∈ Ω for which F (ω, x) is a continuous function of x has measure one.

2.9. Definition. A random mapping F : Ω×X → Y is said to be demi-continuous at
x ∈ X if

‖xn − x‖ → 0 implies F (ω, xn)
weakly
−−−−→ F (ω, x) almost surely.

2.10. Theorem. (Joshi and Bose [18, Theorem 6.2.2.]) Let F : Ω × X → Y be a

demi-continuous random mapping where the Banach space Y is separable. Then for any

X-valued random variable x, the function F (ω, x (ω)) is a Y -valued random variable. �

2.11. Remark. (see [31]) Since a continuous random mapping is a demi-continuous
random mapping, Theorem 2.5 is also true for a continuous random mapping.

The following definitions are also given in the book of Joshi and Bose [18].



Some Random Fixed Point Theorems 799

2.12. Definition. An equation of the type F (ω, x (ω)) = x (ω), where F : Ω×X → X
is a random mapping, is called a random fixed point equation.

2.13. Definition. Any mapping x : Ω → X which satisfies the random fixed point
equation F (ω, x (ω)) = x (ω) almost surely is said to be a wide sense solution of the
fixed point equation.

2.14. Definition. Any X-valued random variable x (ω) which satisfies

µ {ω : F (ω, x (ω)) = x (ω)} = 1

is said to be a random solution of the fixed point equation, or a random fixed point of F .

2.15. Remark. A random solution is a wide sense solution of the fixed point equation.
But the converse is not necessarily true. This is evident from the following example as
found under Joshi and Bose [18, Remark 1].

2.16. Example. Let X be the set of all real numbers and let E be a non measurable
subset of X. Let F : Ω×X → Y be the random mapping defined as F (ω, x) = x2+x−1
for all ω ∈ Ω.

In this case, the real valued function x (ω), defined as x (ω) = 1 for all ω ∈ Ω, is a
random fixed point of F . However the real valued function y (ω) defined as

y (ω) =

{

−1, ω /∈ E,

1, ω ∈ E,

is a wide sense solution of the fixed point equation F (ω, x (ω)) = x (ω), without being a
random fixed point of F .

Now we define the random version of a (θ, L)-weak contraction map and then establish
a random fixed point theorem for (θ, L)-weak contraction.

3. Random analogue of (θ, L)-weak contraction

3.1. Definition. LetX be a separable Banach space and (Ω, β, µ) a complete probability
measure space. Then T : Ω×X → X is called a random weak contraction if there exist
a real valued random variable θ(ω) ∈ (0, 1) and a finitely valued real random variable
L(ω) ≥ 0 almost surely, such that

(3.1) ‖T (ω, x1)− T (ω, x2)‖ ≤ θ(ω) ‖x1 − x2‖+ L(ω) ‖x2 − T (ω, x1)‖

for all x1, x2 ∈ X.

3.2. Theorem. Let X be a separable Banach space and (Ω, β, µ) a complete probability

measure space. Let T : Ω × X → X be a continuous random operator satisfying (3.1)
almost surely, where 0 < θ(ω) < 1 is a real valued random variable and L(ω) ≥ 0 is a

finitely valued real random variable almost surely. Then there exists a random fixed point

of T .

Proof. Let

A = {ω ∈ Ω : T (ω, x) is a continuous function of x}

Cx1,x2
=
{

ω ∈ Ω : ‖T (ω, x1)− T (ω, x2)‖

≤ θ(ω) ‖x1 − x2‖+ L(ω) ‖x2 − T (ω, x1)‖
}

and

B = {ω ∈ Ω : 0 ≤ θ(ω) < 1} ∩ {ω ∈ Ω : L(ω) ≥ 0} .

Let S be a countable dense subset of X. We next prove that
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⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) .

Let ω ∈
⋂

s1,s2∈S (Cs1,s2 ∩A ∩B), then for all s1, s2 ∈ S,

(3.2) ‖T (ω, s1)− T (ω, s2)‖ ≤ θ(ω) ‖s1 − s2‖+ L(ω) ‖s2 − T (ω, x1)‖ .

Let x1, x2 ∈ X. We have

(3.3)

‖T (ω,x1)− T (ω, x2)‖ ≤ ‖T (ω, x1)− T (ω, s1)‖+ ‖T (ω, s1 − T (ω, s2)‖

+ ‖T (ω, s2)− T (ω, x2)‖

≤ ‖T (ω, x1)− T (ω, s1)‖+ ‖T (ω, s2)− T (ω, x2)‖

+ θ(ω) ‖s1 − s2‖+ L(ω) ‖s2 − T (ω, s1)‖

Now

(3.4) ‖s2 − T (ω, s1)‖ ≤ ‖s2 − x2‖+ ‖x2 − T (ω, x1)‖+ ‖T (ω, x1)− T (ω, s1)‖ .

Again

(3.5) ‖s1 − s2‖ ≤ ‖s1 − x1‖+ ‖x1 − x2‖+ ‖x2 − s2‖ .

Using (3.2), (3.3), (3.4) and (3.5) we get

(3.6)

‖T (ω, x1)− T (ω, x2)‖ ≤ ‖T (ω, x1)− T (ω, s1)‖+ ‖T (ω, s2)− T (ω, x2)‖

+ θ(ω) [‖s1 − x1‖+ ‖x1 − x2‖+ ‖x2 − s2‖]

+ L(ω) [‖s2 − x2‖+ ‖x2 − T (ω, x1)‖

+ ‖T (ω, x1)− T (ω, s1)‖]

= (1 + L(ω)) ‖T (ω, x1)− T (ω, s1)‖+ ‖T (ω, s2)− T (ω, x2)‖

+ θ(ω) ‖s1 − x1‖+ θ(ω) ‖x1 − x2‖

+ (θ(ω) + L(ω)) ‖x2 − s2‖+ L(ω) ‖x2 − T (ω, x1)‖

< (1 + L(ω)) ‖T (ω, x1)− T (ω, s1)‖+ ‖T (ω, s2)− T (ω, x2)‖

+ ‖s1 − x1‖+ (1 + L(ω)) ‖x2 − s2‖

+ [θ(ω) ‖x1 − x2‖+ L(ω) ‖x2 − T (ω, x1)‖]

Since for a particular ω ∈ Ω, T (ω, x) is a continuous function of x, so for any ǫ > 0, there
exists δi(xi) > 0; (i = 1, 2) such that

‖T (ω, x1)− T (ω, s1)‖ <
ǫ

4(1 + L(ω))
, whenever ‖x1 − s1‖ < δ1(x1)

and

‖T (ω, x2)− T (ω, s2)‖ <
ǫ

4
, whenever ‖x2 − s2‖ < δ′2(x2),

where δ′2(x2) =
δ2(x2)

(1 + L(ω))
.

Now choose

ρ1 = min
(

δ1 (x1) ,
ǫ

4

)

and

ρ2 = min
(

δ′2 (x2) ,
ǫ

4

)

.
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For such a choice of ρ1, ρ2, from (3.6) we have

‖T (ω, x1)− T (ω, x2)‖ ≤
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
+ [θ(ω) ‖x1 − x2‖+ L(ω) ‖x2 − T (ω, x1)‖].

Since ǫ is arbitrary, so we have

‖T (ω, x1)− T (ω, x2)‖ ≤ θ(ω) ‖x1 − x2‖+ L(ω) ‖x2 − T (ω, x1)‖ .

Thus,

ω ∈
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) ,

which implies that
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) ⊂
⋂

x1,x2∈X

(Cx1,x2
∩ A ∩ B) .

Also it is obvious that
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) ⊂

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) ,

and so
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) .

Let

N =
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) .

Then µ (N) = 1 and for each ω ∈ N , T (ω, x) are deterministic continuous operators
satisfying the mapping referred to in [5, Theorem 1] and hence, these have a wide
sense solution x (ω). To prove the randomness and measurability of x (ω), we generate
an approximating sequence of random variables xn (ω) as follows. Let x0 (ω) be an
arbitrary random variable. Let x1 (ω) = T (ω, x0 (ω)). Then it follows that x1 (ω) is a
random variable. We then consider

xn+1 (ω) = T (ω, xn (ω)) .

By repeated application, it gives that {xn (ω)}
n=1,2,... is a sequence of random variables

converging to x (ω). Thus, it follows that x (ω) is a random variable and hence x (ω) is
measurable. Hence x (ω) is a random fixed point of T . �

3.3. Example. Let X be the set of all real numbers and let E be a non measurable
subset of X. Let T : Ω × X → X be the random mapping defined as T (ω, x) = 1

5
for

all ω ∈ Ω. Clearly T satisfies (3.1) and also the real valued function x (ω) defined as
x (ω) = 1

5
for all ω ∈ Ω, is a unique random fixed point of T .

4. Some other random fixed point theorems

In this section, we prove the stochastic version of deterministic fixed point theorems
due to [1] and some other related results.

4.1. Theorem. Let X be a separable Banach space and (Ω, β, µ) a complete probability

measure space. Let R, T : Ω×X → X be continuous random operators satisfying:

(4.1)
α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤ δ(ω) ‖x1 − x2‖
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almost surely for all x1, x2 ∈ X, where β(ω), γ(ω), δ(ω) are nonnegative real ran-

dom variables and α(ω) is a nonnegative finitely valued real random variable such that

β(ω), γ(ω) < δ(ω) and δ(ω) < α(ω) almost surely. Then there exists a unique common

random fixed point of R and T .

Proof. Let

A = {ω ∈ Ω : R(ω, x) is a continuous function of x}

∩ {ω ∈ Ω : T (ω, x) is a continuous function of x}

Cx1,x2
= {ω ∈ Ω : α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖

+γ(ω) ‖x2 − T (ω, x2)‖ ≤ δ(ω) ‖x1 − x2‖}

and

B = {ω ∈ Ω : β(ω), γ(ω) < δ(ω) and δ(ω) < α(ω)} .

Let S be a countable dense subset of X. We next prove that
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) .

Let

ω ∈
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) ,

then for all s1, s2 ∈ S,

(4.2)
α(ω) ‖R(ω, s1)− T (ω, s2)‖+ β(ω) ‖s1 −R(ω, s1)‖+ γ(ω) ‖s2 − T (ω, s2)‖

≤ δ(ω) ‖s1 − s2‖

Let x1, x2 ∈ X, we have

(4.3)

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω,x2)‖

≤ α(ω) [‖R(ω, x1)−R(ω, s1)‖+ ‖R(ω, s1)− T (ω, s2)‖+ ‖T (ω, s2)− T (ω, x2)‖]

+ β(ω) [‖x1 − s1‖+ ‖s1 −R(ω, s1)‖+ ‖R(ω, s1)−R(ω, x1)‖]

+ γ(ω) [‖x2 − s2‖+ ‖s2 − T (ω, s2)‖+ ‖T (ω, s2)− T (ω, x2)‖]

= {α(ω) + β(ω)} ‖R(ω, x1)−R(ω, s1)‖+ {α(ω) + γ(ω)} ‖T (ω, x2)− T (ω, s2)‖

+ [α(ω) ‖R(ω, s1)− T (ω, s2)‖+ β(ω) ‖s1 −R(ω, s1)‖+ γ(ω) ‖s2 − T (ω, s2)‖]

+ β(ω) ‖x1 − s1‖+ γ(ω) ‖x2 − s2‖

≤ {α(ω) + β(ω)} ‖R(ω, x1)−R(ω, s1)‖+ {α(ω) + γ(ω)} ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω) ‖s1 − s2‖+ β(ω) ‖x1 − s1‖+ γ(ω) ‖x2 − s2‖

Again

(4.4) ‖s1 − s2‖ ≤ ‖s1 − x1‖+ ‖x1 − x2‖+ ‖x2 − s2‖

Using (4.3) and (4.4) we get

(4.5)

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤ {α(ω) + β(ω)} ‖R(ω, x1)−R(ω, s1)‖+ {α(ω) + γ(ω)} ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω) ‖x1 − x2‖+ {β(ω) + δ(ω)} ‖x1 − s1‖+ {γ(ω) + δ(ω)} ‖x2 − s2‖

≤ {α(ω) + δ(ω)} ‖R(ω, x1)−R(ω, s1)‖+ {α(ω) + δ(ω)} ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω) ‖x1 − x2‖+ 2δ(ω) ‖x1 − s1‖+ 2δ(ω) ‖x2 − s2‖

≤ 2α(ω) ‖R(ω, x1)−R(ω, s1)‖+ 2α(ω) ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω) ‖x1 − x2‖+ 2α(ω) ‖x1 − s1‖+ 2α(ω) ‖x2 − s2‖ .
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Since for a particular ω ∈ Ω, R(ω, x), T (ω, x) are continuous functions of x, so for any
ǫ > 0, there exists θi(xi) > 0; (i = 1, 2) such that

‖R(ω, x1)−R(ω, s1)‖ <
ǫ

8α(ω)
, whenever ‖x1 − s1‖ <

θ1(x1)

2α(ω)
= θ′1(x1)

and

‖T (ω, x2)− T (ω, s2)‖ <
ǫ

8α(ω)
, whenever ‖x2 − s2‖ <

θ2(x2)

2α(ω)
= θ′2(x2).

Now choose

ρ1 = min
(

θ′1 (x1) ,
ǫ

4

)

and

ρ2 = min
(

θ′2 (x2) ,
ǫ

4

)

For such a choice of ρ1, ρ2, from (4.5) we have

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
+ δ(ω) ‖x1 − x2‖ .

Since ǫ > 0 is arbitrary, so we have

(4.6)
α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤ δ(ω) ‖x1 − x2‖

Thus,

ω ∈
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) ,

which implies that
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) ⊂
⋂

x1,x2∈X

(Cx1,x2
∩ A ∩ B) .

Also it is obvious that
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) ⊂

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B)

and so
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B)

Let

N =
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) .

Then µ (N) = 1 and for each ω ∈ N , T (ω, x), is a deterministic continuous operator
satisfying [1, Theorem 2.1], and hence it has a unique wide sense common solution x (ω).
The uniqueness of x(ω) follows from the deterministic case. To prove the randomness
and measurability of x (ω), we generate an approximating sequence of random variables
xn (ω) as follows. Let x0 (ω) be an arbitrary random variable. Let x1 (ω) = R (ω, x0 (ω)),
x2 (ω) = T (ω, x1 (ω)). Then it follows that x1 (ω) and x2 (ω) are random variables. We
then consider

x2n+1 (ω) = R (ω, x2n (ω)) ,

x2n+2 (ω) = T (ω, x2n+1 (ω)) .
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By repeated application, this gives that {xn (ω)}
n=1,2,... is a sequence of random variables

converging to x (ω). Thus, it follows that x (ω) is a random variable and hence x (ω) is
measurable. Hence x (ω) is the unique common random fixed point of R and T . �

4.2. Corollary. Let X be a separable Banach space and (Ω, β, µ) a complete probability

measure space. Let T : Ω×X → X be a continuous random operator satisfying:

α(ω) ‖T (ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤ δ(ω) ‖x1 − x2‖

almost surely for all x1, x2 ∈ X, where β(ω), γ(ω), δ(ω) are nonnegative real ran-

dom variables and α(ω) is a nonnegative finitely valued real random variable such that

β(ω), γ(ω) < δ(ω) and δ(ω) < α(ω) almost surely. Then there exists a unique random

fixed point of T .

Proof. Let

A = {ω ∈ Ω : T (ω, x) is a continuous function of x} ,

Cx1,x2
= {ω ∈ Ω : α(ω) ‖T (ω, x1)− T (ω,x2)‖+ β(ω) ‖x1 − T (ω, x1)‖

+γ(ω) ‖x2 − T (ω, x2)‖ ≤ δ(ω)‖x1 − x2‖} ,

and

B = {ω ∈ Ω : β(ω), γ(ω) < δ(ω) and δ(ω) < α(ω)} .

Then in a similar fashion to that in Theorem 4.1, we can prove that T has a unique
wide sense solution x (ω). The uniqueness of x(ω) is also clear. To prove the randomness
and measurability of x (ω), we generate an approximating sequence of random variables
xn (ω) as follows. Let x0 (ω) be an arbitrary random variable. Let x1 (ω) = T (ω, x0 (ω)).
Then it follows that x1 (ω) is a random variable. We then consider

xn (ω) = T (ω, xn−1 (ω)) for n = 2, 3, . . . .

By repeated application, this gives that {xn (ω)}n=1,2,... is a sequence of random variables

converging to x (ω). Thus, it follows that x (ω) is a random variable and hence x (ω) is
measurable. Hence x (ω) is a unique random fixed point of T . �

4.3. Note. It is to be noted that a (θ, L)-weak contraction satisfying (1.1) is not the
same as the following contractive type mapping in a Banach or metric space. Example 4.5
clearly supports our contention.

Before going into our next stochastic result, we first prove a deterministic fixed point
theorem in a Banach space.

4.4. Theorem. Let R, T be two continuous self mapping of a Banach space (X, ‖ · ‖)
satisfying the following condition:

(4.7) α ‖Rx− Ty‖+ β ‖x− Ty‖+ γ ‖y −Rx‖ ≤ δ ‖x− y‖

for all x, y ∈ X, α, β, γ, δ ≥ 0, γ, δ < α and α < β. Then R and T have a unique

common fixed point z ∈ X.

Proof. Let x0 ∈ X and define {xn} by x2n+1 = Rx2n and x2n+2 = Tx2n+1. Assume
xn 6= xn+1 for each n. Then from (4.7) we have by letting x = x2n and y = x2n+1,

α ‖Rx2n − Tx2n+1‖+β ‖x2n − Tx2n+1‖+γ ‖x2n+1 −Rx2n‖ ≤ δ ‖x2n − x2n+1‖ ,
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which implies that

α ‖x2n+1 − x2n+2‖+ β ‖x2n − x2n+2‖ ≤ δ ‖x2n − x2n+1‖ , or

α ‖x2n+1 − x2n+2‖+ β ‖x2n − x2n+2‖ ≤ δ ‖x2n − x2n+2‖+ δ ‖x2n+1 − x2n+2‖ , or

(α− δ) ‖x2n+1 − x2n+2‖ ≤ (δ − β) ‖x2n − x2n+2‖ , or

(α− δ) ‖x2n+1 − x2n+2‖ ≤ (δ − β) ‖x2n − x2n+1‖+ (δ − β) ‖x2n+1 − x2n+2‖ ,

i.e.,

‖x2n+1 − x2n+2‖ ≤ k ‖x2n − x2n+1‖ , where k =
δ − β

α+ β − 2δ
< 1,

since γ, δ < α and α < β.

Similarly one can obtain

‖x2n − x2n+1‖ ≤ k ‖x2n−1 − x2n‖ ,

so that

‖x2n+1 − x2n+2‖ ≤ k2 ‖x2n−1 − x2n‖ ≤ · · · ≤ k2n ‖x1 − x2‖

and

‖x2n − x2n+1‖ ≤ k2n ‖x0 − x1‖ .

Now let r(x0) = max {‖x0 − x1‖ , ‖x1 − x2‖}. Then for any m > n,

‖xm − xn‖ ≤

m−n−1
∑

i=0

‖xn+i − xn+i+1‖

≤

m−n−1
∑

i=0

k2(n+i)r(x0)

≤
k2n

1− k2
r(x0) → 0, as n → ∞.

So {xn} is a Cauchy sequence and hence convergent. Call the limit z. Also by the
continuity of R and T , we get Rz = z = Tz.

Next suppose that (v 6= z) is another common fixed point of R and T . Then from (4.7)
we have

α ‖Rz − Tv‖+ β ‖z − Tv‖+ γ ‖v −Rz‖ ≤ δ ‖z − v‖

implies (α+ β + γ − δ) ‖z − v‖ ≤ 0,

which shows that z = v and so the fixed point is unique. �

4.5. Example. Let [0, 1] be the unit interval with its usual norm and let T : [0, 1] → [0, 1]
be given by

Tx = 1
2
for x ∈ [0, 1) = 0 for x = 1.

Then the following results hold:

1) T is a (θ, L)-weak contraction,

2) T has a unique fixed point (x = 1
2
), but

3) T does not satisfy the contractive condition of type (4.7) as we can check by
taking x = 1

4
and y = 1

8
.

Now we give the random analogue of the above theorem.
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4.6. Theorem. Let X be a separable Banach space and (Ω, β, µ) a complete probability

measure space. Let R, T : Ω×X → X be continuous random operators satisfying:

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x2)‖+ γ(ω) ‖x2 −R(ω, x1)‖

≤ δ(ω) ‖x1 − x2‖

almost surely for all x1, x2 ∈ X, where α(ω), γ(ω), δ(ω) are nonnegative real ran-

dom variables and β(ω) is a nonnegative finitely valued real random variable such that

γ(ω), δ(ω) < α(ω) and α(ω) < β(ω) almost surely. Then there exists a unique common

random fixed point of R and T .

Proof. Let

A = {ω ∈ Ω : R(ω, x) is a continuous function of x}

∩ {ω ∈ Ω : T (ω, x) is a continuous function of x}

Cx1,x2
= {ω ∈ Ω : α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x2)‖

+γ(ω) ‖x2 −R(ω, x1)‖ ≤ δ(ω) ‖x1 − x2‖}

and

B = {ω ∈ Ω : γ(ω), δ(ω) < α(ω) and α(ω) < β(ω)} .

Let S be a countable dense subset of X. We next prove that
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) .

Let

ω ∈
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) ,

then for all s1, s2 ∈ S,

(4.8)
α(ω) ‖R(ω, s1)− T (ω, s2)‖+ β(ω) ‖s1 − T (ω, s2)‖+ γ(ω)‖s2 −R(ω, s1)‖

≤ δ(ω) ‖s1 − s2‖ .

Let x1, x2 ∈ X, we have

(4.9)

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x2)‖+ γ(ω) ‖x2 −R(ω, x1)‖

≤ α(ω) [‖R(ω, x1)−R(ω, s1)‖+ ‖R(ω, s1)− T (ω, s2)‖+ ‖T (ω, s2)− T (ω, x2)‖]

+ β(ω) [‖x1 − s1‖+ ‖s1 − T (ω, s2)‖+ ‖T (ω, s2)− T (ω, x2)‖]

+ γ(ω) [‖x2 − s2‖+ ‖s2 −R(ω, s1)‖+ ‖R(ω, s1)−R(ω, x1)‖]

= {α(ω) + γ(ω)} ‖R(ω, x1)−R(ω, s1)‖+ {α(ω) + β(ω)} ‖T (ω, x2)− T (ω, s2)‖

+ [α(ω) ‖R(ω, s1)− T (ω, s2)‖+ β(ω) ‖s1 − T (ω, s2)‖+ γ(ω) ‖s2 −R(ω, s1)‖]

+ β(ω) ‖x1 − s1‖+ γ(ω) ‖x2 − s2‖

≤ 2β(ω) ‖R(ω, x1)−R(ω, s1)‖+ 2β(ω) ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω) ‖s1 − s2‖+ β(ω) ‖x1 − s1‖+ γ(ω) ‖x2 − s2‖

Again

(4.10) ‖s1 − s2‖ ≤ ‖s1 − x1‖+ ‖x1 − x2‖+ ‖x2 − s2‖ .
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Using (4.8), (4.9) and (4.10) we get

(4.11)

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x2)‖+ γ(ω) ‖x2 −R(ω, x1)‖

≤ 2β(ω) ‖R(ω, x1)−R(ω, s1)‖+ 2β(ω) ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω)‖x1 − x2‖+ {β(ω) + δ(ω)} ‖x1 − s1‖+ {γ(ω) + δ(ω)} ‖x2 − s2‖

≤ 2β(ω) ‖R(ω, x1)−R(ω, s1)‖+ 2β(ω) ‖T (ω, x2)− T (ω, s2)‖

+ δ(ω)‖x1 − x2‖+ 2β(ω) ‖x1 − s1‖+ 2β(ω) ‖x2 − s2‖

Since for a particular ω ∈ Ω, R(ω, x), T (ω, x) are continuous functions of x, so for any
ǫ > 0 there exists θi(xi) > 0; (i = 1, 2) such that

‖R(ω, x1)−R(ω, s1)‖ <
ǫ

8β(ω)
, whenever ‖x1 − s1‖ <

θ1(x1)

2β(ω)
= θ′1(x1)

and

‖T (ω,x2)− T (ω, s2)‖

<
ǫ

8β(ω)
, whenever ‖x2 − s2‖ <

θ2(x2)

2β(ω)
= θ′2(x2).

Now choose

ρ1 = min
(

θ′1 (x1) ,
ǫ

4

)

and

ρ2 = min
(

θ′2 (x2) ,
ǫ

4

)

.

For such a choice of ρ1, ρ2, from (4.11) we have

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
+ δ(ω) ‖x1 − x2‖ .

Since ǫ > 0 is arbitrary, so we have

α(ω) ‖R(ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 −R(ω, x1)‖+ γ(ω) ‖x2 − T (ω, x2)‖

≤ δ(ω) ‖x1 − x2‖ .

Thus,

ω ∈
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B)

which implies that
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) ⊂
⋂

x1,x2∈X

(Cx1,x2
∩ A ∩ B)

Also it is obvious that
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) ⊂

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B)

and so
⋂

x1,x2∈X

(Cx1,x2
∩A ∩B) =

⋂

s1,s2∈S

(Cs1,s2 ∩ A ∩ B) .

Let

N =
⋂

s1,s2∈S

(Cs1,s2 ∩A ∩B) .
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Then µ (N) = 1 and for each ω ∈ N , T (ω, x), is a deterministic continuous opera-
tor satisfying the above Theorem 4.4 and hence, it has a unique wide sense common
solution x (ω). The uniqueness of x(ω) follows from the deterministic case. To prove
the randomness and measurability of x (ω), we generate an approximating sequence of
random variables xn (ω) as follows. Let x0 (ω) be an arbitrary random variable. Let
x1 (ω) = R (ω, x0 (ω)), x2 (ω) = T (ω, x1 (ω)). Then it follows that x1 (ω) and x2 (ω) are
random variables. We then consider

x2n+1 (ω) = R (ω, x2n (ω))

x2n+2 (ω) = T (ω, x2n+1 (ω)) .

By repeated application, this gives that {xn (ω)}n=1,2,... is a sequence of random variables

converging to x (ω). Thus, it follows that x (ω) is a random variable and hence x (ω) is
measurable. Hence x (ω) is the unique common random fixed point of R and T . �

4.7. Corollary. Let X be a separable Banach space and (Ω, β, µ) a complete probability

measure space. Let T : Ω×X → X be a continuous random operator satisfying:

α(ω) ‖T (ω, x1)− T (ω, x2)‖+ β(ω) ‖x1 − T (ω, x2)‖+ γ(ω) ‖x2 − T (ω, x1)‖

≤ δ(ω) ‖x1 − x2‖

almost surely for all x1, x2 ∈ X, where α(ω), γ(ω), δ(ω) are nonnegative real ran-

dom variables and β(ω) is a nonnegative finitely valued real random variable such that

γ(ω), δ(ω) < α(ω) and α(ω) < β(ω) almost surely. Then there exists a unique random

fixed point of T . �

5. Application to a random nonlinear integral equation

In this section, we apply Theorem 3.2 to prove the existence of a solution in a Banach
space of a random nonlinear integral equation of the form:

(5.1) x(t;ω) = h(t;ω) +

∫

S

k(t, s;ω)f(s, x(s;ω)) dµ0(s),

where

(i) S is a locally compact metric space with metric d on S × S, µ0 is a complete
σ-finite measure defined on the collection of Borel subsets of S;

(ii) ω ∈ Ω, where ω is a supporting set of the probability measure space (Ω, β, µ);
(iii) x(t;ω) is an unknown vector-valued random variable for each t ∈ S.
(iv) h(t;ω) is the stochastic free term defined for t ∈ S;
(v) k(t, s;ω) is the stochastic kernel defined for t and s in S, and
(vi) f(t, x) is vector-valued function of t ∈ S and x,

and the integral in equation (5.1) is a Bochner integral.

We will further assume that S is the union of a countable family of compact sets {Cn}
having the properties that C1 ⊂ C2 ⊂ · · · and that for any other compact set S there is
a Ci which contains it (see [3]).

5.1. Definition. We define the space C(S,L2(Ω, β, µ)) to be the space of all continuous
functions from S into L2(Ω, β, µ) with the topology of uniform convergence on compacta
i.e. for each fixed t ∈ S, x(t;ω) is a vector valued random variable such that

‖x(t;ω)‖2
L2(Ω,β,µ) =

∫

Ω

|x(t;ω)|2 dµ(ω) < ∞.
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It may be noted that C(S,L2(Ω, β, µ)) is locally convex space (see [36]) whose topology
is defined by a countable family of seminorms given by

‖x(t;ω)‖
n
= sup

t∈Cn

‖x(t;ω)‖
L2(Ω,β,µ) , n = 1, 2, . . .

Moreover C(S,L2(Ω, β, µ)) is complete relative to this topology since L2(Ω, β, µ) is com-
plete.

We further define BC = BC(S,L2(Ω, β, µ)) to be the Banach space of all bounded
continuous functions from S into L2(Ω, β, µ) with norm

‖x(t;ω)‖
BC

= sup
t∈S

‖x(t;ω)‖
L2(Ω,β,µ) .

The space BC ⊂ C is the space of all second order vector-valued stochastic process
defined on S which are bounded and continuous in mean square.

We will consider the function h(t;ω) and f(t, x(t;ω)) to be in the space C(S,L2(Ω, β, µ))
with respect to the stochastic kernel. We assume that for each pair (t, s), k(t, s;ω) ∈
L∞(Ω, β, µ), and denote the norm by

‖k(t, s;ω)‖ = ‖k(t, s;ω)‖
L∞(Ω,β,µ) = µ− ess sup

ω∈Ω
|k(t, s;ω)| .

Also we will suppose that k(t, s;ω) is such that |||k(t, s;ω)||| · ‖x(s;ω)‖
L2(Ω,β,µ) is µ0-

integrable with respect to s for each t ∈ S and x(s;ω) in C(S,L2(Ω, β, µ)) and there
exists a real valued function G defined µ0-a.e. on S, so that G(S) ‖x(s;ω)‖

L2(Ω,β,µ) is

µ0-integrable and for each pair (t, s) ∈ S × S,

|||k(t, u;ω)− k(s, u;ω)||| . ‖x(u,ω)‖
L2(Ω,β,µ) ≤ G(u) ‖x(u, ω)‖

L2(Ω,β,µ)

µ0-a.e. Further, for almost all s ∈ S, k(t, s;ω) will be continuous in t from S into
L∞(Ω, β, µ).

We now define the random integral operator T on C(S,L2(Ω, β, µ)) by

(5.2) (Tx)(t;ω) =

∫

S

k(t, s;ω)x(s;ω) dµ0(s),

where the integral is a Bochner integral. Moreover, we have that for each t ∈ S,
(Tx)(t;ω) ∈ L2(Ω, β, µ) and that (Tx)(t;ω) is continuous in mean square by Lebesgue’s
dominated convergence theorem. So (Tx)(t;ω) ∈ C(S,L2(Ω, β, µ)).

5.2. Definition. (see [2, 21]) Let B and D be Banach spaces. The pair (B,D) is said
to be admissible with respect to a random operator T (ω) if T (ω)(B) ⊂ D.

5.3. Lemma. (see [23]) The linear operator T defined by (5.2) is continuous from

C(S,L2(Ω, β, µ)) into itself. �

5.4. Lemma. (see [23, 21]) If T is a continuous linear operator from C(S,L2(Ω, β, µ))
into itself and B,D ⊂ C(S,L2(Ω, β, µ)) are Banach spaces stronger than C(S,L2(Ω, β, µ))
such that (B,D) is admissible with respect to T , then T is continuous from B into D. �

5.5. Remark. (see [23]) The operator T defined by (5.3) is a bounded linear operator
from B into D.

It is to be noted that by a random solution of the equation (5.1) we will mean a
function x(t;ω) in C(S,L2(Ω, β, µ)) which satisfies the equation (5.1) µ-a.e.

We are now in a state to prove the following theorem.

5.6. Theorem. We consider the stochastic integral equation (5.1) subject to the following

conditions:
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(a) B and D are Banach spaces stronger than C(β, L2(Ω, β, µ)) such that (B,D) is

admissible with respect to the integral operator defined by (5.2);
(b) x(t;ω) → f(t, x(t;ω)) is an operator from the set

Q(ρ) =
{

x(t;ω) : x(t;ω) ∈ D, ‖x(t;ω)‖
D

≤ ρ
}

into the space B satisfying

(5.3)

‖f(t, x1(t;ω))− f(t, x2(t;ω))‖B ≤ θ(ω) ‖x1(t;ω)− x2(t;ω)‖D

+ L(ω) ‖x2(t;ω)− f(t, x1(t;ω))‖D
for x1(t;ω), x2(t;ω) ∈ Q(ρ), where 0 < θ(ω) < 1 is a real valued random variable

and L(ω) ≥ 0 is a finitely valued real random variable almost surely,

(c) h(t;ω) ∈ D.

Then there exists a unique random solution of (5.1) in Q(ρ), provided c(ω)
1−L(ω)

< 1 and

‖h(t;ω)‖D +
c(ω)

1− L(ω)
‖f(t; 0)‖B ≤ ρ

(

1−
c(ω)θ(ω)

1− L(ω)

)

,

where c(ω) is the norm of T (ω).

Proof. Define the operator U(ω) from Q(ρ) into D by

(Ux)(t;ω) = h(t;ω) +

∫

S

k(t, s;ω)f(s, x(s;ω))dµ0(s).

Now

‖(Ux)(t;ω)‖
D

≤ ‖h(t;ω)‖
D
+ c(ω) ‖f(t, x(t;ω))‖

B

≤ ‖h(t;ω)‖D + c(ω) ‖f(t; 0)‖B + c(ω) ‖f(t, x(t;ω))− f(t; 0)‖B .

Then from condition (5.3) of this theorem

‖f(t, x(t;ω))− f(t; 0)‖
B
≤ [θ(ω) ‖x(t;ω)‖

D
+ L(ω) ‖f(t, x(t;ω))‖

D
]

≤ θ(ω)ρ+ L(ω) ‖f(t, x(t;ω))− f(t; 0)‖
D
+ L(ω) ‖f(t; 0)‖

D

implies

(5.4) ‖f(t, x(t;ω))− f(t; 0)‖B ≤
θ(ω)

1− L(ω)
ρ+

L(ω)

1− L(ω)
‖f(t; 0)‖B .

Therefore, by (5.4),

‖(Ux)(t;ω)‖
D

≤ ‖h(t;ω)‖
D
+ c(ω) ‖f(t; 0)‖

B
+

c(ω)θ(ω)

1− L(ω)
ρ+

c(ω)L(ω)

1− L(ω)
‖f(t; 0)‖

B

= ‖h(t;ω)‖
D
+

c(ω)θ(ω)

1− L(ω)
ρ+

c(ω)

1− L(ω)
‖f(t; 0)‖

B
< ρ.

Hence (Ux)(t;ω) ∈ Q(ρ). Then for x1(t;ω), x2(t;ω) ∈ Q(ρ), we have by condition (b)

‖(Ux1)(t;ω)− (Ux2)(t;ω)‖D

=

∥

∥

∥

∥

∫

S

k(t, s;ω)[f(s, x1(s;ω))− f(s, x2(s;ω))]dµ0(s)

∥

∥

∥

∥

D

≤ c(ω) ‖f(t, x1(t;ω))− f(t, x2(t;ω))‖B

≤ θ(ω) ‖x1(t;ω)− x2(t;ω)‖D + L(ω) ‖x2(t;ω)− (Ux1)(t;ω)‖D ,

since c(ω)
1−L(ω)

< 1. Thus U(ω) is a random nonlinear (θ, L)-weak contraction operator on

Q(ρ). Hence, by Theorem 3.2 there exists a random fixed point of U(ω), which is the
random solution of the Equation (5.1). �



Some Random Fixed Point Theorems 811

Acknowledgements

The authors are thankful to the referees for their sharp observations and valuable
suggestions which improved this work significantly.

References

[1] Aage, C. T. and Salunke, J. N. On common fixed points for contractive type mappings in
cone metric spaces, Bull. Math. Anal. Appl. 1 (3), 10–15, 2009.

[2] Achari, J. On a pair of random generalized non-linear contractions, Int. J. Math. Math.
Sci. 6 (3), 467–475, 1983.

[3] Arens, R. F. A topology for spaces of transformations, Annals of Math. 47 (2), 480–495,
1946.

[4] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations
integrales, Fund. Math. 3, 133–181, 1922.

[5] Berinde, V. Approximating fixed points of weak contractions using Picard iteration Nonlin-
ear Anal. Forum 9 (1), 43–53, 2004.

[6] Berinde, V. Iterative approximation of fixed points (Springer-Verlag, Berlin, 2007).
[7] Berinde, V. Approximating common fixed points of noncommuting almost contractions in

metric spaces, Fixed Point Theory 11 (2), 179–188, 2010.

[8] Berinde, V. General constructive fixed point theorems for Ćirić-type almost contractions in
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