APPROXIMATION OF FIXED POINTS OF
ASYMPTOTICALLY κ-STRICT PSEUDO-
CONTRACTIONS IN A BANACH SPACE

Changqun Wu*

Received 19:02:2011 : Accepted 26:12:2011

Abstract

In this paper, weak convergence theorems of a finite family of asymptotically k-strict pseudo-contractions are established in the framework of 2-uniformly smooth and uniformly convex Banach spaces.

Keywords: Asymptotically k-strict pseudo-contraction, Fixed point, Non-expansive mapping, Strictly pseudo-contractive mapping, Uniformly smooth Banach space.

2000 AMS Classification: 47H09, 47H10, 47J25.

1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and $J_q (q > 1)$ denotes the generalized duality mapping from E into 2^{E^*} give by

$$J_q(x) = \{f^* \in E^* : \langle x, f^* \rangle = \|x\|^q, \|f^*\| = \|x\|^{q-1}\}, \quad \forall x \in E,$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In particular, J_2 is called the normalized duality mapping which is usually denoted by J. In this paper, we use j to denote the single-valued normalized duality mapping. It is well known (see, for example, [14]) that $J_q(x) = \|x\|^q J(x)$ if $x \neq 0$. If E is a Hilbert space, then $J = I$, where I denotes the identity mapping.

Let $U_E = \{x \in E : \|x\| = 1\}$. E is said to uniformly convex if, for any $\epsilon \in (0, 2]$, there exists $\delta > 0$ such that

$$\|x - y\| \geq \epsilon \quad \text{implies} \quad \left\| \frac{x + y}{2} \right\| \leq 1 - \delta, \quad \forall x, y \in U_E.$$

A Banach space E is said to be smooth if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

*School of Business and Administration, Henan University, Kaifeng 475000, China
E-mail: kyls2005@yahoo.com.cn