ON SEMI-E-CONVEX AND QUASI-SEMI-E-CONVEX FUNCTIONS

Farzollah Mirzapour[∗]

Received 22 : 03 : 2011 : Accepted 11 : 01 : 2012

Abstract

In this paper we give some necessary and sufficient conditions under which a lower semi-continuous function defined on a real normed space is a semi-E-convex or quasi-semi-E-convex function.

Keywords: Semi-E-convex, Quasi-semi-E-convex, Lower semi-continuous. 2000 AMS Classification: 26 A 51, 26 B 25, 39 B 72.

1. Introduction

The concepts of E-convex set and semi-E-convex function were introduced in [2] and [5]. These concepts are generalizations of convex function and quasi-convex function. Let us recall some definitions and related results. Let X be a topological vector space. Then

- (1) A set $U \subset X$ is said to be E-convex if and only if there is a map $E : X \longrightarrow X$ such that $\lambda E(x) + (1 - \lambda)E(y) \in U$, for each $x, y \in U$ and $0 \leq \lambda \leq 1$.
- (2) A function $f: X \longrightarrow \mathbb{R}$ is said to be *semi-E-convex* on a set $U \subseteq X$ if and only if there is a map $E: X \longrightarrow X$ such that U is an E-convex set and

 $f(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda f(x) + (1 - \lambda)f(y),$

for each $x, y \in U$ and $0 \leq \lambda \leq 1$.

(3) The mapping $f: X \longrightarrow \mathbb{R}$ is said to be *quasi-semi-E-convex* on a set $U \subseteq X$ if $f(\lambda E(x) + (1 - \lambda)E(y)) \leq \max\{f(x), f(y)\},\,$

for each $x, y \in U$, $\lambda \in [0, 1]$ such that $\lambda E(x) + (1 - \lambda)E(y) \in U$.

Let $E: X \longrightarrow X$ be a map and define $E \times I : X \times \mathbb{R} \longrightarrow X \times \mathbb{R}$ by $(E \times I)(x, t) = (E(x), t)$. It is easy to show that $U \subset X$ is E-convex if and only if $U \times \mathbb{R}$ is $E \times I$ -convex. For a function $f: X \longrightarrow \mathbb{R}$ we denote by epi(f) the epigraph of f; i.e.

 $epi(f) = \{(x, \alpha) : x \in U, \ \alpha \in \mathbb{R}, \ f(x) \leq \alpha\}.$

Also, let us recall from [1] the following two results that will be used in the sequel.

1.1. Proposition. Let X be a topological vector space and $U \subseteq X$ convex. Then

[∗]Department of Mathematics, Faculty of Sciences, University of Zanjan, 45195-313, Iran. E-mail: f.mirza@znu.ac.ir

842 F. Mirzapour

- (a) A function $f: X \longrightarrow \mathbb{R}$ is semi-E-convex function on U if and only if epi(f) is $E \times I$ -convex on $X \times \mathbb{R}$.
- (b) A function f is quasi-semi-E-convex on U if and only if the level set $K_{\alpha} =$ ${x : x \in U, f(x) \leq \alpha}$ is *E*-convex for each $\alpha \in \mathbb{R}$.

In this paper, for a lower semi continuous function defined on a real normed space we present some statements equivalent to semi-E-convexity and quasi-semi-E-convexity.

2. Results

First, we recall that if X is a normed space and $S \subset X$, a function $f : S \longrightarrow [-\infty, +\infty]$ is lower semi-continuous if and only if for every real number λ the set $\{x \in S : f(x) \leq \lambda\}$ is closed and this is true if and only if its epigraph $epi(f) = \{(x, \lambda) \in S \times \mathbb{R} : f(x) \leq \lambda\}$ is closed (as a subset of $X \times \mathbb{R}$). See for example [3] and [4].

Let $(x, s), (y, t) \in X \times \mathbb{R}$, with $x, y \in X$ and $s, t \in \mathbb{R}$. The line segment $[(x, s), (y, t)]$ (endpoint (x, s) and (y, t)) is the segment $\{\gamma(x, s) + (1 - \gamma)(y, t) : 0 \leq \gamma \leq 1\}$. If $(x, s) \neq (y, t)$, the interior $((x, s), (y, t))$ of $[(x, s), (y, t)]$ is the segment $\{\gamma(x, s) + (1 - t)\}$ $\gamma(y, t) : 0 < \gamma < 1$. In a similar way, we can define $[(x, s), (y, t)]$ and $((x, s), (y, t)]$.

In the following theorems, we assume that X is a normed linear space and $E: X \longrightarrow X$ a map. Let $f: X \longrightarrow [-\infty, +\infty]$ be lower semi-continuous and $f(E(x)) \leq f(x)$, for all $x \in X$.

2.1. Theorem. Let $f: X \longrightarrow [-\infty, +\infty]$ be lower semi-continuous and suppose that there exists $\alpha \in (0,1)$ such that for all $x, y \in X$ and $u, v \in \mathbb{R}$, $f(x) < u$, $f(y) < v$, and

$$
f(\alpha E(x) + (1 - \alpha)E(y)) < \alpha u + (1 - \alpha)v.
$$

Then $f: X \longrightarrow [-\infty, +\infty]$ is semi-E-convex.

Proof. It is sufficient to show that $epi(f)$ is $E \times I$ -convex on $X \times \mathbb{R}$. Suppose on the contrary that there exist $(x, \lambda_1), (y, \lambda_2) \in \text{epi}(f)$ (with $x, y \in X$ and $\lambda_1, \lambda_2 \in \mathbb{R}$) and $\alpha_0 \in (0,1)$ such that

$$
(\alpha_0 E(x) + (1 - \alpha_0) E(y), \alpha_0 \lambda_1 + (1 - \alpha_0) \lambda_2) \notin \text{epi}(f).
$$

Let us put $x_0 = \alpha_0 E(x) + (1-\alpha_0)E(y)$ and $\lambda_0 = \alpha_0 \lambda_1 + (1-\alpha_0)\lambda_2$, then $(x_0, \lambda_0) \notin \text{epi}(f)$, and

$$
A = \text{epi}(f) \cap [(x, \lambda_1), (x_0, \lambda_0)] \text{ and also } B = \text{epi}(f) \cap [(x_0, \lambda_0), (y, \lambda_2)].
$$

Since f is lower semi-continuous, $epif f$ is a closed subset of $X \times \mathbb{R}$, Consequently A and B are bounded and closed subsets of $X \times \mathbb{R}$, $(x_0, \lambda_0) \notin A$, $(x_0, \lambda_0) \notin B$. Thus, there exist $(\tilde{x}, s) \in A$ and $(\tilde{y}, t) \in B$ with $\tilde{x}, \tilde{y} \in X$ and $s, t \in \mathbb{R}$ such that

$$
\min_{a \in A} ||a - (x_0, \lambda_0)|| = ||(\widetilde{x}, s) - (x_0, \lambda_0)||, \text{ and } \min_{b \in B} ||b - (x_0, \lambda_0)|| = ||(\widetilde{y}, t) - (x_0 \lambda_0)||.
$$

Hence we have

(2.1)
$$
epi(f) \cap ((\widetilde{x}, s), (\widetilde{y}, t)) = \emptyset.
$$

Notice that $\widetilde{x} \neq \widetilde{y}$ and $s \neq t$ and $((\widetilde{x}, s),(\widetilde{y}, t)) \neq \emptyset$.

On the other hand, since $(\tilde{x}, s), (\tilde{y}, t) \in X \times \mathbb{R}$, we have $f(E(\tilde{x})) < s + \epsilon$, $f(E(\tilde{y})) < t + \epsilon$ for each $\epsilon > 0$. Since $\alpha(s + \epsilon) + (1 - \alpha)(t + \epsilon) = \alpha s + (1 - \alpha)t + \epsilon$, by hypothesis, we have

$$
f(\alpha E(\widetilde{x}) + (1 - \alpha)E(\widetilde{y})) < \alpha s + (1 - \alpha)t + \epsilon.
$$

Since ϵ is an arbitrary positive real number, it follows that

$$
f(\alpha E(\widetilde{x}) + (1 - \alpha)E(\widetilde{y})) \le \alpha s + (1 - \alpha)t.
$$

Hence,

$$
\alpha(\widetilde{x},s) + (1-\alpha)(\widetilde{y},t) \in \text{epi}(f),
$$

which contradicts (2.1). Thus we conclude that epi(f) is $E \times I$ -convex. This completes the proof. \Box

The next theorem gives a characterization of semi-E-convexity.

2.2. Theorem. Let $f: X \longrightarrow (-\infty, +\infty]$ be lower semi-continuous. Then f is semi-E-convex, if and only if for all $x, y \in X$, there exists $\alpha \in (0,1)$ (α depends x, y) such that

(2.2)
$$
f(\alpha E(x) + (1 - \alpha)E(y)) \leq \alpha f(x) + (1 - \alpha)f(y).
$$

Proof. Let $f: X \longrightarrow (-\infty, +\infty]$ be semi-E-convex. It is easy to see that for all $\alpha \in (0, 1)$ (2.2) holds. For the converse, it is sufficient to show that epi(f) is $E \times I$ -convex set, as a subset of $X \times \mathbb{R}$. By contradiction suppose that there exist $(x, \lambda_1), (y, \lambda_2) \in epi(f)$ (with $x, y \in X$ and $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\alpha_0 \in (0, 1)$ such that

$$
(\alpha_0 E(x) + (1 - \alpha_0) E(y), \alpha_0 \lambda_1 + (1 - \alpha_0) \lambda_2) \notin \text{epi}(f).
$$

Let $x_0 = \alpha_0 E(x) + (1 - \alpha_0) E(y)$ and $\lambda_0 = \alpha_0 \lambda_1 + (1 - \alpha_0) \lambda_2$. Then $(x_0, \lambda_0) \notin \text{epi}(f)$. By following the proof of Theorem 2.1, by defining $A, B,(\tilde{x}, s)$, and (\tilde{y}, t) , we find that

 (2.3) epi $(f) \cap ((\tilde{x}, s), (\tilde{y}, t)) = \emptyset.$

Notice that $((\widetilde{x}, s),(\widetilde{y}, t)) \neq \emptyset$.

On the other hand, by the hypothesis of the theorem, for $\tilde{x}, \tilde{y} \in X$ there exists $\alpha \in (0,1)$ such that

(2.4)
$$
f(\alpha E(\tilde{x}) + (1 - \alpha)E(\tilde{y})) \leq \alpha f(\tilde{x}) + (1 - \alpha)f(\tilde{y}).
$$

Since $(\tilde{x}, s), (\tilde{y}, t) \in \text{epi}(f)$, we have

 (2.5) $f(\tilde{x}) \leq s$ and $f(\tilde{y}) \leq t$.

Combining (2.4) and (2.5) we obtain

$$
f(\alpha E(\widetilde{x}) + (1 - \alpha)E(\widetilde{y})) \le \alpha s + (1 - \alpha)t.
$$

So, $\alpha(\tilde{x}, s) + (1 - \alpha)(\tilde{y}, t) \in \text{epi}(f)$, which contradicts with (2.3). Thus, we conclude that epi(f) is $E \times I$ -convex. Now the result follows epi(f) is $E \times I$ -convex. Now the result follows.

2.3. Corollary. Let $f: X \longrightarrow (-\infty, +\infty]$ be lower semi-continuous. Then f is semi-Econvex if and only if, for all $x, y \in X$,

$$
f\left(\frac{1}{2}E(x) + \frac{1}{2}E(y)\right) \le \frac{1}{2}f(x) + \frac{1}{2}f(y).
$$

2.4. Example. Let us define $E : [0, \infty) \longrightarrow [0, \infty)$ by

$$
E(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n}, (m, n) = 1, \\ 0 & \text{if } x \notin \mathbb{Q} \text{ or } x = 0, \end{cases}
$$

and the function $f : [0, \infty) \longrightarrow [0, \infty)$ by

$$
f(x) = \begin{cases} 2x & \text{if } 0 \le x < 1, \\ x^2 & \text{if } x \ge 1. \end{cases}
$$

It is clear that $[0, \infty)$ is E-convex set, and f is a lower semi-continuous function on $[0, \infty)$. Also for each $x, y \geq 0$, there exists $\lambda \in [0, 1]$ such that

$$
f(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda f(x) + (1 - \lambda)f(y),
$$

but it is not semi-E-convex on $[0, \infty)$, because $f(\frac{9}{10}) = \frac{9}{5}$, $f(E(\frac{9}{10})) = \frac{1}{5}$ or equivalently $f(E(x)) \nleq f(x)$ and therefore $f(\frac{1}{2}E(\frac{1}{2}) + \frac{1}{2}E(1)) = \frac{3}{2}$ and $\frac{1}{2}f(\frac{1}{2}) + \frac{1}{2}f(1) = 1$.

Our last result give a necessary and sufficient condition for a real-valued lower semicontinuous to be quasi-semi-E-convex.

2.5. Theorem. Let $f : X \longrightarrow \mathbb{R}$ be lower semi-continuous. Then f is quasi-semi-Econvex if and only if, for all $x, y \in X$, there exists an $\alpha \in (0,1)$ (α depends on x, y) such that

$$
f(\alpha E(x) + (1 - \alpha)E(y)) \le \max\{f(x), f(y)\}.
$$

Proof. By part (b) of Proposition 1.1, it can be easily checked that $f : X \longrightarrow \mathbb{R}$ is quasisemi-E-convex if and only if for every real number λ , the level set $\{x \in X : f(x) \leq \lambda\}$ is E-convex. Suppose on the contrary that there exists a real number λ^* such that the set $F_{\lambda^*} = \{x \in X : f(x) \leq \lambda^*\}$ is not a E-convex set. Thus there exist $x, y \in F_{\lambda^*}$, and $\alpha_0 \in (0,1)$ such that $\alpha_0 E(x) + (1 - \alpha_0)E(y) \notin F_{\lambda^*}$. Let $x_0 = \alpha_0 E(x) + (1 - \alpha_0)E(y)$, then $x_0 \notin F_{\lambda^*}$. Let

$$
A = F_{\lambda^*} \cap [x, x_0] \text{ and } B = F_{\lambda^*} \cap [x_0, y],
$$

where $[x, x_0] = {\gamma x + (1 - \gamma)x_0 : 0 \le \gamma \le 1}$ and $[x_0, y] = {\gamma x_0 + (1 - \gamma)y : 0 \le \gamma \le 1}.$ Notice that F_{λ^*} is a closed set [3]. Consequently A and B are bounded and closed subsets of X, and $x_0 \notin A$, $x_0 \notin B$. Thus there exist $\widetilde{x} \in A$ and $\widetilde{y} \in B$ such that

$$
\min_{a \in A} \|a - x_0\| = \|\tilde{x} - x_0\|
$$

and

$$
\min_{b \in B} \|b - x_0\| = \|\widetilde{y} - x_0\|,
$$

where $\|\cdot\|$ is the norm on X. Hence we have

$$
F_{\lambda^*} \cap [\tilde{x}, x_0] = \emptyset
$$
 and $F_{\lambda^*} \cap [x_0, \tilde{y}] = \emptyset$.

Therefore,

 (2.6) $F_{\lambda^*} \cap (\tilde{x}, \tilde{y}) = \emptyset.$

Notice that $\widetilde{x} \neq \widetilde{y}$ and so $(\widetilde{x}, \widetilde{y}) \neq \emptyset$.

On the other hand, by the hypothesis of the theorem, for $\tilde{x}, \tilde{y} \in X$, there exists an $\alpha \in (0,1)$ such that

 (2.7) $f(\alpha E(\tilde{x}) + (1 - \alpha)E(\tilde{y})) \leq \max\{f(\tilde{x}), f(\tilde{y})\}.$

Since $\widetilde{x}, \widetilde{y} \in F_{\lambda^*}$ we have

(2.8) $f(\tilde{x}) \leq \lambda^*$ and $f(\tilde{y}) \leq \lambda^*$.

Combining (2.7) and (2.8) , we obtain

 $f(\alpha E(\tilde{x}) + (1 - \alpha)E(\tilde{y})) \leq \lambda^*$.

So $\alpha E(\tilde{x}) + (1 - \alpha)E(\tilde{y}) \in F_{\lambda^*}$, which contradicts (6). Thus we conclude that F_{λ^*} is convex. This completes the proof. convex. This completes the proof.

Acknowledgment.

The author would like to sincerely thank Professor Saeid Maghsoudi and Mr. Ali Morassaei for a useful discussion and, also, the anonymous referee for carefully reading the paper and for valuable comments.

References

- [1] Chen, X. Some Properties of semi-E-convex Functions J. Math. Anal. Appl. 275, 251–262, 2002.
- [2] Syau, Y. R. and Lee, E. S. Some properties of E-convex functions, Elsevier Applied Mathematics Letters 18, 1074–1080, 2005.
- [3] Syau, Y. R. A Note On Convex Functions, Internal. J. Math. Scl. 22 (3), 525–534, 1999.
- [4] Yang, X. M. Technical Note On E-convex Sets, E-convex Functions, and E-convex Programing, Journal of Optimization Theory and Applications 109 (3), 699–704, 2001.
- [5] Youness, E. A. E-convex sets, E-convex Functions, and E-convex Programming, Journal of Optimization Theory and Applications 102 (2), 439–450, 1999.