
Hacettepe Journal of Mathematics and Statistics
Volume 41 (6) (2012), 841 – 845

ON SEMI-E-CONVEX AND

QUASI-SEMI-E-CONVEX FUNCTIONS

Farzollah Mirzapour∗

Received 22 : 03 : 2011 : Accepted 11 : 01 : 2012

Abstract

In this paper we give some necessary and sufficient conditions under
which a lower semi-continuous function defined on a real normed space
is a semi-E-convex or quasi-semi-E-convex function.
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1. Introduction

The concepts of E-convex set and semi-E-convex function were introduced in [2] and
[5]. These concepts are generalizations of convex function and quasi-convex function. Let
us recall some definitions and related results. Let X be a topological vector space. Then

(1) A set U ⊂ X is said to be E-convex if and only if there is a map E : X −→ X
such that λE(x) + (1− λ)E(y) ∈ U , for each x, y ∈ U and 0 ≤ λ ≤ 1.

(2) A function f : X −→ R is said to be semi-E-convex on a set U ⊆ X if and only
if there is a map E : X −→ X such that U is an E-convex set and

f(λE(x) + (1− λ)E(y)) ≤ λf(x) + (1− λ)f(y),

for each x, y ∈ U and 0 ≤ λ ≤ 1.
(3) The mapping f : X −→ R is said to be quasi-semi-E-convex on a set U ⊆ X if

f(λE(x) + (1− λ)E(y)) ≤ max{f(x), f(y)},

for each x, y ∈ U, λ ∈ [0, 1] such that λE(x) + (1− λ)E(y) ∈ U .

Let E : X −→ X be a map and define E×I : X×R −→ X×R by (E×I)(x, t) = (E(x), t).
It is easy to show that U ⊂ X is E-convex if and only if U × R is E × I-convex. For a
function f : X −→ R we denote by epi(f) the epigraph of f ; i.e.

epi(f) = {(x, α) : x ∈ U, α ∈ R, f(x) ≤ α}.

Also, let us recall from [1] the following two results that will be used in the sequel.

1.1. Proposition. Let X be a topological vector space and U ⊆ X convex. Then
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(a) A function f : X −→ R is semi-E-convex function on U if and only if epi(f) is
E × I-convex on X × R.

(b) A function f is quasi-semi-E-convex on U if and only if the level set Kα =
{x : x ∈ U, f(x) ≤ α} is E-convex for each α ∈ R.

In this paper, for a lower semi continuous function defined on a real normed space we
present some statements equivalent to semi-E-convexity and quasi-semi-E-convexity.

2. Results

First, we recall that if X is a normed space and S ⊂ X, a function f : S −→ [−∞,+∞]
is lower semi-continuous if and only if for every real number λ the set {x ∈ S : f(x) ≤ λ}
is closed and this is true if and only if its epigraph epi(f) = {(x, λ) ∈ S ×R : f(x) ≤ λ}
is closed (as a subset of X × R). See for example [3] and [4].

Let (x, s), (y, t) ∈ X × R, with x, y ∈ X and s, t ∈ R. The line segment [(x, s), (y, t)]
(endpoint (x, s) and (y, t)) is the segment {γ(x, s) + (1 − γ)(y, t) : 0 ≤ γ ≤ 1}. If
(x, s) 6= (y, t)), the interior ((x, s), (y, t)) of [(x, s), (y, t)] is the segment {γ(x, s) + (1 −
γ)(y, t) : 0 < γ < 1}. In a similar way, we can define [(x, s), (y, t)) and ((x, s), (y, t)].

In the following theorems, we assume thatX is a normed linear space and E : X −→ X
a map. Let f : X −→ [−∞,+∞] be lower semi-continuous and f(E(x)) ≤ f(x), for all
x ∈ X.

2.1. Theorem. Let f : X −→ [−∞,+∞] be lower semi-continuous and suppose that
there exists α ∈ (0, 1) such that for all x, y ∈ X and u, v ∈ R, f(x) < u, f(y) < v, and

f(αE(x) + (1− α)E(y)) < αu+ (1− α)v.

Then f : X −→ [−∞,+∞] is semi-E-convex.

Proof. It is sufficient to show that epi(f) is E × I-convex on X × R. Suppose on the
contrary that there exist (x, λ1), (y, λ2) ∈ epi(f) (with x, y ∈ X and λ1, λ2 ∈ R) and
α0 ∈ (0, 1) such that

(α0E(x) + (1− α0)E(y), α0λ1 + (1− α0)λ2) /∈ epi(f).

Let us put x0 = α0E(x)+(1−α0)E(y) and λ0 = α0λ1+(1−α0)λ2, then (x0, λ0) /∈ epi(f),
and

A = epi(f) ∩ [(x, λ1), (x0, λ0)] and also B = epi(f) ∩ [(x0, λ0), (y, λ2)].

Since f is lower semi-continuous, epi(f) is a closed subset of X ×R, Consequently A and
B are bounded and closed subsets of X × R, (x0, λ0) /∈ A, (x0, λ0) /∈ B. Thus, there
exist (x̃, s) ∈ A and (ỹ, t) ∈ B with x̃, ỹ ∈ X and s, t ∈ R such that

min
a∈A

‖a−(x0, λ0)‖ = ‖(x̃, s)−(x0, λ0)‖, and min
b∈B

‖b−(x0, λ0)‖ = ‖(ỹ, t)−(x0λ0)‖.

Hence we have

(2.1) epi(f) ∩ ((x̃, s), (ỹ, t)) = ∅.

Notice that x̃ 6= ỹ and s 6= t and ((x̃, s), (ỹ, t)) 6= ∅.

On the other hand, since (x̃, s), (ỹ, t) ∈ X×R, we have f(E(x̃)) < s+ǫ, f(E(ỹ)) < t+ǫ
for each ǫ > 0. Since α(s+ ǫ)+ (1−α)(t+ ǫ) = αs+(1−α)t+ ǫ, by hypothesis, we have

f(αE(x̃) + (1− α)E(ỹ)) < αs+ (1− α)t+ ǫ.

Since ǫ is an arbitrary positive real number, it follows that

f(αE(x̃) + (1− α)E(ỹ)) ≤ αs+ (1− α)t.
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Hence,

α(x̃, s) + (1− α)(ỹ, t) ∈ epi(f),

which contradicts (2.1). Thus we conclude that epi(f) is E × I-convex. This completes
the proof. �

The next theorem gives a characterization of semi-E-convexity.

2.2. Theorem. Let f : X −→ (−∞,+∞] be lower semi-continuous. Then f is semi-
E-convex, if and only if for all x, y ∈ X, there exists α ∈ (0, 1) (α depends x, y) such
that

(2.2) f(αE(x) + (1− α)E(y)) ≤ αf(x) + (1− α)f(y).

Proof. Let f : X −→ (−∞,+∞] be semi-E-convex. It is easy to see that for all α ∈ (0, 1)
(2.2) holds. For the converse, it is sufficient to show that epi(f) is E× I-convex set, as a
subset of X ×R. By contradiction suppose that there exist (x, λ1), (y, λ2) ∈ epi(f) (with
x, y ∈ X and λ1, λ2 ∈ R) and α0 ∈ (0, 1) such that

(α0E(x) + (1− α0)E(y), α0λ1 + (1− α0)λ2) /∈ epi(f).

Let x0 = α0E(x) + (1 − α0)E(y) and λ0 = α0λ1 + (1 − α0)λ2. Then (x0, λ0) /∈ epi(f).
By following the proof of Theorem 2.1, by defining A,B, (x̃, s), and (ỹ, t), we find that

(2.3) epi(f) ∩ ((x̃, s), (ỹ, t)) = ∅.

Notice that ((x̃, s), (ỹ, t)) 6= ∅.

On the other hand, by the hypothesis of the theorem, for x̃, ỹ ∈ X there exists
α ∈ (0, 1) such that

(2.4) f(αE(x̃) + (1− α)E(ỹ)) ≤ αf(x̃) + (1− α)f(ỹ).

Since (x̃, s), (ỹ, t) ∈ epi(f), we have

(2.5) f(x̃) ≤ s and f(ỹ) ≤ t.

Combining (2.4) and (2.5) we obtain

f(αE(x̃) + (1− α)E(ỹ)) ≤ αs+ (1− α)t.

So, α(x̃, s)+ (1−α)(ỹ, t) ∈ epi(f), which contradicts with (2.3). Thus, we conclude that
epi(f) is E × I-convex. Now the result follows. �

2.3. Corollary. Let f : X −→ (−∞,+∞] be lower semi-continuous. Then f is semi-E-
convex if and only if, for all x, y ∈ X,

f
(
1

2
E(x) + 1

2
E(y)

)
≤ 1

2
f(x) + 1

2
f(y).

2.4. Example. Let us define E : [0,∞) −→ [0,∞) by

E(x) =

{
1

n
if x = m

n
, (m,n) = 1,

0 if x /∈ Q or x = 0,

and the function f : [0,∞) −→ [0,∞) by

f(x) =

{
2x if 0 ≤ x < 1,

x2 ifx ≥ 1.

It is clear that [0,∞) is E-convex set, and f is a lower semi-continuous function on [0,∞).
Also for each x, y ≥ 0, there exists λ ∈ [0, 1] such that

f(λE(x) + (1− λ)E(y)) ≤ λf(x) + (1− λ)f(y),
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but it is not semi-E-convex on [0,∞), because f
(

9

10

)
= 9

5
, f

(
E
(

9

10

))
= 1

5
or equivalently

f(E(x)) � f(x) and therefore f
(
1

2
E
(
1

2

)
+ 1

2
E(1)

)
= 3

2
and 1

2
f
(
1

2

)
+ 1

2
f(1) = 1.

Our last result give a necessary and sufficient condition for a real-valued lower semi-
continuous to be quasi-semi-E-convex.

2.5. Theorem. Let f : X −→ R be lower semi-continuous. Then f is quasi-semi-E-
convex if and only if, for all x, y ∈ X, there exists an α ∈ (0, 1) (α depends on x, y) such
that

f(αE(x) + (1− α)E(y)) ≤ max{f(x), f(y)}.

Proof. By part (b) of Proposition 1.1, it can be easily checked that f : X −→ R is quasi-
semi-E-convex if and only if for every real number λ, the level set {x ∈ X : f(x) ≤ λ}
is E-convex. Suppose on the contrary that there exists a real number λ∗ such that the
set Fλ∗ = {x ∈ X : f(x) ≤ λ∗} is not a E-convex set. Thus there exist x, y ∈ Fλ∗ , and
α0 ∈ (0, 1) such that α0E(x) + (1 − α0)E(y) /∈ Fλ∗ . Let x0 = α0E(x) + (1 − α0)E(y),
then x0 /∈ Fλ∗ . Let

A = Fλ∗ ∩ [x, x0] and B = Fλ∗ ∩ [x0, y],

where [x, x0] = {γx + (1− γ)x0 : 0 ≤ γ ≤ 1} and [x0, y] = {γx0 + (1− γ)y : 0 ≤ γ ≤ 1}.
Notice that Fλ∗ is a closed set [3]. Consequently A and B are bounded and closed subsets
of X, and x0 /∈ A, x0 /∈ B. Thus there exist x̃ ∈ A and ỹ ∈ B such that

min
a∈A

‖a− x0‖ = ‖x̃− x0‖

and

min
b∈B

‖b− x0‖ = ‖ỹ − x0‖,

where ‖ · ‖ is the norm on X. Hence we have

Fλ∗ ∩ [x̃, x0] = ∅ and Fλ∗ ∩ [x0, ỹ] = ∅.

Therefore,

(2.6) Fλ∗ ∩ (x̃, ỹ) = ∅.

Notice that x̃ 6= ỹ and so (x̃, ỹ) 6= ∅.

On the other hand, by the hypothesis of the theorem, for x̃, ỹ ∈ X, there exists an
α ∈ (0, 1) such that

(2.7) f(αE(x̃) + (1− α)E(ỹ)) ≤ max{f(x̃), f(ỹ)}.

Since x̃, ỹ ∈ Fλ∗ we have

(2.8) f(x̃) ≤ λ∗ and f(ỹ) ≤ λ∗.

Combining (2.7) and (2.8), we obtain

f(αE(x̃) + (1− α)E(ỹ)) ≤ λ∗.

So αE(x̃) + (1 − α)E(ỹ) ∈ Fλ∗ , which contradicts (6). Thus we conclude that Fλ∗ is
convex. This completes the proof. �
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