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Abstract

In this paper we give some necessary and sufficient conditions under
which a lower semi-continuous function defined on a real normed space
is a semi-E-convex or quasi-semi-E-convex function.
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1. Introduction

The concepts of E-convex set and semi-E-convex function were introduced in [2] and
[5]. These concepts are generalizations of convex function and quasi-convex function. Let
us recall some definitions and related results. Let X be a topological vector space. Then

(1) Aset U C X is said to be E-convez if and only if there is a map E : X — X
such that AE(z) + (1 — A\)E(y) € U, for each z,y € U and 0 < A < 1.
(2) A function f: X — R is said to be semi-E-convez on a set U C X if and only
if there is a map E : X — X such that U is an E-convex set and
FOAE() + (1 =NE(y)) < Af(x) + (1 =) f(y),
for each x,y € U and 0 < A < 1.
(3) The mapping f: X — R is said to be quasi-semi-E-convex on a set U C X if
FOE(@) + (1= NE(y)) < max{f(z), f(y)},
for each x,y € U, X € [0,1] such that AE(z) + (1 — X\)E(y) € U.
Let F: X — X be amap and define EXI : X xR — X xR by (ExI)(z,t) = (E(x),t).
It is easy to show that U C X is E-convex if and only if U x R is E x I-convex. For a
function f : X — R we denote by epi(f) the epigraph of f; i.e.
epi(f) = {(z,0) : s € U, a €R, f(z) <a}.
Also, let us recall from [1] the following two results that will be used in the sequel.

1.1. Proposition. Let X be a topological vector space and U C X convex. Then
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(a) A function f: X — R 1is semi-E-convez function on U if and only if epi(f) is
E x I-convex on X x R.

(b) A function f is quasi-semi-E-convex on U if and only if the level set Ko =
{z: zeU,f(z) <a} is E-convex for each o € R.

In this paper, for a lower semi continuous function defined on a real normed space we
present some statements equivalent to semi-E-convexity and quasi-semi-E-convexity.

2. Results

First, we recall that if X is a normed space and S C X, a function f : S — [—o00, +00]
is lower semi-continuous if and only if for every real number X the set {x € S : f(z) < A}
is closed and this is true if and only if its epigraph epi(f) = {(z,\) € S xR : f(z) < A}
is closed (as a subset of X X R). See for example [3] and [4].

Let (z,s),(y,t) € X xR, with z,y € X and s,¢t € R. The line segment [(z, s), (y,?)]
(endpoint (z,s) and (y,t)) is the segment {y(z,s) + (1 — v)(y,¢) : 0 < v < 1} If
(z,8) # (y,t)), the interior ((z,s), (y,t)) of [(z,s), (y,t)] is the segment {v(z,s) + (1 —
¥)(y,t) : 0 <y < 1}. In a similar way, we can define [(z, s), (y,t)) and ((z, s), (y,t)].

In the following theorems, we assume that X is a normed linear space and £ : X — X
a map. Let f: X — [—00,+00] be lower semi-continuous and f(E(z)) < f(z), for all
z e X.

2.1. Theorem. Let f : X — [—00,+0o0] be lower semi-continuous and suppose that
there exists o € (0,1) such that for all z,y € X and u,v € R, f(z) <wu, f(y) <wv, and
f(@E(z) + (1 — ) E(y)) < au+ (1 — a)o.
Then f: X — [—00,+00] is semi-E-convez.
Proof. 1t is sufficient to show that epi(f) is E x I-convex on X X R. Suppose on the
i(f)

contrary that there exist (z,A1), (y,A2) € epi(f) (with z,y € X and A1, 2 € R) and
ap € (0,1) such that

(a0 E(z) + (1 — a0)E(y), oA + (1 — ao)A2) € epi(f).
Let us put o = ap E(z)+(1—ao)E(y) and Ao = apA1+(1—an) A2, then (zo, Ao) ¢ epi(f),
and

A =epi(f) N[(z, A1), (zo, Xo)] and also B = epi(f) N [(zo, No), (¥, A2)].

Since f is lower semi-continuous, epi(f) is a closed subset of X x R, Consequently A and
B are bounded and closed subsets of X x R, (zo,Xo) ¢ A, (zo, o) ¢ B. Thus, there
exist (Z,s) € A and (y,t) € B with Z,y € X and s,t € R such that

min la— (20, 20)|| = [I(Z, )~ (0, Ao)l|, and min [b—(z0, Xo)| = |(F: 1)~ (@oo)]l
Hence we have
(2.1)  epi(f) N ((Z,3), (¥:1)) = 0.

Notice that  # § and s # t and ((Z, s), (¥,t)) # 0.

On the other hand, since (, s), (y,t) € X xR, we have f(E(T)) < s+e, f(E(Y)) < t+e
for each € > 0. Since a(s+¢€)+ (1 —a)(t+¢€) = as+ (1 — a)t + ¢, by hypothesis, we have

fl@E@)+ (1 -a)E@)) <as+ (1 —a)t+e
Since € is an arbitrary positive real number, it follows that

f@E@) + (1 - )E®) < as+ (1 —a)t.
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Hence,

a(z,s) + (1 — a)(y,t) € epi(f),
which contradicts (2.1). Thus we conclude that epi(f) is E x I-convex. This completes
the proof. O

The next theorem gives a characterization of semi-E-convexity.

2.2. Theorem. Let f : X — (—o0,+00| be lower semi-continuous. Then f is semi-
E-convez, if and only if for all x,y € X, there exists o € (0,1) (o depends z,y) such
that

22)  flaB(z)+ (1 -a)E(y)) < af(z) + (1 - ) f(y).

Proof. Let f: X — (—00,+00] be semi-E-convex. It is easy to see that for all « € (0,1)
(2.2) holds. For the converse, it is sufficient to show that epi(f) is E X I-convex set, as a
subset of X x R. By contradiction suppose that there exist (z, A1), (y, A2) € epi(f) (with
z,y € X and A, A2 € R) and ap € (0, 1) such that

(a0 B(x) + (1 - a0) E(y), a0M + (1 — a0)ha) ¢ epi()).
Let z0 = aoE(z) + (1 — ao)E(y) and Ao = aoA1 + (1 — ao)A2. Then (zo, Ao) ¢ epi(f).
By following the proof of Theorem 2.1, by defining A, B, (Z, s), and (¥, t), we find that
(23)  epi(f)N((@,s),(¥,1) = 0.

Notice that ((Z, s), (7,t)) # 0.

On the other hand, by the hypothesis of the theorem, for Z,y € X there exists
a € (0,1) such that

(24)  [(@B@) + (- )E@) < af@) + (1 - a)f(@).
Since (Z,s), (y,t) € epi(f), we have
(25)  f(®) <sand @) <t.
Combining (2.4) and (2.5) we obtain
f@E@) +(1-a)E®) <as+ (1—a)t.

So, a(z,s)+ (1 —a)(y,t) € epi(f), which contradicts with (2.3). Thus, we conclude that
epi(f) is E x I-convex. Now the result follows. O

2.3. Corollary. Let f: X — (—o0,+00] be lower semi-continuous. Then f is semi-E-
convex if and only if, for all z,y € X,

F(GE@) +3E®W)) < 3f(@) + 3£ ().
2.4. Example. Let us define F : [0,00) — [0, 00) by

B2) 7—1L ife=2, (mn) =1,
) =
0 ifz¢gQoraz=0,

and the function f : [0, 00) — [0, c0) by
20 if0<z <1,
x) = -
1) {x2 ifx > 1.

It is clear that [0, c0) is E-convex set, and f is a lower semi-continuous function on [0, c0).
Also for each x,y > 0, there exists A € [0, 1] such that

FOE() + (1 =XNE(y)) < Af(x) + (1= f(y),
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but it is not semi-E-convex on [0, c0), because f(%) = %7 f(E(%)) = % or equivalently
f(E(z)) £ f(x) and therefore f(3E(3) + 3E(1)) =2 and 3 f(3) + 3/(1) = 1.

Our last result give a necessary and sufficient condition for a real-valued lower semi-
continuous to be quasi-semi-E-convex.

2.5. Theorem. Let f : X — R be lower semi-continuous. Then f is quasi-semi-E-
convez if and only if, for all x,y € X, there exists an a € (0,1) (« depends on x,y) such
that

flaBE(z) + (1 - a)E(y)) < max{f(z), f(y)}.

Proof. By part (b) of Proposition 1.1, it can be easily checked that f : X — R is quasi-
semi-E-convex if and only if for every real number A, the level set {z € X : f(x) < A}
is E-convex. Suppose on the contrary that there exists a real number A* such that the
set Fx» = {x € X : f(z) < A"} is not a E-convex set. Thus there exist =,y € Fi«, and
ap € (0,1) such that agE(x) + (1 — ) E(y) ¢ Fx«. Let z0 = aoE(z) + (1 — a0) E(y),
then zo ¢ Fi«. Let

A = Fx~ N[z, z0] and B = Fx~ N [z0, ],

where [z,20] = {v2 + (1 = ¥)z0 : 0 < v < 1} and [zo,y] = {yz0o + (1 — )y : 0 <y < 1}
Notice that Fi« is a closed set [3]. Consequently A and B are bounded and closed subsets
of X, and zo ¢ A, xzo ¢ B. Thus there exist T € A and y € B such that

min [la — 2ol = || — zo|
and
min b — wol| = 17— o]l
where || - || is the norm on X. Hence we have

Fyx« N[Z,z0] =0 and Fi~ N [z0,7] = 0.
Therefore,
(2.6) FxN(z,9) =0.
Notice that ¥ # ¥ and so (Z,7) # 0.

On the other hand, by the hypothesis of the theorem, for Z,y € X, there exists an
a € (0,1) such that

(27)  FaB@) + (1 - a)E@) < max{ @), @)}
Since Z,y € Fx« we have
(2.8)  f(Z) < A" and f(7) <A™
Combining (2.7) and (2.8), we obtain
FaE@) + (1 — a)E@) < 3"

So aE(z) + (1 — a)E(y) € Fx=, which contradicts (6). Thus we conclude that Fy« is
convex. This completes the proof. O
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