ON P-VALENTLY CLOSE-TO-CONVEX, STARLIKE AND CONVEX FUNCTIONS

Erhan Deniz*

Received 17:06:2011 : Accepted 27:12:2011

Abstract

The main object of the present paper is to derive several sufficient conditions for close-to-convexity, starlikeness, and convexity of certain p-valent analytic functions in the unit disk. Some interesting consequences of the main results are also mentioned.

Keywords: $\quad P$-valent analytic functions, Starlike functions, Close-to-convex functions, Convex functions.
2000 AMS Classification: 30 C 45.

1. Introduction and definitions

Let \mathcal{A}_{p} denote the family of functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n},(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

that are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$.
Also let $S_{p}^{*}(\alpha), K_{p}(\alpha)$ and $C_{p}(\alpha)$ denote the subclasses of \mathcal{A}_{p} consisting of functions which are respectively, p-valently starlike of order α, p-valently convex of order α and p-valently close-to-convex of order α in $\mathcal{U}(0 \leq \alpha<p)$. Thus, we have (see, for details, [1, 2], see also [10]),

$$
\begin{align*}
S_{p}^{*}(\alpha) & =\left\{f: f \in \mathcal{A}_{p} \text { and } \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha,(z \in \mathcal{U} ; 0 \leq \alpha<p)\right\}, \tag{1.2}\\
K_{p}(\alpha) & =\left\{f: f \in \mathcal{A}_{p} \text { and } \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha,(z \in \mathcal{U} ; 0 \leq \alpha<p)\right\}, \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
C_{p}(\alpha)=\left\{f: f \in \mathcal{A}_{p} \text { and } \Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha,\left(z \in \mathcal{U} ; 0 \leq \alpha<p ; g \in S_{p}^{*}\right)\right\} \tag{1.4}
\end{equation*}
$$

[^0]where, for convenience,
\[

$$
\begin{equation*}
S_{p}^{*}:=S_{p}^{*}(0), K_{p}:=K_{p}(0), C_{p}:=C_{p}(0) \tag{1.5}
\end{equation*}
$$

\]

Since $g(z)=z^{p}$ belongs to the class S_{p}^{*}, we observe that the function $f(z) \in \mathcal{A}_{p}$ satisfying

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{z^{p-1}}\right)>\alpha, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{1.6}
\end{equation*}
$$

is a member of the class $C_{p}(\alpha)$.
Next, with a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in \mathcal{U}. Then we say that the function f is subordinate to g if there exists a function w, analytic in \mathcal{U}, with

$$
w(0)=0 \text { and }|w(z)|<1, \quad(z \in \mathcal{U})
$$

such that

$$
f(z)=g(w(z)),(z \in \mathcal{U})
$$

We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) \tag{1.7}
\end{equation*}
$$

In particular, if the function g is univalent in \mathcal{U}, the subordination (1.7) is equivalent to (cf. [1, p.190]),

$$
f(0)=g(0) \text { and } f(\mathcal{U}) \subset g(\mathcal{U})
$$

Many authors have dedicated a great part of their work on developing sufficient conditions for close-to-convexity, starlikeness and convexity of functions $f(z) \in \mathcal{A}_{p}$ (see [4, 5, 7][12]). The main object of this paper is to give sufficient conditions for the functions $f(z) \in \mathcal{A}_{p}$ to be close-to-convex, starlike and convex of given order in the open unit disk.

The following lemma (popularly known as Jack's lemma) will be required in our present investigation.
1.1. Lemma. (See [3, 6]) Let the (nonconstant) function $w(z)$ be analytic in \mathcal{U} with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathcal{U}$, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where k is a real number and $k \geq 1$.

2. Sufficient conditions for close-to-convexity

Our first result (Theorem 2.1 below) provides a sufficient condition for close-toconvexity of functions $f(z) \in \mathcal{A}_{p}$.
2.1. Theorem. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{(2 p-1)(p+\alpha)+2 \alpha}{2(p+\alpha)}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{z^{p-1}}\right)>\frac{p+\alpha}{2}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{2.2}
\end{equation*}
$$

or equivalently, $f(z) \in C_{p}\left(\frac{p+\alpha}{2}\right)$.

Proof. We begin by defining a function w by

$$
\begin{equation*}
\frac{f^{\prime}(z)}{z^{p-1}}=\frac{p+\alpha w(z)}{1+w(z)},(w(z) \neq-1 ; z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{2.3}
\end{equation*}
$$

Then, clearly, w is analytic in \mathcal{U} with $w(0)=0$. We easily find from (2.3) that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p+\frac{\alpha z w^{\prime}(z)}{p+\alpha w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} \tag{2.4}
\end{equation*}
$$

Suppose that there exists a point $z_{0} \in \mathcal{U}$ such that

$$
\left|w\left(z_{0}\right)\right|=1 \text { and }|w(z)|<1, \text { when }|z|<\left|z_{0}\right|
$$

Then, by applying Lemma 1.1, we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right),\left(k \geq 1 ; w\left(z_{0}\right)=e^{i \theta} ; \theta \in \mathbb{R}\right) . \tag{2.5}
\end{equation*}
$$

Thus, we find from (2.4) and (2.5) that

$$
\begin{aligned}
\Re\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & =p+\Re\left(\frac{\alpha k e^{i \theta}}{p+\alpha e^{i \theta}}\right)-\Re\left(\frac{k e^{i \theta}}{1+e^{i \theta}}\right) \\
& =p+\frac{\alpha k(\alpha+p \cos \theta)}{p^{2}+\alpha^{2}+2 p \alpha \cos \theta}-\frac{k}{2} \\
& \leq \frac{2 \alpha+(2 p-1)(p+\alpha)}{2(p+\alpha)}
\end{aligned}
$$

which obviously contradicts our hypothesis (2.1).
Therefore, we see that there is no $z_{0} \in \mathcal{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1(z \in \mathcal{U})$. Thus, we conclude that

$$
\left|\frac{\frac{f^{\prime}(z)}{z^{p-1}}-p}{\frac{f^{\prime}(z)}{z^{p-1}}-\alpha}\right|<1, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p),
$$

that is, that $f(z) \in C_{p}\left(\frac{p+\alpha}{2}\right)$. This evidently completes the proof of Theorem 2.1.
By setting $\alpha=0$ in Theorem 2.1, we obtain the following criterion for p -valently close-to-convex of order $\frac{p}{2}$.
2.2. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{2 p-1}{2},(z \in \mathcal{U})
$$

Then,

$$
\Re\left(\frac{f^{\prime}(z)}{z^{p-1}}\right)>\frac{p}{2}, \quad(z \in \mathcal{U})
$$

or equivalently, $f(z) \in C_{p}\left(\frac{p}{2}\right)$.
2.3. Theorem. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{p(2 p+\alpha+1)+\alpha}{(2 p+\alpha)}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{2.6}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|<p+\alpha, \quad(z \in \mathcal{U} ; \quad 0 \leq \alpha<p) \tag{2.7}
\end{equation*}
$$

Proof. Our proof of Theorem 2.3, also based upon Lemma 1.1, is similar to that of Theorem 2.1. Indeed, in place of definition (2.3), here we let the function w be given by

$$
\frac{f^{\prime}(z)}{z^{p-1}}=p+(p+\alpha) w(z), \quad(z \in \mathcal{U} ; 0 \leq \alpha<p)
$$

The details are omitted.
By setting $\alpha=0$ in Theorem 2.3, we readily obtain the following criterion for $f(z) \in$ \mathcal{A}_{p} to be a p-valent close-to-convex function.
2.4. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{2 p+1}{2},(z \in \mathcal{U}) \tag{2.8}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|<p, \quad(z \in \mathcal{U}) . \tag{2.9}
\end{equation*}
$$

or equivalently, $f(z) \in C_{p}$.
Next we prove the following theorem.
2.5. Theorem. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|^{\lambda}\left|\frac{f^{\prime \prime}(z)}{z^{p-2}}-p(p-1)\right|^{\mu}<\frac{(p-\alpha)^{\lambda+\mu}}{2^{\lambda+2 \mu}}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p ; \lambda, \mu \geq 0) \tag{2.10}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{z^{p-1}}\right)>\frac{p+\alpha}{2}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{2.11}
\end{equation*}
$$

or equivalently, $f(z) \in C_{p}\left(\frac{p+\alpha}{2}\right)$.
Proof. We define the function w by (2.3). Then, clearly, w is analytic in \mathcal{U} with $w(0)=0$. We also find from (2.3) that

$$
\begin{align*}
\left.\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|^{\lambda} \right\rvert\, \frac{f^{\prime \prime}(z)}{z^{p-2}} & -\left.p(p-1)\right|^{\mu} \tag{2.12}\\
& =\frac{(p-\alpha)^{\lambda+\mu}|w(z)|^{\lambda}\left|(p-1)(1+w(z)) w(z)+z w^{\prime}(z)\right|^{\mu}}{|1+w(z)|^{\lambda+2 \mu}} .
\end{align*}
$$

Assume that there exists a point $z_{0} \in \mathcal{U}$ such that

$$
\left|w\left(z_{0}\right)\right|=1 \text { and }|w(z)|<1, \text { when }|z|<\left|z_{0}\right| .
$$

If we apply Lemma 1.1 just as we did in the proof of Theorem 2.1, we shall obtain

$$
\begin{aligned}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|^{\lambda}\left|\frac{f^{\prime \prime}(z)}{z^{p-2}}-p(p-1)\right|^{\mu} & =\frac{(p-\alpha)^{\lambda+\mu}\left|(p-1)\left(1+e^{i \theta}\right) e^{i \theta}+k e^{i \theta}\right|^{\mu}}{\left|1+e^{i \theta}\right|^{\lambda+2 \mu}} \\
& =\frac{(p-\alpha)^{\lambda+\mu}\left|p+k-1+(p-1) e^{i \theta}\right|^{\mu}}{\left|1+e^{i \theta}\right|^{\lambda+2 \mu}} \\
& \geq \frac{(p-\alpha)^{\lambda+\mu}}{2^{\lambda+2 \mu}},
\end{aligned}
$$

which obviously contradicts our hypothesis (2.10). Thus we have

$$
|w(z)|<1, \quad(z \in \mathcal{U})
$$

which implies that

$$
\left|\frac{\frac{f^{\prime}(z)}{z^{p-1}}-p}{\frac{f^{\prime}(z)}{z^{p-1}}-\alpha}\right|<1, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p),
$$

that is, that $f(z) \in C_{p}\left(\frac{p+\alpha}{2}\right)$. This evidently completes the proof of Theorem 2.5.
By setting $\lambda=\mu-1=0$ in Theorem 2.5, we readily obtain the following result.
2.6. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\left|\frac{f^{\prime \prime}(z)}{z^{p-2}}-p(p-1)\right|<\frac{p-\alpha}{4}, \quad(z \in \mathcal{U} ; 0 \leq \alpha<p)
$$

Then $f(z) \in C_{p}\left(\frac{p+\alpha}{2}\right)$.
By setting $\lambda=\mu=1$ and $\alpha=0$ in Theorem 2.5, we obtain the following criterion for p-valently close-to-convex of order $\frac{p}{2}$.
2.7. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|\left|\frac{f^{\prime \prime}(z)}{z^{p-2}}-p(p-1)\right|<\frac{p^{2}}{8}, \quad(z \in \mathcal{U}) .
$$

Then,

$$
\Re\left(\frac{f^{\prime}(z)}{z^{p-1}}\right)>\frac{p}{2}, \quad(z \in \mathcal{U}),
$$

or equivalently, $f(z) \in C_{p}\left(\frac{p}{2}\right)$.

3. Starlikeness and Convexity

In this section, we first prove the following result (Theorem 3.1 below), which involves the already introduced principle of subordination between analytic functions (see Section $1)$.
3.1. Theorem. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\left\{\begin{array}{ll}
\frac{p(5 \beta+1)-2}{2(\beta+1)} ; & 1<\beta \leq \frac{p+1}{p} \tag{3.1}\\
\frac{p(\beta-1)+2}{2(\beta-1)} ; & \frac{p+1}{p} \leq \beta<\frac{p+2}{p},
\end{array} \quad(z \in \mathcal{U})\right.
$$

for some $\beta\left(1<\beta<\frac{p+2}{p}\right)$. Then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{p \beta(1-z)}{\beta-z},(z \in \mathcal{U}) . \tag{3.2}
\end{equation*}
$$

The result is sharp for the function f given by

$$
\begin{equation*}
f(z)=z^{p}\left(1-\frac{z}{\beta}\right)^{p(\beta-1)},(z \in \mathcal{U}) \tag{3.3}
\end{equation*}
$$

Proof. Let us define the function w by

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{p \beta(1-w(z))}{\beta-w(z)},\left(w(z) \neq \beta ; z \in U ; 1<\beta<\frac{p+2}{p}\right) . \tag{3.4}
\end{equation*}
$$

Then, clearly, w is analytic in \mathcal{U} with $w(0)=0$. By logarithmic differentiation of both sides of (3.4), we also find that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{p \beta(1-w(z))}{\beta-w(z)}+\frac{z w^{\prime}(z)}{\beta-w(z)}-\frac{p z w^{\prime}(z)}{1-w(z)} . \tag{3.5}
\end{equation*}
$$

We assume that there exists a point $z_{0} \in \mathcal{U}$ such that

$$
\left|w\left(z_{0}\right)\right|=1 \text { and }|w(z)|<1, \text { when }|z|<\left|z_{0}\right|
$$

then Lemma 1.1 gives us that

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right),\left(k \geq 1 ; w\left(z_{0}\right)=e^{i \theta} ; \theta \in \mathbb{R}\right) .
$$

Therefore, we obtain

$$
\begin{aligned}
\Re\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & =\Re\left(\frac{p \beta\left(1-e^{i \theta}\right)}{\beta-e^{i \theta}}\right)+\Re\left(\frac{k e^{i \theta}}{\beta-e^{i \theta}}\right)-\Re\left(\frac{p k e^{i \theta}}{1-e^{i \theta}}\right) \\
& =\frac{p \beta(\beta+1)(1-\cos \theta)}{\beta^{2}+1-2 \beta \cos \theta}+\frac{k(\beta \cos \theta-1)}{\beta^{2}+1-2 \beta \cos \theta}+\frac{p k}{2} \\
& \geq \frac{p \beta(\beta+1)(1-\cos \theta)}{\beta^{2}+1-2 \beta \cos \theta}+\frac{\beta \cos \theta-1}{\beta^{2}+1-2 \beta \cos \theta}+\frac{p}{2}
\end{aligned}
$$

which yields the inequality

$$
\Re\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) \geq \begin{cases}\frac{p(5 \beta+1)-2}{2(\beta+1)} ; & 1<\beta \leq \frac{p+1}{p} \tag{3.6}\\ \frac{p(\beta-1)+2}{2(\beta-1)} ; & \frac{p+1}{p} \leq \beta<\frac{p+2}{p}\end{cases}
$$

This contradicts our condition (3.1) of Theorem 3.1. Therefore, we conclude that

$$
|w(z)|<1, \quad(z \in \mathcal{U})
$$

that is, that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{p \beta}{\beta+1}\right|<\frac{p \beta}{\beta+1}, \quad\left(z \in \mathcal{U} ; 1<\beta<\frac{p+2}{p}\right)
$$

which implies the subordination (3.2) asserted by Theorem 3.1.
Finally, for the function f given by (3.3), we have

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{p \beta(1-z)}{\beta-z},(z \in \mathcal{U})
$$

which evidently completes the proof of Theorem 3.1.
Furthermore, since

$$
f(z) \in K_{p}(\alpha) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in S_{p}^{*}(\alpha), \quad(z \in \mathcal{U} ; 0 \leq \alpha<p)
$$

whose special case, when $p=1$ and $\alpha=0$, is the familiar Alexander theorem (cf., e.g., [1, p. 43, Theorem 2.12]), Theorem 3.1 can be applied in order to deduce the following result.
3.2. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\Re\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}\right)<\left\{\begin{array}{ll}
\frac{\beta(5 p-2)+p-4}{2(\beta+1)} ; & 1<\beta \leq \frac{p+1}{p}, \\
\frac{\beta(p-2)-p+4}{2(\beta-1)} ; & \frac{p+1}{p} \leq \beta<\frac{p+2}{p},
\end{array} \quad(z \in \mathcal{U})\right.
$$

for some $\beta\left(1<\beta<\frac{p+2}{p}\right)$, then

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{p \beta(1-z)}{\beta-z}, \quad(z \in \mathcal{U})
$$

The result is sharp for the function f given by

$$
f^{\prime}(z)=p z^{p-1}\left(1-\frac{z}{\beta}\right)^{p(\beta-1)},(z \in \mathcal{U})
$$

By setting $\beta=\frac{p+1}{p}$ in Theorem 3.1, we obtain the following criterions for p -valent starlikeness and p-valent convexity, respectively.
3.3. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{3 p}{2}, \quad(z \in \mathcal{U})
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{p(p+1)(1-z)}{p+1-z}, \quad(z \in \mathcal{U})
$$

and

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{p(p+1)}{2 p+1}\right|<\frac{p(p+1)}{2 p+1}, \quad(z \in \mathcal{U})
$$

This implies that $f \in S_{p}^{*}$. The result is sharp for the function f given by

$$
f(z)=z^{p}-\frac{p}{p+1} z^{p+1},(z \in \mathcal{U})
$$

3.4. Corollary. Let the function $f(z) \in \mathcal{A}_{p}$ satisfy the inequality

$$
\Re\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{\prime(z)+z f^{\prime \prime}(z)}\right)<\frac{3 p-2}{2},(z \in \mathcal{U})
$$

then

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{p(p+1)(1-z)}{p+1-z}, \quad(z \in \mathcal{U})
$$

and

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{p(p+1)}{2 p+1}\right|<\frac{p(p+1)}{2 p+1}, \quad(z \in \mathcal{U})
$$

This implies that $f \in K_{p}$. The result is sharp for the function f given by

$$
f^{\prime}(z)=p z^{p-1}-\frac{p^{2}}{p+1} z^{p},(z \in \mathcal{U})
$$

References

[1] Duren, P. L. Univalent Functions (Springer-Verlag, New York, 1983).
[2] Goodman, A. W. Univalent Functions, Volume I (Polygonal, Washington, 1983).
[3] Jack, I. S. Functions starlike aud convex of order α, J. London Math. Soc. 3 (2), 469-474, 1971.
[4] Irmak, H. Certain inequalities and their applications to multivalently analytic functions, Math. Inequal.Appl. 8 (3), 451-458, 2005.
[5] Irmak, H. and Çetin, Ö.F. Some inequalities on p-valent functions, Hacet. Bull. Nat. Sci. Eng. Ser. B 28, 71-76, 1999.
[6] Miller, S. S. and Mocanu P. T. Second order differential inequalities in complex plane, J. Math. Anal. Appl. 65, 289-305, 1978.
[7] Nunokawa, M. On the theory of multivalent functions, Tsukuba J. Math. 11, 273-286, 1987.
[8] Owa, S., Nunokawa, M., Saitoh, H. and Srivastava, H. M. Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15, 63-69, 2002.
[9] Singh, V. and Tuneski, N. On criteria for starlikeness and convexity of analytic functions, Acta Mathematica Scientia. Series B 24 (4), 597-602, 2004.
[10] Srivastava, H. M. and Owa, S. (Editors) Current Topics in Analytic Function Theory (World Scientific, Singapore, 1992).
[11] Tuneski, N. On the quotient of the representations of convexity and starlikeness, Math. Nachr. 248-249, 200-203, 2003.
[12] Wang, Z.-G. and Xu, N. A new criterion for multivalent starlike functions, Appl. Anal. Discrete Math. 2, 183-188, 2008.

[^0]: *Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey. E-mail: edeniz36@gmail.com

