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Abstract

Let Γ ⊂ C be a closed BR curve without cusps. In this work approxi-
mation by complex interpolating polynomials in a Weighted Symmet-
ric Smirnov Space is studied. It is proved that the convergence rate
of complex interpolating polynomials and the convergence rate of best
approximating algebraic polynomials are the same in the norm of Sym-
metric Smirnov Spaces.
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1. Preliminaries and the main result

Let Γ ⊂ C be a closed rectifiable Jordan curve with Lebesgue length measure |dτ |
and let X (Γ) be a symmetric (rearrangement invariant) space over Γ generated by a
rearrangement invariant function norm ρ, with associate spaceX ′ (Γ). For each f ∈ X (Γ)
we define

‖f‖X(Γ) := ρ (|f |) , f ∈ X (Γ) .

A symmetric space X (Γ) equipped with norm ‖ · ‖X(Γ) is a Banach space [2, p. 3,5, Ths.

1.4 and 1.6].

For definitions and fundamental properties of general symmetric spaces we refer to
[2].
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A function ω : Γ → [0,∞] is referred to as a weight if ω is measurable and the preimage
ω−1 ({0,∞}) has measure zero. We set

X (Γ, ω) := {f measurable : fω ∈ X (Γ)} ,

which is equipped with the norm

‖f‖X(Γ,ω) := ‖fω‖X(Γ) .

The normed space X (Γ, ω) is called a Weighted Symmetric Space on Γ.

By Lp (Γ), 1 ≤ p ≤ ∞, we denote the Lebesgue space of measurable functions f : Γ →
C. Let Ep (G), 1 ≤ p ≤ ∞ be the Smirnov space of functions analytic on G. It is well
known that every function in Ep (G), 1 ≤ p ≤ ∞, has nontangential boundary values on
Γ := ∂G. The boundary value of function f in Ep (G), 1 ≤ p ≤ ∞, will be denoted by
f∗.

If ω ∈ X (Γ) and 1/ω ∈ X ′ (Γ), then X (Γ, ω) is a Banach Function [2] Space and from
Hölder’s [2, p.9] inequality we have X (Γ, ω) ⊂ L1 (Γ).

By the Luxemburg representation theorem [2, Theorem 4.10, p. 62], there is a unique
rearrangement invariant function norm ρ̄ over the Lebesgue measure space ([0, |Γ|] , m),
where |Γ| is the Lebesgue length of Γ, such that ρ (f) = ρ̄ (f∗) for all non-negative and
almost everywhere finite measurable functions f defined on Γ. Here f∗ denotes the non-
increasing rearrangement of f [2, p. 39]. The symmetric space over ([0, |Γ|] ,m) generated
by ρ̄ is called the Luxemburg representation of X (Γ) and is denoted by X̄.

Let g be a non-negative, almost everywhere finite and measurable function on [0, |Γ|].
For each x > 0 we set

(Hxg) (t) :=

{

g (xt) , xt ∈ [0, |Γ|]

0, xt /∈ [0, |Γ|]
, t ∈ [0, |Γ|] .

Then the operator H1/x is bounded on X̄ [2, p. 165] with the operator norm

(hX) (x) :=
∥

∥H1/x

∥

∥

B(X̄) ,

where B
(

X̄
)

is the Banach algebra of bounded linear operators on X̄ .

The functions

αX := lim
x→0

log hX (x)

log x
, βX := lim

x→∞

log hX (x)

log x

are called the lower and upper Boyd indices [3] of the symmetric space X (Γ). These
indices satisfy 0 ≤ αX ≤ βX ≤ 1. The indices αX and βX are called nontrivial if 0 < αX

and βX < 1.

Let Γ be a closed rectifiable Jordan curve in the complex plane C. The curve Γ
separates the plane into two domains G := intΓ and G− := extΓ. We set D :=
{z ∈ C : |z| < 1}, T := ∂D and D

− := extT. Let w = φ (z) be the conformal map of
G− onto D

− normalized by the conditions

φ (∞) = ∞, lim
z→∞

φ (z)

z
> 0.

When |z| is sufficiently large, φ has the Laurent expansion

φ (z) = dz + d0 +
d1
z

+ · · ·

and hence we have

[φ (z)]n = dnzn +

n−1
∑

k=0

dn,kz
k +

∑

k<0

dn,kz
k.
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The polynomial

Fn (z) := dnzn +

n−1
∑

k=0

dn,kz
k

is called nth Faber polynomial with respect to G.

Note that for every natural number n, Fn is a polynomial of degree n. For further
information about the Faber polynomials, the monographs [4, Ch. I, §6], [11, Ch. II]
and [12] can be consulted.

Let γ be an oriented rectifiable curve. For z ∈ γ, δ > 0 we denote by s+ (z, δ)
(respectively, s− (z, δ)) the subarc of γ in the positive (respectively negative ) orientation
of γ with starting point z, and arclength from z to each point less than δ.

If γ is a smooth curve and

lim
δ→0











∫

s−(z,δ)

|dς arg (ς − z)|+

∫

s+(z,δ)

|dς arg (ς − z)|











= 0

holds uniformly with respect to z ∈ γ, then it is said [13] that γ is of vanishing rotation
(VR). As follows from this definition, the VR condition is stronger than smoothness. In
[13] L. Zhong and L. Zhu proved that there exists a smooth curve which is not of VR.
On the other hand, if the angle of inclination θ (s) of the tangent to γ as a function of
the arclength s along γ satisfies the condition

δ
∫

0

ω (t)

t
dt < ∞,

where ω (t) is the modulus of continuity of θ (s), then [13] γ is VR.

1.1. Definition. Let γ be a rectifiable Jordan curve with length L and let z = z (t) be
its parametric representation with arclength t ∈ [0, L]. If β (t) := arg z′ (t) can be defined
on [0, L] to become a function of bounded variation, then γ is called of bounded rotation

(γ ∈BR) and
∫

Γ
|dβ (t)| is called the total rotation of γ.

For example, a curve which is made up of finitely many convex arcs (corners are
permitted), is of bounded rotation [4, p. 45]. If γ ∈BR, then there are two half tangents
at each point of γ. It is easily seen that every VR curve is a BR curve. Since a BR
curve may have cusps or corners, there exists a BR curve which is not a VR curve (for
example, a rectangle in the plane).

For z ∈ Γ and ǫ > 0 let Γ (z, ǫ) denote the portion of Γ which is inside the open
disk of radius ǫ centered at z, i.e. Γ (z, ǫ) := {t ∈ Γ : |t− z| < ǫ}. Further, let |Γ (z, ǫ)|
denote the length of Γ (z, ǫ). A rectifiable Jordan curve Γ is called a Carleson curve
(Ahlfors-Regular curve, see e.g. [9, p.162, (12)]) if it satisfies

sup
ǫ>0

sup
z∈Γ

1

ǫ
|Γ (z, ǫ)| < ∞.

We consider the Cauchy-type integral

(Hf) (z) :=
1

2πi

∫

Γ

f (ς)

ς − z
dς, z ∈ G

and Cauchy’s singular integral of f ∈ L1 (Γ) defined as

SΓf (z) := lim
ε→0

1

2πi

∫

Γ\Γ(z,ǫ)

f (ς)

ς − z
dς, z ∈ Γ.
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The linear operator SΓ : f → SΓf is called the Cauchy singular operator.

For fixed p ∈ (1,∞) we define q ∈ (1,∞) by (1/p) + (1/q) = 1. The set of all weights
ω : Γ → [0,∞] satisfying Muckenhoupt’s Ap condition (see e.g. [5, p.254 (6.1)])

sup
z∈Γ

sup
ε>0







1

ε

∫

Γ(z,ε)

ω (τ )p |dτ |







1/p 





1

ε

∫

Γ(z,ε)

[ω (τ )]−q |dτ |







1/q

< ∞

is denoted by Ap (Γ).

1.2. Definition. Let ω be a weight on Γ and let

EX (G, ω) :=
{

f ∈ E1 (G) : f∗ ∈ X (Γ, ω)
}

.

The class of functions EX (G, ω) will be called the Weighted Symmetric Smirnov space

with respect to the domain G.

EX (G, ω) is a natural generalization of Hardy, Hardy-Orlicz, Smirnov and Smirnov-
Orlicz spaces. It is a Banach space with the norm ‖f‖EX(G,ω) := ‖f∗‖X(Γ,ω).

In this work we investigate the convergence property of interpolating polynomials
based on the zeros of the Faber polynomials in Symmetric Smirnov Spaces under the
assumption that Γ is a BR curve without cusps. Approximation by interpolating poly-
nomials has been studied by several authors. In their work [10] under the assumption
Γ ∈ C (2, α), 0 < α < 1, X.C. Shen and L. Zhong obtained a series of interpolation
nodes in G and showed that interpolating polynomials and the best approximating poly-
nomial have the same order of convergence in Ep (G), 1 < p < ∞. In [14], considering
Γ ∈ C (1, α) and choosing the interpolation nodes as the zeros of the Faber polynomials,
L.Y. Zhu obtained a similar result.

When Γ is a piecewise VR curve without cusps, L. Zhong and L. Zhu [13] showed that
the interpolating polynomials based on the zeros of the Faber polynomials converge in
the Smirnov class Ep (G), 1 < p < ∞.

In the case that all of the zeros of the nth Faber polynomial Fn (z) are in G, we
denote by Ln (f, z) the (n− 1)th interpolating polynomial to f (z) ∈ EX (G,ω) based on
the zeros of the Faber polynomials Fn.

For f ∈ EX (G, ω), we denote by

En (f,G, ω)X := inf
{

‖f − pn‖EX(G,ω) : pn is a polynomial of degree ≤ n
}

the minimal error of approximation of f by polynomials of degree at most n.

The main result of this work is the following.

1.3. Theorem. Let Γ be a BR curve without cusps, ω a weight on Γ and let X (Γ, ω)
be a weighted symmetric space on Γ having nontrivial Boyd indices αX and βX . If

ω ∈ A1/αX
∩A1/βX

, then for a sufficiently large natural number n, the roots of the Faber

polynomials are in G and for every f ∈ EX (G,ω)

‖f (·)− Ln (f, ·)‖EX(G,ω) ≤ cEn−1 (f, G, ω)X ,

with a positive constant c depending only on Γ and X.

When Γ is a piecewise VR curve without cups and ω ≡ 1, this theorem was proved in
[13]. For a BR curve without cups and ω ≡ 1, this theorem was proved in [7].

We use c, c1, c2, . . . to denote constants (which may, in general, differ in different
contexts) depending only on numbers that are not important for the question of our
interest.
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2. Auxiliary results

Let Γ be a BR curve without cusps. Then (see, for example, Pommerenke [8])

Fn (z) =
1

π

∫

Γ

[φ (ς)]n dς arg (ς − z) , z ∈ Γ,

where the jump of arg (ς − z) at ς = z is equal to the exterior angle αzπ. Hence we have

(2.1) 0 ≤ max
z∈Γ

|αz − 1| < 1.

2.1. Lemma. [1] Let Γ be a BR curve without cusps. Then for arbitrary ǫ > 0, there
exists a positive integer n0 such that

|Fn (z)− [φ (z)]n| < |αz − 1|+ ǫ, z ∈ Γ

holds for n > n0. �

2.2. Lemma. [6] Let Γ be a rectifiable Jordan curve, ω a weight on Γ and let X (Γ, ω)
be a weighted symmetric space on Γ having nontrivial Boyd indices αX and βX . If

ω ∈ A1/αX
∩A1/βX

, then the singular operator SΓ is bounded on X (Γ, ω), i.e.

‖SΓf‖X(Γ,ω) ≤ c ‖f‖X(Γ,ω) , f ∈ X (Γ, ω)

for some constant c > 0. �

2.3. Lemma. Let Γ be a BR curve without cusps. Then for a sufficiently large natural

number n, the roots of the Faber polynomials Fn are in G.

Proof. Let κ := max
z∈Γ

|αz − 1|, z ∈ Γ. Then by (2.1) we have 0 ≤ κ < 1. Setting ǫ := 1−κ
2

in Lemma 2.1, for sufficiently large n we get

(2.2) |Fn (z)− [φ (z)]n| <
1 + κ

2
, z ∈ Γ.

Since Fn (z)− [φ (z)]n is analytic on CG := C\G, by the maximum principle we have

|Fn (z)− [φ (z)]n| <
1 + κ

2
, z ∈ CG,

and therefore

|Fn (z)| ≥ |φ (z)|n −
1 + κ

2
≥

1− κ

2
> 0, z ∈ CG.

This gives to us that for sufficiently large n, all the zeros of the Faber polynomials Fn

are in G. �

2.4. Lemma. Let Γ be a BR curve without cusps, ω a weight on Γ and let X (Γ, ω)
be a weighted symmetric space on Γ having nontrivial Boyd indices αX and βX . If

ω ∈ A1/αX
∩A1/βX

, then for a sufficiently large natural number n, Ln (f, ·) is uniformly

bounded in EX (G,ω).

Proof. Choosing the interpolation nodes as the zeros of the Faber polynomials we have
for z′ ∈ G,

f
(

z′
)

− Ln

(

f, z′
)

=
Fn (z′)

2πi

∫

Γ

f (ς)

Fn (ς) (ς − z′)
dς = Fn

(

z′
)

(

H

[

f

Fn

])

(

z′
)

.
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Taking the limit z′ → z ∈ Γ along all nontangential paths inside of Γ we get

‖f (z)− Ln (f, z)‖EX (G,ω) =

∥

∥

∥

∥

Fn (z) ·

(

SΓ

[

f

Fn

])

(z)

∥

∥

∥

∥

X(Γ,ω)

≤

{

max
z∈Γ

|Fn (z)|

}

·

∥

∥

∥

∥

SΓ

[

f

Fn

]∥

∥

∥

∥

X(Γ,ω)

,

and later, by Lemma 2.2,

‖f (z)− Ln (f, z)‖EX (G,ω) ≤ c

{

max
z∈Γ

|Fn (z)|

}

·

∥

∥

∥

∥

f

Fn

∥

∥

∥

∥

X(Γ,ω)

≤ c

{

max
z,ς∈Γ

∣

∣

∣

∣

Fn (z)

Fn (ς)

∣

∣

∣

∣

}

‖f‖X(Γ,ω) .

From (2.2)

1− κ

2
< |Fn (z)| <

3 + κ

2
, z ∈ Γ,

and hence

‖f (z)− Ln (f, z)‖EX (G,ω) ≤ c
3 + κ

1− κ
· ‖f (z)‖X(Γ,ω) , z ∈ Γ.

Since

‖Ln (f, ·)‖EX(G,ω) ≤ ‖f‖EX(G,ω) + ‖f (·)− Ln (f, ·)‖EX (G,ω)

≤

(

1 + c
3 + κ

1− κ

)

‖f‖X(Γ,ω) ,

by choosing c2 := 1 + c 3+κ
1−κ

we obtain that ‖Ln‖ ≤ c2 and the assertion holds. �

3. Proof of the theorem

The first part of the main theorem was proved in Lemma 2.3. Let Pn−1 be the
(n− 1)th best approximating polynomial to f in EX (G, ω). Since Ln (f, · ) is a linear
operator we get

‖f ( · )− Ln (f, · )‖EX (G,ω) = ‖f (·)− Pn−1 ( · )− Ln (f − Pn−1, · )‖EX(G,ω)

≤ (1 + ‖Ln‖) ‖f ( · )− Pn−1 ( · )‖EX (G,ω) .

Hence we conclude by Lemma 2.4 that

‖f (·)− Ln (f, ·)‖EX(G,ω) ≤ (1 + c2) ‖f (·)− Pn−1 ( · )‖EM (G)

= cEn−1 (f, G, ω)X ,

and the proof of the main theorem is completed. �
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