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Abstract
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1. Introduction

Let E be a real normed space and K be a nonempty subset of E. A mapping T :
K → K is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K. A mapping
T : K → K is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 such that

(1.1) ‖Tn
x− T

n
y‖ ≤ kn ‖x− y‖

for all x, y ∈ K and n ≥ 1. Goebel and Kirk [3] proved that if K is a nonempty closed
and bounded subset of a uniformly convex Banach space, then every asymptotically
nonexpansive self-mapping has a fixed point.

A mapping T is said to be asymptotically nonexpansive in the intermediate sense (see,
e.g., [2]) if it is continuous and the following inequality holds:

(1.2) lim sup
n→∞

sup
x,y∈K

(‖Tn
x− T

n
y‖ − ‖x− y‖) ≤ 0.

If F (T ) := {x ∈ K : Tx = x} 6= ∅ and (1.2) holds for all x ∈ K, y ∈ F (T ), then T is
called asymptotically quasi-nonexpansive in the intermediate sense. Observe that if we
define

(1.3) an := sup
x,y∈K

(‖Tn
x− T

n
y‖ − ‖x− y‖), and σn = max {0, an} ,

then σn → 0 as n → ∞ and (1.2) reduces to

(1.4) ‖Tn
x− T

n
y‖ ≤ ‖x− y‖+ σn, for all x, y ∈ K, n ≥ 1.

The class of mappings which are asymptotically nonexpansive in the intermediate sense
was introduced by Bruck et al. [2]. It is known [5] that if K is a nonempty closed convex
bounded subset of a uniformly convex Banach space E and T is a self-mapping ofK which
is asymptotically nonexpansive in the intermediate sense, then T has a fixed point. It
is worth mentioning that the class of mappings which are asymptotically nonexpansive
in the intermediate sense contains properly the class of asymptotically nonexpansive
mappings.

Albert et al. [1] introduced a more general class of asymptotically nonexpansive
mappings called total asymptotically nonexpansive mappings and studied methods of
approximation of fixed points of mappings belonging to this class.

1.1. Definition. A mapping T : K → K is said to be total asymptotically nonexpansive
if there exist nonnegative real sequences {µn} and {ln}, n ≥ 1 with µn, ln → 0 as n → ∞
and a strictly increasing continuous function φ : R+ → R

+ with φ(0) = 0 such that for
all x, y ∈ K,

(1.5) ‖Tn
x− T

n
y‖ ≤ ‖x− y‖+ µnφ(‖x− y‖) + ln, n ≥ 1.

1.2. Remark. If φ(λ) = λ, then (1.5) reduces to

(1.6) ‖Tn
x− T

n
y‖ ≤ (1 + µn) ‖x− y‖+ ln, n ≥ 1.

In addition, if ln = 0 for all n ≥ 1, then total asymptotically nonexpansive mappings
coincide with asymptotically nonexpansive mappings. If µn = 0 and ln = 0 for all n ≥ 1,
we obtain from (1.5) a class of mappings that includes the class of nonexpansive mappings.
If µn = 0 and ln = σn = max {0, an}, where an := sup

x,y∈K

(‖Tnx− Tny‖− ‖x− y‖) for all

n ≥ 1, then (1.5) reduces to (1.4) which has been studied as mappings asymptotically
nonexpansive in the intermediate sense.
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1.3. Proposition. Let K be a nonempty subset of E, {Ti}
N

i=1 : K → K be N total
asymptotically nonexpansive mappings. Then there exist nonnegative real sequences {µn}
and {ln}, n ≥ 1 with µn, ln → 0 as n → ∞ and a strictly increasing continuous function
φ : R+ → R

+ with φ(0) = 0 such that for all x, y ∈ K,

(1.7) ‖Tn
i x− T

n
i y‖ ≤ ‖x− y‖+ µnφ (‖x− y‖) + ln, n ≥ 1,

for i = 1, 2, . . . , N .

Proof. Since Ti : K → K is a total asymptotically nonexpansive mapping for i =
1, 2, . . . , N, there exist nonnegative real sequences {µin}, {lin}, n ≥ 1 with µin, lin → 0
as n → ∞ and a strictly increasing continuous function φi : R+ → R

+ with φi (0) = 0
such that for all x, y ∈ K,

‖Tn
i x− T

n
i y‖ ≤ ‖x− y‖+ µinφi (‖x− y‖) + lin, n ≥ 1.

Setting

µn = max {µ1n, µ2n, . . . , µNn} , ln = max {l1n, l2n, . . . , lNn} ,

φ (a) = max {φ1 (a) , φ2 (a) , . . . , φN (a)} for a ≥ 0,

then we get that there exist nonnegative real sequences {µn} and {ln}, n ≥ 1 with
µn, ln → 0 as n → ∞ and a strictly increasing continuous function φ : R+ → R

+ with
φ (0) = 0 such that

‖Tn
i x− T

n
i y‖ ≤ ‖x− y‖+ µinφi (‖x− y‖) + lin

≤ ‖x− y‖+ µnφ (‖x− y‖) + ln, n ≥ 1,

for all x, y ∈ K, and each i = 1, 2, . . . , N. �

The main tool for approximation of fixed points of generalizations of nonexpansive
mappings remains the iterative technique. Since Schu’s results (see, [12, 13]), the modified
Mann and Ishikawa iterative scheme have been studied extensively by several authors to
approximate fixed points of generalizations of asymptotically nonexpansive mappings
(see, e.g., [12, 13, 8, 15, 16]). Recently, Gu and He [4] studied a multi-step iterative
sequence involving finite nonexpansive mappings in a uniformly convex Banach space.
They obtained weak and strong convergence theorems for approximating common fixed
points of nonexpansive mappings. Liu et al. in [6, 7] established new iterative methods,
the modified two and the modified three-step iteration sequence with errors with respect
to a pair of mappings. The results in [6] and [7] generalize, improve and unify many
known results due to many authors.

Very recently, Saejung and Sitthikul [9] studied convergence theorems for a finite
family of nonexpansive and asymptotically nonexpansive mappings in a uniformly convex
Banach space. In 2010 Saluja [11] proved strong convergence to common fixed points of
a pair of quasi-nonexpansive and asymptotically quasi-nonexpansive mappings.

Inspired and motivated by these facts, we define and study convergence theorems of
finite step iterative sequences with errors involving a finite family of nonexpansive and a
finite family of total asymptotically nonexpansive mappings in a nonempty closed convex
subset of a uniformly convex Banach space. The results of this paper can be viewed as
an improvement and extention of the corresponding results of [4, 6, 7, 10] and others.
The scheme (1.8) is defined as follows.

Let K be a nonempty closed convex subset of a Banach space E. Let S1, S2, . . . , SN :
K → K beN nonexpansive mappings, T1, T2, . . . , TN : K → K beN total asymptotically



660 E. Yolacan, H. Kiziltunc

nonexpansive mappings. Then the sequence {xn} defined by

(1.8)

x1 ∈ K,

xn+1 = x
(N)
n = a

(N)
n T

n
Nx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

x
(N−1)
n = a

(N−1)
n T

n
N−1x

(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

· · · · · · · · · · · · · · · · · · · · · · · ·

x
(3)
n = a

(3)
n T

n
3 x

(2)
n + b

(3)
n S3xn + c

(3)
n u

(3)
n ,

x
(2)
n = a

(2)
n T

n
2 x

(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n

x
(1)
n = a

(1)
n T

n
1 xn + b

(1)
n S1xn + c

(1)
n u

(1)
n , n ≥ 1,

is called an N-step iterative sequence, where
{

u
(i)
n

}

are bounded sequences in K and
{

a
(i)
n

}∞

n=1
,
{

b
(i)
n

}∞

n=1
,
{

c
(i)
n

}∞

n=1
⊂ [0, 1] are such that a

(i)
n + b

(i)
n + c

(i)
n = 1 for all i =

1, 2, . . . , N .

In case S1 = S2 = . . . = SN = I , then (1.8) reduces to the multi-step iteration with
errors for N total asymptotically nonexpansive mappings.

For N = 3, then (1.8) reduces to the modified three-step iteration:

(1.9)

x1 ∈ K,

xn+1 = a
(3)
n T

n
3 yn + b

(3)
n S3xn + c

(3)
n u

(3)
n ,

yn = a
(2)
n T

n
2 zn + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

zn = a
(1)
n T

n
1 xn + b

(1)
n S1xn + c

(1)
n u

(1)
n , n ≥ 1,

where
{

u
(i)
n

}

are bounded sequences in K and
{

a
(i)
n

}∞

n=1
,
{

b
(i)
n

}∞

n=1
,
{

c
(i)
n

}∞

n=1
⊂ [0, 1]

are such that a
(i)
n + b

(i)
n + c

(i)
n = 1 for all i = 1, 2, 3.

If T1 = T2 = T3 = T and S1 = S2 = S3 = S are self-mappings, then (1.9) reduces to
the modified three-step iteration defined by Liu et al. [6]

(1.10)

x1 ∈ K,

xn+1 = a
(3)
n Tyn + b

(3)
n Sxn + c

(3)
n u

(3)
n ,

yn = a
(2)
n Tzn + b

(2)
n Sxn + c

(2)
n u

(2)
n ,

zn = a
(1)
n Txn + b

(1)
n Sxn + c

(1)
n u

(1)
n , n ≥ 1,

where
{

u
(i)
n

}

are bounded sequences in K and
{

a
(i)
n

}∞

n=1
,
{

b
(i)
n

}∞

n=1
,
{

c
(i)
n

}∞

n=1
⊂ [0, 1]

are such that a
(i)
n + b

(i)
n + c

(i)
n = 1 for all i = 1, 2, 3.

In case S = I and a
(1)
n = c

(1)
n = 0 for n ≥ 1, the sequence {xn}n≥1 generated in (1.10)

reduces to the usual modified Ishikawa iteration sequence with errors.

If T2 = T3 = T and S2 = S3 = S are self-mappings and a
(1)
n = c

(1)
n = 0 for n ≥ 1, then

(1.9) reduces to the modified Ishikawa iteration sequence with errors defined by Liu et
al. [7]

(1.11)

x1 ∈ K,

xn+1 = a
(3)
n Tyn + b

(3)
n Sxn + c

(3)
n u

(3)
n ,

yn = a
(2)
n Txn + b

(2)
n Sxn + c

(2)
n u

(2)
n , n ≥ 1,
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where
{

u
(2)
n

}

and
{

u
(3)
n

}

are bounded sequences in K,
{

a
(2)
n

}

n≥1
,
{

b
(2)
n

}

n≥1
,
{

c
(2)
n

}

n≥1
,

{

a
(3)
n

}

n≥1
,
{

b
(3)
n

}

n≥1
and

{

c
(3)
n

}

n≥1
are sequences in [0, 1] such that a

(2)
n + b

(2)
n + c

(2)
n =

a
(3)
n + b

(3)
n + c

(3)
n = 1.

In case S = I and a
(2)
n = c

(2)
n = 0 for n ≥ 1, the sequence {xn}n≥1 generated in (1.11)

reduces to the usual modified Mann iteration sequence with errors.

The purpose of this paper is to study the strong convergence theorems of the finite-
step iteration sequence {xn} with error terms defined by (1.8) to a common fixed point
for a pair of a finite families of nonexpansive mappings and a finite family of total
asymptotically nonexpansive mappings in a uniformly convex Banach space.

2. Preliminaries

Now, we recall some well-known concepts and results.

Let E be a Banach space with dimension E ≥ 2. The modulus of E is the function
δE : (0, 2] → [0, 1] defined by

δE (ε) = inf

{

1−

∥

∥

∥

∥

1

2
(x+ y)

∥

∥

∥

∥

: ‖x‖ = ‖y‖ = 1, ε = ‖x− y‖

}

.

A Banach space E is uniformly convex if and only if δE (ε) > 0 for all ε ∈ (0, 2].

A mapping T : K → K is called:

(1) demicompact if any bounded sequence {xn} in K such that {xn − Txn} con-
verges has a convergent subsequence;

(2) semicompact (or hemicompact) if any bounded sequence {xn} in K such that
{xn − Txn} → 0 as n → ∞ has a convergent subsequence. Every demicompact
mapping is semicompact but the converse is not true in general.

2.1. Lemma. [14] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑∞

n=1 bn < ∞ and
∑∞

n=1 δn < ∞, then

(i) lim
n→∞

an exists;

(ii) In particular, if {an} has a subsequence {ank
} converging to 0, then

lim
n→∞

an = 0. �

2.2. Lemma. [12] Let E be a uniformly convex Banach space, {tn}n≥1 ⊆ [b, c] ⊂ (0, 1),

{xn}n≥1 and {yn}n≥1 be sequences in E. If lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a

and limn→∞ ‖tnxn + (1− tn) yn‖ = a for some constant a ≥ 0, then limn→∞ ‖xn − yn‖
= 0. �

3. Main results

3.1. Lemma. Let K be a nonempty convex subset of a real Banach space E. Let S1,

S2, . . . , SN : K → K be a finite family of nonexpansive mappings and T1, T2, . . . , TN :
K → K a finite family of total asymptotically nonexpansive mappings with sequences

{µn} and {ln} defined by (1.7) such that
∞
∑

n=1

µn < ∞,
∞
∑

n=1

ln < ∞ and F (S, T ) =

⋂N

i=1 F (Si) ∩ F (Ti) 6= ∅. Assume that there exists M , M∗ > 0 such that φ (λ) ≤ M∗λ
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for all λ ≥ M , i ∈ {1, 2, . . . , N}. For an arbitrary x1 ∈ K, define the sequences {xn} by
recursion (1.8). If

(3.1)
∞
∑

n=1

c
(i)
n < ∞ for all i = 1, 2, . . . , N,

then limn→∞ ‖xn − p‖ exists for any p ∈ F (S, T ).

Proof. Let p ∈ F (S, T ) =
⋂N

i=1 F (Si) ∩ F (Ti). Since
{

u
(i)
n

}

for all i = 1, 2, . . . , N are

bounded sequences in K, we have

K = max

{

sup
n≥1

∥

∥

∥
u
(1)
n − p

∥

∥

∥
, . . . , sup

n≥1

∥

∥

∥
u
(N)
n − p

∥

∥

∥

}

.

Since S1, S2, . . . , SN are nonexpansive mappings and T1, T2, . . . , TN are total asymptoti-
cally nonexpansive mappings, it follows from (1.8) that

∥

∥

∥x
(1)
n − p

∥

∥

∥ =
∥

∥

∥a
(1)
n T

n
1 xn + b

(1)
n S1xn + c

(1)
n u

(1)
n − p

∥

∥

∥

≤ a
(1)
n ‖Tn

1 xn − p‖+ b
(1)
n ‖S1xn − p‖+ c

(1)
n

∥

∥

∥
u
(1)
n − p

∥

∥

∥

≤ a
(1)
n [‖xn − p‖+ µnφ (‖xn − p‖) + ln]

+ b
(1)
n ‖xn − p‖+ c

(1)
n

∥

∥

∥
u
(1)
n − p

∥

∥

∥

≤ (a(1)
n + b

(1)
n ) ‖xn − p‖+ a

(1)
n µnφ (‖xn − p‖)

+ a
(1)
n ln + c

(1)
n K

≤
(

1− c
(1)
n

)

‖xn − p‖+ a
(1)
n µnφ (‖xn − p‖)

+ a
(1)
n ln + c

(1)
n K

≤ ‖xn − p‖+ a
(1)
n µnφ (‖xn − p‖) + a

(1)
n ln + ϕ

n
(1),(3.2)

where ϕn
(1) = c

(1)
n K. Since

∞
∑

n=1

c
(1)
n < ∞, we can see that

∞
∑

n=1

ϕn
(1) < ∞. Note that φ is an

increasing function, it follows that φ (λ) ≤ φ (M) whenever λ ≤ M and (by hypothesis)
φ (λ) ≤ M∗λ if λ ≥ M . In either case, we have

(3.3) φ (λ) ≤ φ (M) +M
∗
λ

for some M,M∗ > 0. Thus, from (3.2) and (3.3), we have

(3.4)

∥

∥

∥
x
(1)
n − p

∥

∥

∥
≤ ‖xn − p‖+ a

(1)
n µn [φ (M) +M

∗ ‖xn − p‖] + a
(1)
n ln + ϕ

n
(1)

≤ (1 +M1µn) ‖xn − p‖+R1 (µn + ln) + ϕ
n
(1)

for some constants M1, R1 > 0. It follows from (3.3) and (3.4) that
∥

∥

∥
x
(2)
n − p

∥

∥

∥
≤ a

(2)
n

∥

∥

∥
T

n
2 x

(1)
n − p

∥

∥

∥
+ b

(2)
n ‖S2xn − p‖+ c

(2)
n

∥

∥

∥
u
(2)
n − p

∥

∥

∥

≤ a
(2)
n

[∥

∥

∥
x
(1)
n − p

∥

∥

∥
+ µnφ

(∥

∥

∥
x
(1)
n − p

∥

∥

∥

)

+ ln

]

+ b
(2)
n ‖xn − p‖+ c

(2)
n

∥

∥

∥u
(2)
n − p

∥

∥

∥

≤ a
(2)
n

[

(1 +M1µn) ‖xn − p‖+R1 (µn + ln) + ϕ
n
(1)

]

+ a
(2)
n µn

[

φ (M) +M
∗
∥

∥

∥
x
(1)
n − p

∥

∥

∥

]

+ a
(2)
n ln

+ b
(2)
n ‖xn − p‖+ c

(2)
n

∥

∥

∥
u
(2)
n − p

∥

∥

∥
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≤
(

a
(2)
n + b

(2)
n

)

(1 +M1µn) ‖xn − p‖+ a
(2)
n R1 (µn + ln)

+ a
(2)
n ϕ

n
(1) + a

(2)
n µnφ (M) + a

(2)
n µnM

∗
∥

∥

∥x
(1)
n − p

∥

∥

∥

+ a
(2)
n ln + c

(2)
n K

≤
(

1− c
(2)
n

)

(1 +M1µn) ‖xn − p‖+ a
(2)
n R1 (µn + ln)

+ a
(2)
n ϕ

n
(1) + a

(2)
n µnφ (M) + a

(2)
n ln + c

(2)
n K

+ a
(2)
n µnM

∗
[

(1 +M1µn) ‖xn − p‖+R1 (µn + ln) + ϕ
n
(1)

]

≤ ‖xn − p‖+
(

M1 +M
∗
a
(2)
n + a

(2)
n µnM

∗
M1

)

µn ‖xn − p‖

+ a
(2)
n R1 (µn + ln) + a

(2)
n µnφ (M) + a

(2)
n ln + a

(2)
n µnM

∗
R1 (µn + ln)

+ a
(2)
n µnM

∗
ϕ

n
(1) + a

(2)
n ϕ

n
(1) + c

(2)
n K

≤ (1 +M2µn) ‖xn − p‖+R2 (µn + ln) + ϕ
n
(2),(3.5)

where ϕn
(2) = a

(2)
n µnM

∗ϕn
(1) + a

(2)
n ϕn

(1) + c
(2)
n K and for some constants M2, R2 > 0. Since

∞
∑

n=1

ϕn
(1) < ∞,

∞
∑

n=1

µn < ∞ and
∞
∑

n=1

c
(2)
n < ∞, we can see that

∞
∑

n=1

ϕn
(2) < ∞. By

induction, it follows (1.8), (3.4) and (3.5) that we have

(3.6)
∥

∥

∥
x
(j)
n − p

∥

∥

∥
≤ (1 +Mjµn) ‖xn − p‖+Rj (µn + ln) + ϕ

n
(j)

for j = 1, 2, . . . , N − 1. Therefore, it follows from (1.8) and (3.6) that

‖xn+1 − p‖ =
∥

∥

∥
x
(N)
n − p

∥

∥

∥

≤ a
(N)
n

∥

∥

∥T
n
Nx

(N−1)
n − p

∥

∥

∥+ b
(N)
n ‖SNxn − p‖+ c

(N)
n

∥

∥

∥u
(N)
n − p

∥

∥

∥

≤ a
(N)
n

[∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
+ µnφ

(∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

)

+ ln

]

+ b
(N)
n ‖xn − p‖+ c

(N)
n

∥

∥

∥
u
(N)
n − p

∥

∥

∥

≤ a
(N)
n

[(

1 +M(N−1)µn

)

‖xn − p‖+R(N−1) (µn + ln) + ϕ
n
(N−1)

]

+ a
(N)
n µn

[

φ (M) +M
∗
∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

]

+ a
(N)
n ln

+ b
(N)
n ‖xn − p‖+ c

(N)
n

∥

∥

∥
u
(N)
n − p

∥

∥

∥

≤
(

a
(N)
n + b

(N)
n

)

(

1 +M(N−1)µn

)

‖xn − p‖+ a
(N)
n R(N−1) (µn + ln)

+ a
(N)
n ϕ

n
(N−1) + a

(N)
n µnφ (M) + a

(N)
n µnM

∗
∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

+ a
(N)
n ln + c

(N)
n K

≤
(

1− c
(N)
n

)

(

1 +M(N−1)µn

)

‖xn − p‖+ a
(N)
n R(N−1) (µn + ln)

+ a
(N)
n ϕ

n
(N−1) + a

(N)
n µnφ (M) + a

(N)
n ln + c

(N)
n K

+ a
(N)
n µnM

∗
[(

1 +M(N−1)µn

)

‖xn − p‖

+R(N−1) (µn + ln) + ϕ
n
(N−1)

]
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≤ ‖xn − p‖+
(

M(N−1) + a
(N)
n M

∗ + a
(N)
n µnM

∗
M(N−1)

)

µn ‖xn − p‖

+ a
(N)
n R(N−1) (µn + ln) + a

(N)
n µnφ (M) + a

(N)
n ln

+ a
(N)
n µnM

∗
R(N−1) (µn + ln) + a

(N)
n µnM

∗
ϕ

n
(N−1)

+ a
(N)
n ϕ

n
(N−1) + c

(N)
n K

≤ (1 +MNµn) ‖xn − p‖+RN (µn + ln) + ϕ
n
(N),(3.7)

where ϕn
(N) = a

(N)
n µnM

∗ϕn
(N−1) + a

(N)
n ϕn

(N−1) + c
(N)
n K and for some constants MN ,

RN > 0. Since
∞
∑

n=1

ϕn
(N−1) < ∞,

∞
∑

n=1

µn < ∞ and
∞
∑

n=1

c
(N)
n < ∞, we can see that

∞
∑

n=1

ϕn
(N) < ∞. Also, since

∞
∑

n=1

µn < ∞,
∞
∑

n=1

ln < ∞ and
∞
∑

n=1

ϕn
(N) < ∞, by Lemma 2.1,

we get that limn→∞ ‖xn − p‖ exists. This completes the proof. �

3.2. Lemma. Let K be a nonempty convex subset of a uniformly convex Banach space
E. Let S1, S2, . . . , SN : K → K be a finite family of nonexpansive mappings and
T1, T2, . . . , TN : K → K a finite family of total asymptotically nonexpansive mappings
with sequences {µn} and {ln} defined by (1.7) such that

(3.8)
∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞

and F (S, T ) =
⋂N

i=1 F (Si) ∩ F (Ti) 6= ∅. Assume that there exists M, M∗ > 0 such that
φ (λ) ≤ M∗λ for all λ ≥ M, i ∈ {1, 2, . . . , N}. Suppose that

(3.9) ‖x− Tiy‖ ≤ ‖Six− Tiy‖

for all x, y ∈ K and i = 1, 2, . . . , N . For an arbitrary x1 ∈ K, define the sequences {xn}
by recursion (1.8) and for some η1, η2 ∈ (0, 1) with the following restrictions:

(i)

(3.10) 0 < η1 ≤ a
(i)
n ≤ η2 < 1, ∀n ≥ n0 for some n0 ∈ N,

(ii)

∞
∑

n=1

c
(i)
n < ∞ for all i = 1, 2, . . . , N,

then

lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − T
n
i xn‖ = 0

for all i = 1, 2, . . . , N .

Proof. Let p ∈ F (S, T ) =
⋂N

i=1 F (Si) ∩ F (Ti). By Lemma 3.1, we have that
limn→∞ ‖xn − p‖ exists. Let limn→∞ ‖xn − p‖ = r for some r ≥ 0. We have that

(3.11)
∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
≤

(

1 +M(N−1)µn

)

‖xn − p‖+R(N−1) (µn + ln) + ϕ
n
(N−1),

where
∞
∑

n=1

ϕn
(N−1) < ∞,

∞
∑

n=1

µn < ∞ and
∞
∑

n=1

ln < ∞. It follows that

(3.12)
lim sup

n→∞

∥

∥

∥x
(N−1)
n − p

∥

∥

∥ ≤ lim supn→∞

[(

1 +M(N−1)µn

)

‖xn − p‖

+R(N−1) (µn + ln) + ϕ
n
(N−1)

]

≤ r
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and by (3.8) and (3.12)

(3.13)
lim sup

n→∞

∥

∥

∥
T

n
Nx

(N−1)
n − p

∥

∥

∥
≤ lim supn→∞

[

∥

∥

∥x
(N−1)
n − p

∥

∥

∥

+ µnφ
(∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

)

+ ln

]

≤ r.

Since SN is nonexpansive, we get

(3.14)
lim sup

n→∞

‖SNxn − p‖ ≤ lim sup
n→∞

‖xn − p‖

≤ r.

Next, consider
∥

∥

∥
T

n
Nx

(N−1)
n − p+ c

(N)
n (u(N)

n − xn)
∥

∥

∥
≤

∥

∥

∥
T

n
Nx

(N−1)
n − p

∥

∥

∥
+ c

(N)
n

∥

∥

∥
u
(N)
n − xn

∥

∥

∥
.

Therefore, we have

(3.15) lim sup
n→∞

∥

∥

∥
T

n
Nx

(N−1)
n − p+ c

(N)
n (u(N)

n − xn)
∥

∥

∥
≤ r.

Also,
∥

∥

∥
SNxn − p+ c

(N)
n (u(N)

n − xn)
∥

∥

∥
≤ ‖SNxn − p‖+ c

(N)
n

∥

∥

∥
u
(N)
n − xn

∥

∥

∥
,

which implies that

(3.16) lim sup
n→∞

∥

∥

∥
SNxn − p+ c

(N)
n (u(N)

n − xn)
∥

∥

∥
≤ r,

and we have that

x
(N)
n − p = a

(N)
n

(

T
n
Nx

(N−1)
n − p+ c

(N)
n (u(N)

n − xn)
)

+
(

1− a
(N)
n

)(

SNxn − p+ c
(N)
n (u(N)

n − xn)
)

.

Hence,

(3.17)

r = lim
n→∞

∥

∥

∥
x
(N)
n − p

∥

∥

∥

= lim
n→∞

∥

∥

∥
a
(N)
n

(

T
n
Nx

(N−1)
n − p+ c

(N)
n (u(N)

n − xn)
)

+
(

1− a
(N)
n

)(

SNxn − p+ c
(N)
n (u(N)

n − xn)
)∥

∥

∥

Using (3.15), (3.16), (3.17) and Lemma 2.2, we find

(3.18) lim
n→∞

∥

∥

∥T
n
Nx

(N−1)
n − SNxn

∥

∥

∥ = 0.

It follows from (3.9) that

(3.19) lim
n→∞

∥

∥

∥
T

n
Nx

(N−1)
n − xn

∥

∥

∥
= 0.

Now, we shall show that limn→∞

∥

∥

∥T
n
N−1x

(N−2)
n − SN−1xn

∥

∥

∥ = 0. For each n ≥ 1,

‖xn − p‖ ≤
∥

∥

∥T
n
Nx

(N−1)
n − xn

∥

∥

∥+
∥

∥

∥T
n
Nx

(N−1)
n − p

∥

∥

∥

≤
∥

∥

∥
T

n
Nx

(N−1)
n − xn

∥

∥

∥

+
[ ∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
+ µnφ

(∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

)

+ ln

]

.
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By using (3.8) and (3.19) , we obtain

r = lim
n→∞

‖xn − p‖ ≤ lim inf
n→∞

∥

∥

∥x
(N−1)
n − p

∥

∥

∥ .

It follows that

r ≤ lim inf
n→∞

∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
≤ lim sup

n→∞

∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
≤ r.

This implies that

(3.20) lim
n→∞

∥

∥

∥
x
(N−1)
n − p

∥

∥

∥
= r.

On the other hand, we get
∥

∥

∥
x
(N−2)
n − p

∥

∥

∥
≤

(

1 +M(N−2)µn

)

‖xn − p‖+R(N−2) (µn + ln) + ϕ
n
(N−2),

where
∞
∑

n=1

ϕn
(N−2) < ∞,

∞
∑

n=1

µn < ∞ and
∞
∑

n=1

ln < ∞. Hence

(3.21)
lim sup

n→∞

∥

∥

∥
x
(N−2)
n − p

∥

∥

∥
≤ lim supn→∞

[(

1 +M(N−2)µn

)

‖xn − p‖

+R(N−2) (µn + ln) + ϕ
n
(N−2)

]

≤ r,

and by (3.8)

(3.22)
lim sup

n→∞

∥

∥

∥
T

n
N−1x

(N−2)
n − p

∥

∥

∥
≤ lim supn→∞

[∥

∥

∥x
(N−2)
n − p

∥

∥

∥

+µnφ
(∥

∥

∥
x
(N−2)
n − p

∥

∥

∥

)

+ ln

]

≤ r.

Since SN−1 is nonexpansive, we get

(3.23)
lim sup

n→∞

‖SN−1xn − p‖ ≤ lim sup
n→∞

‖xn − p‖

≤ r.

Next, consider
∥

∥

∥T
n
N−1x

(N−2)
n − p+ c

(N−1)
n (u(N−1)

n − xn)
∥

∥

∥

≤
∥

∥

∥
T

n
N−1x

(N−2)
n − p

∥

∥

∥
+ c

(N−1)
n

∥

∥

∥
u
(N−1)
n − xn

∥

∥

∥
.

Therefore, we have

(3.24) lim sup
n→∞

∥

∥

∥
T

n
N−1x

(N−2)
n − p+ c

(N−1)
n (u(N−1)

n − xn)
∥

∥

∥
≤ r.

Also,
∥

∥

∥SN−1xn − p+ c
(N−1)
n (u(N−1)

n − xn)
∥

∥

∥ ≤ ‖SN−1xn − p‖+c
(N−1)
n

∥

∥

∥u
(N−1)
n − xn

∥

∥

∥ ,

which implies that

(3.25) lim sup
n→∞

∥

∥

∥
SN−1xn − p+ c

(N−1)
n (u(N−1)

n − xn)
∥

∥

∥
≤ r,

and we have that

x
(N−1)
n − p = a

(N−1)
n

(

T
n
N−1x

(N−2)
n − p+ c

(N−1)
n (u(N−1)

n − xn)
)

+
(

1− a
(N−1)
n

)(

SN−1xn − p+ c
(N−1)
n (u(N−1)

n − xn)
)

.
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Hence,

(3.26)

r = lim
n→∞

∥

∥

∥
x
(N−1)
n − p

∥

∥

∥

= lim
n→∞

∥

∥

∥
a
(N−1)
n

(

T
n
N−1x

(N−2)
n − p+ c

(N−1)
n (u(N−1)

n − xn)
)

+
(

1− a
(N−1)
n

)(

SN−1xn − p+ c
(N−1)
n (u(N−1)

n − xn)
)∥

∥

∥

Using (3.24), (3.25), (3.26) and Lemma 2.2, we find

(3.27) lim
n→∞

∥

∥

∥
T

n
N−1x

(N−2)
n − SN−1xn

∥

∥

∥
= 0.

It follows from (3.9) that

(3.28) lim
n→∞

∥

∥

∥T
n
N−1x

(N−2)
n − xn

∥

∥

∥ = 0.

Continuing a similar process, we have

(3.29) lim
n→∞

∥

∥

∥T
n
N−ix

(N−i−1)
n − xn

∥

∥

∥ = 0, 0 ≤ i ≤ (N − 2).

Now,
∥

∥

∥T
n
1 xn − p+ c

(1)
n (u(1)

n − xn)
∥

∥

∥ ≤ ‖Tn
1 xn − p‖+ c

(1)
n

∥

∥

∥u
(1)
n − xn

∥

∥

∥ .

Hence,

(3.30) lim sup
n→∞

∥

∥

∥
T

n
1 xn − p+ c

(1)
n (u(1)

n − xn)
∥

∥

∥
≤ r.

Now, since S1 is nonexpansive, we get

lim sup
n→∞

‖S1xn − p‖ ≤ lim sup
n→∞

‖xn − p‖

≤ r.

Also,
∥

∥

∥
S1xn − p+ c

(1)
n (u(1)

n − xn)
∥

∥

∥
≤ ‖S1xn − p‖+ c

(1)
n

∥

∥

∥
u
(1)
n − xn

∥

∥

∥
,

which implies that

(3.31) lim sup
n→∞

∥

∥

∥
S1xn − p+ c

(1)
n (u(1)

n − xn)
∥

∥

∥
≤ r,

and therefore

(3.32)

r = lim
n→∞

∥

∥

∥
x
(1)
n − p

∥

∥

∥

= lim
n→∞

∥

∥

∥
a
(1)
n

(

T
n
1 xn − p+ c

(1)
n (u(1)

n − xn)
)

+
(

1− a
(1)
n

)(

S1xn − p+ c
(1)
n (u(1)

n − xn)
)∥

∥

∥
.

Using (3.30), (3.31), (3.32) and Lemma 2.2, we find

(3.33) lim
n→∞

‖Tn
1 xn − S1xn‖ = 0.

It follows from (3.9) that

(3.34) lim
n→∞

‖Tn
1 xn − xn‖ = 0.

Similarly, by using the same argument as in the proof above, we have

(3.35) lim
n→∞

‖Tn
2 xn − xn‖ = 0.
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Continuing a similar process, we have

(3.36) lim
n→∞

‖Tn
i xn − xn‖ = 0.

for all i = 1, 2, . . . , N .

From (3.18), (3.19), (3.27), (3.28), (3.29), (3.33) and (3.34), we have

(3.37) lim
n→∞

‖xn − Sixn‖ = 0

for all i = 1, 2, . . . , N . This completes the proof. �

3.3. Theorem. Let K be a nonempty convex subset of a real Banach space E. Let
S1, S2, . . . , SN : K → K be a finite family of continuous nonexpansive mappings and
T1, T2, . . . , TN : K → K a finite family of continuous total asymptotically nonexpan-

sive mappings with sequences {µn} and {ln} defined by (1.7) such that
∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞ and F (S, T ) =
⋂N

i=1 F (Si)∩F (Ti) 6= ∅. Assume that there exists M,M∗ > 0

such that φ (λ) ≤ M∗λ for all λ ≥ M , i ∈ {1, 2, . . . , N}. Suppose that the fam-
ily {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies (3.1), (3.9) and (3.10). For an arbitrary
x1 ∈ K, define the sequences {xn} by recursion (1.8). Then the sequence {xn} con-
verges strongly to a common fixed point of {S1, S2, . . . , SN , T1, T2, . . . , TN} if and only if
lim infn→∞ d (xn,F (S, T )) = 0, where d (xn,F (S, T )) = infq∈F(S,T ) ‖xn − q‖, n ≥ 1.

Proof. Necessity is obvious. Indeed, if xn → x∗ ∈ F (S, T ) (n → ∞), then

d (xn,F (S, T )) = inf
x∗∈F(S,T )

d (xn, x
∗) ≤ ‖xn − x

∗‖ → 0 (n → ∞) .

Now we prove sufficiency. It follows from (3.7) that for x∗ ∈ F (S, T ), we have

‖xn+1 − p‖ =
∥

∥

∥
x
(N)
n − p

∥

∥

∥

≤ (1 +MNµn) ‖xn − p‖+RN (µn + ln) + ϕ
n
(N)

= ‖xn − p‖+ δn,(3.38)

where δn = MNµn ‖xn − p‖ + RN (µn + ln) + ϕn
(N). Since {xn − p} is bounded and

∞
∑

n=1

µn < ∞,
∞
∑

n=1

ln < ∞ and
∞
∑

n=1

ϕn
(N) < ∞, we obtain

∞
∑

n=1

δn < ∞. Hence, (3.38)

implies

inf
p∈F(S,T )

‖xn+1 − p‖ ≤ inf
p∈F(S,T )

‖xn − p‖+ δn,

that is

(3.39) d (xn+1,F (S, T )) ≤ d (xn,F (S, T )) + δn,

by Lemma 2.1 (i), it follows from (3.39) that we have limn→∞ d (xn,F (S, T )) exists.
Noticing lim infn→∞ d (xn,F (S, T )) = 0, it follows from (3.39) and Lemma 2.1 (ii) that
we have limn→∞ d (xn,F (S, T )) = 0.

Now, since limn→∞ d (xn,F (S, T )) = 0 and
∞
∑

n=1

δn < ∞, given ǫ > 0, there exists a

positive integer N1 such that d (xn,F (S, T )) ≤ ǫ
4
and

∞
∑

j=n

δj ≤ ǫ
4
for all n ≥ N1. So, we

have d (xN1
,F (S, T )) ≤ ǫ

4
and

∞
∑

j=N1

δj ≤ ǫ
4
. This means that there exists a q1 ∈ F (S, T )
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such that ‖xN1
− q1‖ ≤ ǫ

4
. It follows from (3.38) that when n ≥ N1, m ≥ 1,

‖xn+m − xn‖ ≤ ‖xn+m − q1‖+ ‖xn − q1‖

≤ ‖xN1
− q1‖+

n+m−1
∑

j=N1

δj + ‖xN1
− q1‖+

n−1
∑

j=N1

δj

≤ ‖xN1
− q1‖+

∞
∑

j=N1

δj + ‖xN1
− q1‖+

∞
∑

j=N1

δj

≤
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
= ǫ.

Hence, {xn} is a Cauchy sequence in E; and since E is complete there exists p ∈ E such
that xn → p as n → ∞. We show that p is a common fixed point of {S1, S2, . . . , SN ,
T1, T2, . . . , TN}, that is we have that p ∈ F (S, T ).

Assume for contradiction that p ∈ F
c (S, T ) (where F

c (S, T ) denotes the comple-
ment of F (S, T )). Since F (S, T ) is a closed subset of E ( recall each {S1, S2, . . . , SN , T1,
T2, . . . , TN} is continuous ), we have that d (p,F (S, T )) > 0. But for all x∗ ∈ F (S, T ),
we have

‖p− x
∗‖ ≤ ‖p− xn‖+ ‖xn − x

∗‖ ,

which implies

d (p,F (S, T )) ≤ ‖xn − p‖+ d (xn,F (S, T )) ,

so that as n → ∞ we have d (p,F (S, T )) = 0, which contradicts d (p,F (S, T )) > 0.
Thus, p is a common fixed point of {S1, S2, . . . , SN , T1, T2, . . . , TN}. This completes the
proof. �

3.4. Theorem. Let E be a real uniformly convex Banach space and K a nonempty closed
convex subset of E. Let S1, S2, . . . , SN : K → K be a finite family of uniformly continuous
nonexpansive mappings and T1, T2, . . . , TN : K → K a finite family of uniformly contin-
uous total asymptotically nonexpansive mappings with sequences {µn} and {ln} defined

by (1.7) such that
∞
∑

n=1

µn < ∞,
∞
∑

n=1

ln < ∞ and F (S, T ) =
⋂N

i=1 F (Si) ∩ F (Ti) 6= ∅.

Assume that there exists M,M∗ > 0 such that φ (λ) ≤ M∗λ for all λ ≥ M , i ∈
{1, 2, . . . , N}. Suppose that the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies (3.1),
(3.9) and (3.10). If one of the mappings in {T1, T2, . . . , TN} is compact, then the se-
quence {xn} as defined in (1.8) converges strongly to a common fixed of the mappings
{S1, S2, . . . , SN , T1, T2, . . . , TN}.

Proof. We obtain from Lemma 3.2 that

(3.40) lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − T
n
i xn‖ = 0, for all i = 1, 2, . . . , N.

Since TN is a total asymptotically nonexpansive mapping and SN is a nonexpansive

mapping, it follows from (1.8), (3.18), (3.37) and condition
∞
∑

n=1

c
(N)
n < ∞ hat we have
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‖xn+1 − xn‖ =
∥

∥

∥
a
(N)
n T

n
Nx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n − xn

∥

∥

∥

=
∥

∥

∥a
(N)
n

(

T
n
Nx

(N−1)
n − SNxn

)

+ b
(N)
n (SNxn − xn)

+c
(N)
n

(

u
(N)
n − xn

)∥

∥

∥

≤ a
(N)
n

∥

∥

∥
T

n
Nx

(N−1)
n − SNxn

∥

∥

∥
+ c

(N)
n

∥

∥

∥
u
(N)
n − xn

∥

∥

∥

+
(

1− a
(N)
n − c

(N)
n

)

‖SNxn − xn‖

→ 0, as n → ∞.(3.41)

Let T1 be compact. Since T1 is continuous and compact, it is completely continuous.
Hence, there exists a subsequence

{

T
nj

1 xnj

}

of {Tn
1 xn} such that T

nj

1 xnj
→ p as j → ∞

for some p ∈ E. Hence T
nj+1

1 xnj
→ T1p as j → ∞, and from (3.40) we have that

limj→∞ xnj
= p. Also from (3.40), T

nj

2 xnj
→ p, T

nj

3 xnj
→ p, . . . , T

nj

N xnj
→ p as

j → ∞. Hence, T
nj+1

2 xnj
→ T2p, T

nj+1

3 xnj
→ T3p, . . . , T

nj+1

N xnj
→ TNp as j → ∞.

Using (3.41), it follows that xnj+1 → p as j → ∞.

Next, we show that p ∈ F (S, T ). Observe that

‖p− Tip‖ ≤
∥

∥p− xnj+1

∥

∥+
∥

∥

∥
xnj+1 − T

nj+1

i xnj+1

∥

∥

∥

+
∥

∥

∥
T

nj+1

i xnj+1 − T
nj+1

i xnj

∥

∥

∥
+

∥

∥

∥
T

nj+1

i xnj
− Tip

∥

∥

∥

for all i = 1, 2, . . . , N . Taking the limit as j → ∞ and using the fact that Ti is uniformly
continuous we have that p = Tip and so p ∈ F (Ti) for all i = 1, 2, . . . , N .

Also by the continuity of all the mappings Si and Lemma 3.2, we conclude that

‖Sip− p‖ = lim
j→∞

∥

∥Sixnj
− xnj

∥

∥ = 0,

for all i = 1, 2, . . . , N . That is, p ∈ F (S, T ) =
⋂N

i=1 F (Ti) ∩ F (Si). It follows from
Lemma 3.1 that limn→∞ ‖xn − p‖ exists, p ∈ F (S, T ). Hence, {xn} converges strongly
to a common fixed point of the mappings {S1, S2, . . . , SN , T1, T2, . . . , TN}. This completes
the proof. �

3.5. Remark. If T1, T2, . . . , TN are asymptotically nonexpansive mappings, then ln = 0
and φ (λ) = λ so that the assumption that there exist M,M∗ > 0 such that φ (λ) ≤ M∗λ

for all λ ≥ M , i ∈ {1, 2, . . . , N} in the above theorems is no longer needed. Hence, the
results in the above theorems also hold for asymptotically nonexpansive mappings. Thus,
the results in this paper improve and extend the corresponding results of [4, 6, 7] and [10]
from asymptotically nonexpansive (or nonexpansive) mappings to total asymptotically
nonexpansive mappings under general conditions.

3.6. Corollary. Let K be a nonempty closed convex subset of a uniformly convex Ba-
nach space E. Let S1, S2, . . . , SN : K → K be a finite family of continuous nonex-
pansive mappings and T1, T2, . . . , TN : K → K a finite family of continuous asymptoti-

cally nonexpansive mappings with sequences {µin} ⊂ [0,∞] such that
∞
∑

n=1

µin < ∞ and

F (S, T ) =
⋂N

i=1 F (Si) ∩ F (Ti) 6= ∅. For an arbitrary x1 ∈ K, define the sequences {xn}

by recursion (1.8). Suppose that
∞
∑

n=1

c
(i)
n < ∞ for all i = 1, 2, . . . , N ,

(i) ‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N ,
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(ii) there are η1, η2 ∈ (0, 1) such that 0 < η1 ≤ a
(i)
n ≤ η2 < 1, ∀n ≥ n0 for some

n0 ∈ N.

Then:

(a) The sequence {xn} converges strongly to a common fixed point of
{

S1, S2, . . . , SN ,

T1, T2, . . . , TN

}

if and only if lim infn→∞ d (xn,F (S, T )) = 0, where
d (xn,F (S, T )) = infq∈F(S,T ) ‖xn − q‖, n ≥ 1.

(b) If one of the mappings in {T1, T2, . . . , TN} is compact, then the sequence {xn} as
defined in (1.8) converges strongly to a common fixed of the mappings
{S1, S2, . . . , SN , T1, T2, . . . , TN}. �

3.7. Corollary. Let K be a nonempty closed convex subset of a uniformly convex Banach
space E. Let S1, S2, . . . , SN , T1, T2, . . . , TN : K → K be a finite family of continuous
nonexpansive mappings and suppose that F (S, T ) =

⋂N

i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn}
be the sequence defined by

(3.42)

x1 ∈ K,

xn+1 = x
(N)
n = a

(N)
n TNx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

x
(N−1)
n = a

(N−1)
n TN−1x

(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x
(3)
n = a

(3)
n T3x

(2)
n + b

(3)
n S3xn + c

(3)
n u

(3)
n ,

x
(2)
n = a

(2)
n T2x

(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

x
(1)
n = a

(1)
n T1xn + b

(1)
n S1xn + c

(1)
n u

(1)
n , n ≥ 1,

(called an N-step iterative sequence), where
{

u
(i)
n

}

are bounded sequences in K and
{

a
(i)
n

}∞

n=1
,
{

b
(i)
n

}∞

n=1
,
{

c
(i)
n

}∞

n=1
⊂ [0, 1] are such that a

(i)
n + b

(i)
n + c

(i)
n = 1, for all

i = 1, 2, . . . , N .

Suppose that
∞
∑

n=1

c
(i)
n < ∞ for all i = 1, 2, . . . , N ,

(i) ‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N ,

(ii) there are η1, η2 ∈ (0, 1) such that 0 < η1 ≤ a
(i)
n ≤ η2 < 1, ∀n ≥ n0 for some

n0 ∈ N.

Then

(a) The sequence {xn} converges strongly to a common fixed point of
{

S1, S2, . . . , SN ,

T1, T2, . . . , TN

}

if and only if lim infn→∞ d (xn,F (S, T )) = 0, where
d (xn,F (S, T )) = infq∈F(S,T ) ‖xn − q‖, n ≥ 1.

(b) If one of the mappings in {T1, T2, . . . , TN} is compact, then the sequence {xn} as
defined in (3.42) converges strongly to a common fixed of the mappings
{S1, S2, . . . , SN , T1, T2, . . . , TN}. �

3.8. Remark. Let K be a nonempty closed convex subset of a Banach space E. Let S1,

S2, . . . , SN : K → E be N nonself nonexpansive mappings, let T1, T2, . . . , TN : K → E

be N nonself total asymptotically nonexpansive mappings; assuming the existence of
common fixed points of these operators, our theorems and method of proof easily carry
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over to this class of mappings using the iterative sequence {xn} defined by,

x1 ∈ K,

xn+1 = x
(N)
n = P

[

a
(N)
n TN (PTN)n−1

x
(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n

]

,

x
(N−1)
n = P

[

a
(N−1)
n TN−1 (PTN−1)

n−1
x
(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n

]

,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x
(3)
n = P

[

a
(3)
n T3 (PT3)

n−1
x
(2)
n + b

(3)
n S3xn + c

(3)
n u

(3)
n

]

,

x
(2)
n = P

[

a
(2)
n T2 (PT2)

n−1
x
(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n

]

,

x
(1)
n = P

[

a
(1)
n T1 (PT1)

n−1
xn + b

(1)
n S1xn + c

(1)
n u

(1)
n

]

, n ≥ 1,

where
{

u
(i)
n

}

are bounded sequences in K and
{

a
(i)
n

}∞

n=1
,
{

b
(i)
n

}∞

n=1
,
{

c
(i)
n

}∞

n=1
⊂ [0, 1]

such that a
(i)
n + b

(i)
n + c

(i)
n = 1, for all i = 1, 2, . . . , N .
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